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Introduction

These days we are all networked

Whether on a PC, tablet, phone or other device we spend our
time surfing the web, reading emails, streaming media

We find it hard to do anything when were are not connected

We feel cut off when we can’t communicate

This Unit is about how the technology that allows this to happen
works, in particular, the Internet



Unit Outline

Structure of this unit: starting with 3 hours lectures per week

• Tuesday 13:15
• Wednesday 12:15
• Friday 13:15

The aim is to cover the necessary material early in the
semester which will leave the last few weeks free for revision
and problems classes



Unit Outline
Assessment

For the undergraduate CM30078:

• End of unit exam 100%



Unit Outline
Assessment

For CM50123

• Coursework 25%
• End of unit exam 75%

Coursework timelines (subject to change):

1. set Thu 26 Oct
due Wed 15 Nov

2. set Thu 16 Nov
due Fri 8 Dec

Feedback on coursework will be provided via Moodle



Unit Outline

Week 6 (starting 6th Nov) will be a “consolidation week”

No lectures for the whole of Computer Science (CM Units)

Presumably other Departments will carry on as usual



Unit Outline

Aims To understand the Internet, and associated background
and theory, to a level sufficient for a competent domain
manager.



Unit Outline

Learning Outcomes Students will be able to:

• Explain the acronyms and concepts of the Internet and
how they relate;
• State and apply the steps required to connect a domain to

the Internet and explain the issues involved to both
technical and nontechnical audiences;
• Discuss the ethical issues involved with the internet, and

have an “intelligent layman’s” grasp of the legal issues and
uncertainties.
• Be aware of the fundamental security issues;
• Be able to advise on the configuration issues surrounding

a firewall.



Unit Outline

Syllabus:

• The ISO 7-layer model. The Internet: its history and
evolution - Predictions for the future.
• The TCP/IP stack: IP, ICMP, TCP, UDP, DNS, XDR, NFS

and SMTP. Berkeley. Introduction to packet layout: source
routing etc.
• Various link levels: SLIP, 802.5 and Ethernet, satellites, the

“fat pipe”, ATM. versus carrying. Security and firewalls.
Performance issues: bandwidth, MSS and RTT; caching at
various layers.



Unit Outline

• Who ’owns’ the Internet and who ’manages’ it: RFCs,
service Providers, domain managers, IANA, Jisc/UKERNA,
MANs, commercial British activities. Routing protocols and
default routers. HTML and Electronic publishing.
• Legal and ethical issues: slander/libel, copyright,

pornography, Publishing



Unit Outline

We won’t be covering the material in the above order, though,
but in a more coherent fashion instead!

Also note that this is a Final Year/Masters Unit and so is a lot
more stretching than previous years

It contains a lot of material as networking is a big subject

It is how the Internet works, not how to write networking
programs or how to write Web pages



Unit Outline
Resources

Networking is now a mature subject (though still under
development and change!) so there are many books available

I recommend

• “TCP/IP Illustrated Volume 1” W R Stevens,
Addison-Wesley
• “Computer Networks, 5th Ed” A Tanenbaum, Pearson (4th

Ed OK)
• “The Art of Computer Networking” R Bradford, Pearson

(Polish Edition: “Podstawy Sieci Komputerowych”, WKŁ)

Stevens is available as an e-book in the library



Unit Outline
Resources

You don’t need me to tell you that there is a large amount of
material out there on the Web?

Wikipedia is fairly accurate in this area: but, as usual with
Wikipedia, you should check with other sources



Unit Outline
Resources

There is a Unit Moodle page, but as Moodle is so horrible I tend
to use my own Web pages:

https:

//people.bath.ac.uk/masrjb/CourseNotes/cm30078.html

https://people.bath.ac.uk/masrjb/CourseNotes/cm30078.html
https://people.bath.ac.uk/masrjb/CourseNotes/cm30078.html


Unit Outline
Content

We will revisit and expand on what you (may have) seen in
CM10195 or other units

But is much greater breadth and some detail



Unit Outline

Networking is a large subject with a lot of complicated detail

And there are very many acronyms

You’ll need to remember the main acronyms, but a lot are less
important

We shall cover much material in lectures

It is very techy material: if you are not a techy person you
should think very carefully about taking this Unit!



Unit Outline

But it is the big picture that is important for this Unit

For example, there are many packet headers that contain lots
of flags and fields

You should have a general idea of what the important fields are
and what their purpose is, but precisely where they appear in
the header is generally less important



Standard Introductory Slides

Remember:

You are expected to do some work outside of lectures

Lectures are the start of the learning process, not the end!

These slides are reminders to me on what to say in lectures

They are often abbreviated in style, and so are not the whole
story and would not be suitable to be quoted verbatim in an
exam



Standard Introductory Slides

Don’t try to copy everything down from the slides in
lectures—the slides will be available after each lecture

Instead, make a note of what is important and use that later—in
conjunction with the slides—to guide your further reading and
study



Standard Introductory Slides

Do not rely purely on my notes for your revision

People who do this live to regret it

Like every Unit, you are expected to read around the subject for
yourself

You need to take your own notes, read, and participate

You don’t expect to get fit simply by paying to joining a gym. . .



“If you have college courses in CS, buy the books and
spend day and night the few days before class go-
ing through the books and taking notes and answering
questions and programming examples before the first
class even starts. If you really want to do this in your
life, that’s what you should do, not just wait for the ed-
ucation to be handed you. Those who finish at the top
will always be in high demand. You can learn outside
of school too but you have to put a lot of time into it. It
doesn’t come easily. Small steps, each improving on
the other, is what to expect, not instant understanding
and expertise.”

Steve Wozniak, co-founder of Apple



Standard Introductory Slides

Computer Science is not a spectator sport

Anon



Networks

Networks form a central role in the way computers are used
today: these days it is very hard to do anything that is not
networked

As commerce and big money have taken over the Internet the
nature of networking has changed from a way of linking
together some CS departments to a multi-billion (trillion?)
pound enterprise

Thus a good knowledge of what networks are and how they
work is essential to any good Computer Scientist



Networks

And also to anyone who uses networks as part of their
everyday activities

If more people realised quite how open, fragile and subvertable
the Internet is, they would be a lot more circumspect in what
they do on it!



Networks

The Internet is familiar to everyone here

But networks have been around for a long time

A network is any means to connect entities together so they
can communicate



Networks

Reasons to network include:

• Resource sharing
• Communication and collaboration
• Information gathering
• Reliability through replication
• Entertainment



Networks

Existing networks include:

• The telephone system
• The mobile phone system
• TV and radio
• System control networks, e.g., Controller Area Network

(CAN bus) in cars (and bicycles!)
• Sensor control networks, e.g., Bluetooth and ANT
• Cable (TV) networks
• The Internet



Networks

Metcalfe’s Law

The value of a network expands exponentially as the
number of users increases

The bigger the network, the more links it has



Networks

There are many different kinds of network, thus meaning we
need classifications to put things into easy boxes

But there are many classifications to choose from



Networks

Classification by size

• LAN Local Area Network
• MAN Metropolitan Area Network
• WAN Wide Area Network
• PAN Personal Area Network, WPAN (wireless PAN)
• and so on



Networks

Classification by speedspeed technology

• Narrowband
• Broadband

Actually these technical terms do not denote speed: their real
meanings have been distorted by marketing

Optical fibre, while very fast, is actually technically narrowband

Exercise Find the technical meanings for narrowband and
broadband



Networks

Marketing terms include:

• Broadband (xDSL)
• Fibre Broadband (xDSL)
• Full Fibre (fibre)
• Fast (?)
• Superfast (above 30Mbs)
• Ultrafast (above 300Mbs)



Networks
Classification by technology

• Voiceband modem (V series of standards, V.92)
• Local Wired (Ethernet)
• Medium distance wired. ADSL (ADSL2, ADSL2+, . . . )
• Optical Fibre (FTTP)
• Hybrid (VDSL with FFTC, G.fast with FTTdp, . . . )
• Cable Data Over Cable Service Interface Specification

(DOCSIS)
• Local Wireless (Wi-Fi, Bluetooth, . . . )
• Longer distance wireless (3G, 4G/LTE, 5G, WiMAX, . . . )
• Very long distance wireless: satellite
• Power line
• etc.



Networks

Continuing Exercise Find the meanings for the various
acronyms

Exercise Read some adverts for Internet connectivity products
and determine what they actually are offering (e.g., “Superfast
broadband fibre”)

Exercise And read about the controversies about how they
advertise speeds



Networks

Exercise We use NFC to make contactless payments. Would
you regard that as a network?

Exercise And what about Interplanetary networks?



Networks

So what does a typical network look like?



U of Bath Campus Network

U of Bath Campus network



Networks

• No hosts shown: this is just the connectivity
• Multiple paths between points
• Gigabit and 10Gb links
• Other big networks, e.g., in CS, are not shown
• Connection to rest of world not shown



South West Regional Network

South West Regional Network (SWERN)



Joint Academic Network

Joint Academic Network (JANET)



JANET

JANET Topology



Networks

JANET connections to Internet



GÉANT

GÉANT European Network



CANARIE

CANARIE network in Canada



Hierarchy

We can see the Internet is a hierarchy of networks, managed
by different groups

• department
• university
• region
• country
• world

for example

And this delegation of control is essential to the way the
Internet works



Networks
Important Points

The “Internet” (capital “I”) is the world-wide collection of
networks

An “internet” (lower “i”), an abbreviation of “internetwork”, is just
some collection of networks

An “intranet” (with an “a”) is some collection of networks
belonging to a single organisation

The Web is not the Internet

Anyone caught saying so will be laughed at and will lose marks
in the exam



Networks

Tim Berners-Lee and Vint Cerf Front (photos from W3C)



Networks

Tim Berners-Lee and Vint Cerf Back (photos from W3C)



Networks

The basis of the Internet is collaboration between its member
networks

Data travels from source to destination by being passed from
machine to machine; from network to network



Networks
traceroute to www.youtube.com (208.65.153.238), 30 hops max, 40

byte packets

1 fire.cs.bath.ac.uk (172.16.0.1) 0.166 ms 0.171 ms 0.216 ms

2 gw.cs.bath.ac.uk (138.38.108.254) 0.570 ms 0.448 ms 0.337 ms

3 swan-wren-10g1.bath.ac.uk (138.38.255.1) 0.430 ms 0.470 ms 0.352 ms

4 7200-bath.bath.ac.uk (138.38.1.1) 1.190 ms 1.431 ms 1.356 ms

5 fren-bath-ph.swern.net.uk (194.83.94.65) 3.198 ms 2.548 ms 2.515 ms

6 so-1-3-0.read-sbr1.ja.net (146.97.42.157) 7.978 ms 7.859 ms 8.305 ms

7 so-1-0-0.lond-sbr3.ja.net (146.97.33.142) 9.287 ms 9.468 ms 9.207 ms

8 195.219.100.13 (195.219.100.13) 9.320 ms 9.553 ms 9.760 ms

9 195.219.195.21 (195.219.195.21) 9.458 ms 9.401 ms 9.407 ms

10 ge4-1-0-1000M.ar3.LON2.gblx.net (64.208.110.81) 14.544 ms 17.433 ms

13.969 ms

11 te1-1-10G.ar2.SJC2.gblx.net (67.17.109.102) 165.984 ms 167.465 ms

169.402 ms

12 YOUTUBE-LLC.po1.401.ar2.SJC2.gblx.net (64.212.108.162) 165.040 ms

167.189 ms 165.938 ms

13 youtube.com.hk (208.65.153.238) 165.972 ms 165.825 ms 165.815 ms

gblx: Global Crossing; SJC: San José, California

youtube.com.hk is in San José

youtube.com.hk


Networks

This was done just after a major problem with the route to
Youtube (a mistake in Pakistan lead to chaos, February 2008)

Allegedly, the Pakistan government was trying to censor a
Youtube video by blocking all routes to Youtube in that country,
but the block escaped to the whole Internet

A little later things settled down again. . .



Networks
traceroute to www.youtube.com (208.65.153.238), 30 hops max, 40

byte packets

1 fire.cs.bath.ac.uk (172.16.0.1) 0.205 ms 0.210 ms 0.091 ms

2 gw.cs.bath.ac.uk (138.38.108.254) 0.446 ms 0.431 ms 0.341 ms

3 swan-wren-10g1.bath.ac.uk (138.38.255.1) 1.185 ms 0.841 ms 0.648 ms

4 7200-bath.bath.ac.uk (138.38.1.1) 1.247 ms 1.062 ms 1.214 ms

5 fren-bath-ph.swern.net.uk (194.83.94.65) 2.808 ms 2.438 ms 2.653 ms

6 so-1-3-0.read-sbr1.ja.net (146.97.42.157) 7.839 ms 8.265 ms 7.798 ms

7 so-1-0-0.lond-sbr3.ja.net (146.97.33.142) 9.526 ms 9.520 ms 9.726 ms

8 po1-0.lond-gw-ixp2.ja.net (146.97.35.250) 9.672 ms 9.338 ms 9.089 ms

9 195.66.226.185 (195.66.226.185) 9.804 ms 9.840 ms 9.926 ms

10 te7-3.mpd02.lon01.atlas.cogentco.com (130.117.2.26) 9.823 ms

te2-1.3493.mpd02.lon01.atlas.cogentco.com (130.117.2.18) 10.223 ms

te7-3.mpd02.lon01.atlas.cogentco.com (130.117.2.26) 9.685 ms

11 <snip>

19 * * *

20 youtube.com (208.65.153.238) 154.886 ms 156.732 ms 156.480 ms

Step 10: multiple probes go different routes
Step 19: a machine that refuses to respond to the probes
Host 208.65.153.238 is now named youtube.com

208.65.153.238
youtube.com


Networks

And again on 25 Sept 2017:

traceroute to www.youtube.com (216.58.204.14), 30 hops max, 60 byte packets

1 fire-private.cs.bath.ac.uk (172.16.0.1) 0.109 ms 0.097 ms 0.088 ms

2 gw-palo.cs.bath.ac.uk (138.38.108.254) 1.055 ms 1.048 ms 1.041 ms

3 bath-gw-1-palo.bath.ac.uk (193.63.64.174) 1.608 ms 1.800 ms 1.703 ms

4 xe-1-2-0.bathub-rbr1.ja.net (146.97.144.33) 1.287 ms 1.332 ms 1.330 ms

5 xe-1-2-0.briswe-rbr1.ja.net (146.97.67.65) 2.286 ms 2.720 ms 2.707 ms

6 ae22.londpg-sbr2.ja.net (146.97.37.201) 5.189 ms 4.652 ms 4.648 ms

7 ae29.londhx-sbr1.ja.net (146.97.33.1) 5.089 ms 5.037 ms 5.012 ms

8 193.62.157.22 (193.62.157.22) 5.270 ms 5.263 ms 5.246 ms

9 108.170.246.225 (108.170.246.225) 5.938 ms 5.928 ms 5.869 ms

10 108.170.238.145 (108.170.238.145) 5.907 ms

108.170.238.147 (108.170.238.147 6.141 ms 6.129 ms

11 lhr35s07-in-f14.1e100.net (216.58.204.14) 5.818 ms 5.820 ms 5.798 ms

Google are using a local server, probably in London



Networks
And again on 3 October 2019:

traceroute to www.youtube.com (216.58.198.174), 30 hops max, 60 byte packets

1 fire-private.cs.bath.ac.uk (172.16.0.1) 0.197 ms 0.174 ms 0.149 ms

2 gw-palo.cs.bath.ac.uk (138.38.108.254) 0.708 ms 0.682 ms 0.661 ms

3 bath-gw-1-palo.bath.ac.uk (193.63.64.174) 1.776 ms 1.531 ms 1.856 ms

4 xe-1-2-0.bathub-rbr1.ja.net (146.97.144.33) 1.074 ms 1.061 ms 1.047 ms

5 xe-1-2-0.briswe-rbr1.ja.net (146.97.67.65) 2.113 ms 2.103 ms 2.092 ms

6 ae22.londpg-sbr2.ja.net (146.97.37.201) 4.314 ms 4.329 ms 4.274 ms

7 ae29.londhx-sbr1.ja.net (146.97.33.1) 5.163 ms 5.878 ms 5.854 ms

8 193.62.157.22 (193.62.157.22) 5.587 ms 5.586 ms 5.544 ms

9 * * *

10 172.253.71.200 (172.253.71.200) 7.069 ms

108.170.238.118 (108.170.238.118) 6.627 ms

172.253.68.210 (172.253.68.210) 6.284 ms

11 74.125.242.114 (74.125.242.114) 8.502 ms

108.170.232.99 (108.170.232.99) 4.818 ms

74.125.242.82 (74.125.242.82) 5.622 ms

12 lhr25s10-in-f14.1e100.net (216.58.198.174) 4.574 ms

216.239.57.207 (216.239.57.207) 6.150 ms

209.85.250.185 (209.85.250.185) 7.028 ms

Now much more variation in routes and multiple servers!



Networks

Mistakes in routing are not just ancient history: 4th October
2021 Facebook dropped off the Internet for 6 hours

A “misconfiguration” meant that its name servers (converting
names like facebook.com to addresses) were not accessible

This took out Facebook, Whatsapp, Instgram, Oculus,
Messenger, etc., and any site that uses Facebook to login

To the extent that the keycards on the doors to the machine
rooms that Facebook engineers needed to get into to fix the
problem were also not working

And the engineers couldn’t message the security guards with
the backup keys, either!

facebook.com


Networks
History

The reason for this cooperative design comes from the history
of the Internet

• 1957: The Soviet Union launches Sputnik
• mid 1960s: Advanced Research Projects Agency (ARPA)

formed. A project to share expensive resources: namely
their computers
• The network design was to be non-centralised to avoid

single points of failure, particularly nuclear attacks
• So there is no single point of coordination or oversight of

the network
• And there must be multiple paths between hosts



Networks
History

Using simple circuits (such as the telephone system used)
between machines would be too vulnerable, so packet
switching was devised

Data is chopped into small chunks, called packets, and each
packet is sent individually, possibly over different paths

Individual packets might get lost, but others will get through

The original data are reconstructed at the receiving host



Networks
Warning

The word is “packet”, not “package”

Take care never to use the word “package” in a technical
context



Networks

• 1969 First Internet has just four nodes
• Runs NCP Network Control Program



Networks
History

UtahSRI

UCSB

UCLA

Host

IMP

The Original Arpanet, 1969; Separate Interface Message Processors



Networks

An Arpanet IMP (Wikipedia)



Networks
History

• Email and discussion groups are immediately popular
• 1973 Internet reaches London
• 1974 TCP/IP replaces NCP



Networks
History

Arpanet in 1979, from “Computer Networks, Fundamentals, Practice”;
Bacon, Stokes, Bacon, 1984



Networks
History

• 1980s 1000s of machines on the Internet
• Domain Name System arrives
• 1980/90 Original ARPANET decommissioned and replaced
• Commerce arrives
• Other networks based on other protocols are replaced by

the Internet
• 1992 1,000,000 hosts
• Gopher
• Tim Berners-Lee invents the Web



Networks
History

• The Internet starts to enter the home
• Microsoft gives up on its own network and falls into line
• The Dot Com boom
• The Dot Com crash
• Broadband to the home
• Large commerce over the Internet



Networks
History

• Mobile revolution
• “Social” media
• Internet of Things (IoT); blockchain; etc.
• . . . what next?



Networks

Already this decentralised and packet nature has implications
on how the Internet must work

• how to chunk the data into packets?
• how are route(s) the packets use to get to their destination

found?
• how do we reconstruct the original data as packets might

be arriving in any order?

And higher level decisions like how we shall choose and build
these multiple routes; what hardware to use, and so on



Networks

A packet doesn’t know how to get to its destination

Even the source host doesn’t generally know a route to the
destination (only if the destination is on the local network)

A packet is like a postcard with the address written on it: it relies
on the routers it passes though to make the right decisions

“Please forward me to www.youtube.com”

It is not like a car driver with their own map making their own
decisions!

The question now becomes: how do the routers know what to
do? More on this later

www.youtube.com


Networks
Protocols

To ensure maximum interoperability, the Internet relies on
standards and standardised protocols

The use of standards means that machine A will be able to
communicate with machine B even if A and B are made by
completely different companies, are of completely different
technologies and have never previously interacted

It is clear that you must have standards for interoperability in
hardware: you can’t plug a electrical plug into an optical socket

But you must have standards in the software too, as becomes
clear when you try to use a Web page authoring tool that
doesn’t produce standard HTML

Thus we must have standards for the protocols



Networks
Protocols

This is somewhat akin to people agreeing all to use English (for
example) to communicate

A pair of random people meeting can talk if they both know
English

If not, the chances are that they share their native languages
are quite small



Networks
Protocols

The Internet has a collection of specifications called Request
for Comments, or RFCs

RFCs are freely available on the Internet for everyone to read
and implement

The RFC philosophy:

Be as close to the RFC as possible in what you do
yourself, but be as liberal as possible regarding what
you accept from others

Continuing Exercise When a topic is covered in lectures, read
the relevant RFCs



Networks
Protocols

There are several bodies that oversee the structure and
working of the Internet and the standards

• Internet Society (ISOC); oversees the Internet standard
development processes
• Internet Architecture Board (IAB); ISOC committee that

oversees the technical and engineering development of the
Internet, particularly IETF and IRTF
• Internet Engineering Task Force (IETF); IAB committee

that develops standards and publishes RFCs
• Internet Engineering Steering Group (IESG); executive

sub-committee of IETF that has final say over RFCs



Networks
Protocols

• Internet Research Task Force (IRTF); IAB committee that
does long-term research and development of Internet
technology
• Internet Research Steering Group (IRSG); sub-committee

of IRTF that manages the research groups
• Internet Corporation for Assigned Names and Numbers

(ICANN); nonprofit internationally-organised organisation
to oversee (sets policy) for global resources such as
names and numbers or other identifiers
• Internet Assigned Numbers Authority (IANA); an affiliate

body to ICANN that actually manages the domain names,
IP addresses and other things, currently run by a company
named “Public Technical Identifiers”



Networks
Protocols

IANA delegates management of various things to Regional
Internet Registries (RIRs), e.g., domain names and addresses

Current RIRs:

• African Network Information Centre (AfriNIC); Africa
• American Registry for Internet Numbers (ARIN); North

America and Antarctica
• Asia-Pacific Network Information Centre (APNIC); Asia,

Australia, New Zealand
• Latin America and Caribbean Network Information Centre

(LACNIC); South America
• Réseaux IP Européns Network Coordination Centre

(RIPE); Europe, Russia, the Middle East, and Central Asia



Networks
Protocols

These are geographical, not political, regions

The RIRs further delegate things like management of domain
names to commercial companies

E.g., 123-reg, GoDaddy and hundreds of others

Exercise Trace the movement of money up this hierarchy



Networks
Protocols

Outside ISOC, others important specification bodies include

• IEEE Institute for Electric and Electronic Engineers;
hardware like Ethernet and Wi-Fi
• ISO International Standards Organisation; e.g., XML

standards
• IEC International Electrotechnical Commission; e.g.,

Digital Living Network Alliance (DLNA)
• ITU-T Telecommunication Standardization Sector of the

ITU (International Telecommunication Union); e.g., DSL
standards
• lots more national and international institutions, such as

the British Standards Institution (BSI)



Networks
Protocols

There is quite a lot of overlap in what these institutions cover

Sometimes one institution will take a standard from another
institution and put a new cover sheet on it and give it a new
name or number

For example, the JPEG standard, from the Joint Photographic
Experts Group, is the same as ISO standard 10918-6:2013 and
ITU-T T.872

Exercise Investigate these standards bodies



Networks
History

Anyway, we need a common “language” (the protocols) for a
network

For the Internet, this common language is called the
Transmission Control Protocol/Internet Protocol (TCP/IP)

This name is more historical than accurate, but to see what it
means we need to think of layers



Networks
Layering Models

What do we need to make two computers communicate?

We need to connect them, so there must be some kind of
physical (electrical, optical, radio or other) thing between them

So they must be compatible on voltages, how bits are
represented as electrical or optical signals, etc.

And they must agree on how to represent data as bits: recall
the different ways of representing signed and unsigned
integers; similarly there are several ways of encoding
alphabetic characters as bits

And the same problem for all other kinds of data: how to
represent that sound or that shade of blue?



Networks
Layering Models

And technical requirements we have of the network

Such as do we make sure data arrived safely and didn’t get lost
or corrupted in transmission?

And a lot of other problems that only become clear when you
try to build a network

Getting this right all at once is very difficult



Networks
Layering Models

So how should we implement a network system?

First we need a standard to follow

So how should we design a network standard?

The standard must address all the issues (and more)
mentioned previously



Networks
Layering Models

This is too big a problem to be tackled all at once

How about chopping the design into chunks, each chunk
having a well-defined functionality?

Note this is just the way we approach writing large programs

Except we are not writing a program here, we are designing a
standard

So we slice the problem into nice, bite-size pieces, called layers



Networks
Layering Models

So what should the chunks be?

A layering model for a system is a suggestion on how you
might want to slice up the problem of designing it all

An oft-misunderstood point is that a layering model is not a
networking standard

It is a recommendation on how you approach the design of the
standard

After you have written the standard, you can then make
implementations



Networks
Layering Models

So:

• We pick a layering model
• We use this to guide us in making a standard
• We use the standard to direct the implementations
• We can then use the implementations

Note that there will likely be several differing implementations

But, if it is a comprehensive standard, and if all the
implementations follow the standard, they will interoperate



Networks
Layering Models

For networks, there are two main layering models in use: the
ISO Open Systems Interconnection (OSI) Seven-Layer Model;
and the Internet Four-Layer Model

That is: two popular recommendations on how to design a
networking standard

The OSI model is widely used while the Internet model is not,
despite closely mirroring the Internet standard



Networks
The OSI Model

The seven OSI layers are

1. Physical
2. Data Link
3. Network
4. Transport
5. Session
6. Presentation
7. Application



Networks
The OSI Model: Physical Layer

The physical layer (PHY) or layer 1 is the hardware layer and
deals with the transmission of bits over a channel

For example:

• what voltages to use or colours of light pulses or radio
wavelengths to use
• what encoding for bits; how long (in time) a bit should be
• how many wires to use in a cable
• what plugs and sockets to use on the cable
• and many more

Generally, anything to do with choices regarding hardware
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The OSI Model: Data Link Layer

The data link layer, also called the media access layer (MAC)
or layer 2, takes the physical layer and tries to create a channel
where there are no undetected errors of transmission

Note “undetected”: we know networks are not 100% reliable
(e.g., wireless networks in particular) so we presumably want to
take into account possible errors and deal with them: the ISO
standard recommends you think about that here

A typical MAC layer sends the data as a sequence of frames
(recall the packet nature of the Internet). A frame is a chunk of
bytes, maybe tens or thousands of bytes long
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If a frame is corrupted, maybe the MAC layer can resend it; or
send a message to the next layer indicating a problem

A popular choice in real standards is to do nothing at all: let a
higher layer figure out what’s gone wrong and choose a remedy

Again: it is up to the standard we are designing as to what
actually happens. The layering model just says it is a good idea
to consider this kind of thing here

In real implementations, this layer is often strongly intertwined
with the physical layer and we tend to talk about both of them
together
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The network layer, layer 3, controls the operation of the
network, particularly the issue of routing data from source to
destination

Also, it can deal with congestion: where there is too much data
for a particular link it might route some data via another link, or
use flow control to slow down the rate of transmission

Or speed up the rate if things are going well

Accounting might be managed in this layer: counting the
number of bits so we can bill the user

And quality of service: e.g., ensuring there is always enough
bandwidth to stream a video
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The transport layer, layer 4, accepts data from the session layer
(layer 5) and arranges it into packets suitable for the network
layer: packetisation

Similarly, it takes packets from the network layer (layer 3) and
reassembles them into the original data stream:
depacketisation. This might need to deal with packets arriving
out of order

You might want to think about reliability in this layer: ensuring
the data received is the same as the data sent. No corruption
or loss in the data

Curiously, reliability is not always a requirement of a network!
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The session layer, layer 5, manages sessions between source
and destination.

• Establishing and terminating connections; e.g., a remote
login session
• Restarting interrupted connections

Sessions can be quite short, e.g., just long enough for an email
or Web page to be transmitted; or arbitrarily long

In general, a session is just some logically connected set of
exchanges that have some unified identity
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The OSI Model: Session Layer

For example, if the network crashes and reboots halfway
through a big data transfer, the session can be picked up from
where it left off, rather than starting again

You may already know that protocols like HTTP don’t
automatically pick up from where they left off

This tells us there is possibly a gap or omission somewhere in
the relevant protocols: something they didn’t address in the
design

This may have been through deliberate choice; but it’s equally
likely they just didn’t think about it
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The OSI Model: Presentation Layer

The presentation layer, layer 6 provides some things to help us
retain the meaning of data

In particular, it decides on representations of data, such as
characters, integers and floating point values, colours, sounds
and so on so that the source and destination can agree on the
data communicated



Networks
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So if the source wants to send the number 42, the presentation
layer deals with encoding this in a suitable way as (say) some
bits, which are then transmitted (passed to layer 5)

And the destination presentation layer can determine that this
particular sequence of bits it has just received (from layer 4)
represents the number 42

They can agree on “42” regardless of how each host chooses
to represent integers internally
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The application layer, layer 7, is the layer application
programmers use: ideally programmers would not have to
worry about lower layers in their application

It contains protocols like HTTP for the Web, SMTP for email,
and so on

Built on top of these protocols are the applications that the
users see, e.g., Firefox or Chrome for the Web, Outlook or
Thunderbird for email
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Conceptually, data from an application is passed down through
the layers until it reaches the hardware: i.e., through a
sequence of pieces of software that perform the functions of
each layer

As it passes from later to layer it is encapsulated : a
transformation of the data in such a way that the layer below
can cope with it transparently

And in a way that it can be untransformed back again
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At each layer, the transformation might

• add an identifying header or trailer or both that is needed
for the functionality of the layer
• encode any bit patterns that might be misinterpreted or

mis-transmitted by the next layer
• put items in a standard form, e.g., integers into a

well-known format
• do some arbitrarily complicated manipulation
• do nothing at all!
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An example. Some early modems treated byte values less than
32 as commands to the modem, not data to be transmitted

E.g., value 4 might mean “end of transmission” and the modem
should drop the connection

What do you do if your data happens to contain the value 4?

You can’t just send it, as the modem would interpret the data as
a command and end the connection
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So you need to transform the data somehow so that “4” is never
seen by the modem in the datastream

And the transformation must be reversible, so the other end can
reconstruct the 4

This is why encapsulation is necessary: so data can be
transmitted accurately, even if you are using weird hardware
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In this case, the transformation often used was byte stuffing:
the link layer could replace byte value “04” by, say, a pair of
bytes “DB D4” (hexadecimal)

Both bytes will be transmitted unmolested by the modem

The link layer at the other end could recognise this pair and
replace it by the single byte “04”

The “DB” is called an escape character, and its presence in the
datastream means the next character is encoded, so special
action must be taken
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Take a while to think of the issues this raises: what happens if
our original data contained the pair of values “DB D4”?

We can’t just send “DB D4” as the other end will replace them
by “04”

Not only do the bytes under 32 need to be stuffed, so does the
escape character

For example, “DB” in the original data could be stuffed as “DB
FF”

The datastream “DB D4” becomes “DB FF D4”

With byte stuffing, we exchange some expansion of the data for
the correct transmission of that data
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This kind of situation is why encapsulation exists

Of course, modern hardware doesn’t act like early modems, but
the principle remains



Networks
Layering Models

Say you want to send an email. In a strict implementation
adhering to the layers the following might happen

• The email application might add a standard email header
(From, To, etc.)
• This is passed to the presentation layer. As far as this layer

is concerned it gets a chunk of text from the application
layer
• It doesn’t (or shouldn’t) know that the first few characters

are an email header
• It may transform the characters in some way, e.g.,

converting video into a transmissible format; it might
prepend its own header to indicate what it has done
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• This is passed to the session layer. As far as this layer is
concerned it gets a bunch of bits from the previous layer
• It doesn’t (or shouldn’t) know that the first few bits are a

layer header
• It may transform the bits in some way; it might prepend a

header to help it manage sessions
• And so on down through the layers

Eventually, the physical layer transmits some bits
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At the destination a bunch of bits is received by the hardware

We now proceed up the layers, unwrapping and untransforming
as we go

And, eventually, we get the original data arriving at the
application (we hope)

So why do this as it seems so wasteful?
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If the original data are small the data transmitted on the wire
can be mostly headers from the various layers
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Surely it is easier just to put the original data on the wire?

• Encapsulation adds complexity to the implementation
• It adds overhead (both space and time)
• thereby reducing effective throughput

But it turns out layering and encapsulation actually reduces
overall complexity, just like breaking a large program into
functions/objects/whatever does for programming

It also gives flexiblity
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Suppose we have a 1Gb network card in our machine and
someone comes along with a 10Gb card

Because the physical layer is (mostly) separate from the data
link layer we can just write a new standard for the 10Gb
physical layer and slot it in where the old 1Gb standard was

The upper layers needn’t know anything has changed

And we can slot in the implementation for the new hardware in
exactly the same way

We don’t have to rewrite our email application (and Web
browser, and all our other applications) because of the upgrade
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Similarly for all the other layers: we can replace specifications
in a layer and implementations of those specifications without
affecting the rest of the stack

In principle, you could use carrier pigeons as the physical layer
and your browser should work unchanged

Apart, perhaps, from speed

Someone really did this once!

Exercise Read RFC1149
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And as each layer simply hands over to the next, it doesn’t
actually matter what the next layer “really” does

As long as it has the right behaviour, it doesn’t matter how it is
actually implemented

This enables useful tricks like tunnelling, which we shall look at
later
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Why seven layers in the ISO model?

History is a trifle vague on this, but it seems that IBM had a
seven layer protocol and managed to persuade the ISO
committee in charge of the model

Some people advocate more layers: e.g., splitting the hardware
layer up

For example, a sublayer describing the physical medium, such
as copper or fibre; and a sublayer describing the signals in that
medium, such as various kinds of electrical signalling

Exercise Reality is complicated. Read IEEE 802 to see how
the physical layer can be split into three sublayers; and the link
layer can be split into two sublayers
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Others want fewer layers. A good example is the Internet Model

This is a four layer model, developed post-hoc after the Internet
Protocol had gained prominence (RFC1122)

• Link Layer
• Network Layer
• Transport Layer
• Application Layer
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We shall describe this model, together with its primary instance
TCP/IP

Take care to distinguish between the model and the instance

They often get confused as they seem so similar

It is possible, though unlikely, that there could be another
network protocol, not TCP/IP, based on the four layer Internet
model
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The Internet link layer corresponds to the OSI physical plus
data link layers

The model does not say much about this layer, only that it has
to be capable of sending and receiving the next layer packets

So what you do with your hardware is pretty much open

TCP/IP many realisations here, including Ethernet, VDSL and
Wi-Fi

And pigeons
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The Internet Model: Network Layer

Also known as the Internet layer, the network layer handles the
movement of packets, particularly routing

This directly corresponds to the OSI network layer

In TCP/IP, the Internet Protocol (IP) is defined in this layer

IP is an unreliable protocol. This is a technical term that means
that it does not guarantee delivery of packets

unreliable = not guaranteed reliable
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Sometimes it is better to deal with an occasional lost packet
than to hold up the system while the lost packet is re-requested
and resent, e.g., video, where fast delivery is more important
than accurate delivery

So it is quite useful to have a “unreliable” delivery sometimes

A lot of Internet hardware is actually fairly reliable
(non-technical sense) these days

But wireless (Wi-Fi, etc.) and some wired (DSLs) are more
unreliable than you might think
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The transport layer corresponds to the OSI transport layer,
providing a flow of packets between source and destination

In TCP/IP, two protocols are in this layer: the transmission
control protocol (TCP) and the user datagram protocol (UDP)
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TCP is a reliable (guarantees delivery) protocol

It makes a reliable layer out of a potentially unreliable IP
underneath by a complex mechanism of packet
acknowledgements

We don’t always want to pay the non-trivial cost of that
mechanism, so the other protocol, UDP, is not reliable

Actually, it is reliable as the underlying layer, IP, is reliable

And IP is as reliable as its underlying physical/datalink layer is
reliable
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UDP was devised long after TCP when it was realised how
useful unreliable protocols can be: this is why the protocol set
is called “TCP/IP”, as that was the entire protocol set for a fair
while



Networks
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We shall see packets have a header field indicating what the
protocol of the data in the packet is

TCP has protocol number 6

UDP has protocol number 17

Exercise Have a look at “Protocol Numbers” at
https://www.iana.org/assignments/protocol-numbers/

protocol-numbers.xhtml

https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
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The application layer covers (roughly) the OSI session,
presentation and application layers

This means, in particular, Internet applications must take care
over presentation issues if they want to be completely
interoparable

Many forget this, e.g., many programmers forget that not all
machines represent integers in the same way and so the bit
pattern they use for the number they want to send is
(mis)interpreted as a different number by the receiver
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In terms of implementation, typically an OS kernel will
implement everything below the application layer (TCP, UDP, IP,
Ethernet, Wi-Fi, etc.)

This is because they use system resources that must be
shared fairly amongst applications

Anything above the transport layer must be done by the
application programmer in their application code
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So a typical email application will need to apply a presentation
encapsulation and add application layer headers (To, From,
etc.)

The Multipurpose Internet Mail Extensions (MIME) standard is
a way to encode data (e.g., text, sound, pictures, video) in a
safe way

Originally developed in the context of email, it is now used in
other areas like Web page delivery where there are mixed kinds
of data to transmit
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Similarly for the session layer

If a persistent session is needed, the application must code it

Many applications, like Web browsers using HTTP, don’t

Note: if the TCP/IP had session management, applications
would get this “for free”

The counter-argument is that many applications do not want
session management, and should not have to pay the overhead
of supporting it
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In the real world, each application (running over TCP/IP) that
needs session management has to re-implement it for itself

Of course, libraries of code exist to do these “missing” things
(sessions, presentation and so on), but the programmer must
write the code to incorporate them



Networks
Example of layering in practice: how an email might be
transmitted over an Ethernet

• We start with the text of the email
• Application: the email application transforms the text using

a MIME encoding (presentation)
• Application: the email application adds an envelope

header (From, To, etc.)
• Transport: TCP adds its header (reliability)
• Network: IP adds its header (routing)
• Datalink: Ethernet adds a header (local routing) and a

trailer (checksum)
• Physical: The bits are transformed using a 4B/5B encoding

to smooth the bit patterns and are sent using a three-level
electrical coding MLT-3 (physical)
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Going through all these in detail is the content of this Unit
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We have two layering models, ISO and Internet, two
approaches to designing a standard

How do they compare?
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Comparing the two models:

• OSI was developed before an implementation; the Internet
Model was created after TCP/IP
• OSI make a clear distinction between model and

implementation; Internet is fuzzy
• OSI is general and can apply to many systems; Internet is

specific, namely to TCP/IP
• Implementations following standards following the OSI

model were dire; TCP/IP is wildly successful
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Problems with the Internet Model (not TCP/IP) include

• it is only good for describing TCP/IP
• the physical and data link layers are merged; this makes it

difficult to talk about, say, copper vs. optical fibre
installations
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Non-problems include

“OSI is slower as data has to go through more layers”

This is confusing the model with the implementation and
ignoring the standard in between them

An implementation need not have 7 separate modules: it only
needs to behave as if it did

Early implementations of a standard derived from OSI made
this mistake

There are good CS reasons why we should do this separation,
but practically we have to make tradeoffs between
maintainability and speed
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“OSI has larger encapsulation overhead as data has to go
through more layers”

As above

And you don’t have to add a header at every layer: it depends
on what the standard requires

The model doesn’t require anything
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“There are no decent implementations of OSI”

Again, confusing a model with a standard

And TCP/IP can be regarded a standard that fits the OSI
model, anyway

If you squint a bit
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The OSI model is widely used; the OSI protocols never

The Internet model is rarely used; the TCP/IP protocols are
everywhere

The main reason that TCP/IP is so successful is that its
standards (RFCs) are open and freely available: anyone can
join in

Furthermore, the code was also free and widely available

Not brilliant quality, but at least it worked. . .
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Networks before the Internet tended to be closed and
proprietary, where you had to pay to get in

But all these failed to get critical mass: even Microsoft failed to
get their own alternative to the Internet off the ground and they
had (grudgingly) to join with the rest of the world in using
TCP/IP
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Other layering models exist, e.g., Tanenbaum’s Five Layer
Model

• Physical
• Data link
• Network
• Transport
• Application

Still missing the essential presentation layer, but a lot more
useful in a world where the physical layer is often changed,
e.g., 1Gb Ethernet to Wi-Fi
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Are you there?
Over

Cup and string network

Exercise identify the OSI and Internet layers as they apply to a
cup-and-string network

Exercise Read section 3 of RFC3439
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Despite being initiated by the Military (ARPA), the Internet
protocols were mostly designed(?) and developed in Academia

This has had a great effect on the security of the Internet

The Internet was developed in a “safe” academic environment
where little regard was given to issues of privacy or
authentication

And the models are also weaker on security than they ought to
be
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OSI says “security should be involved at all layers”. Not
particularly helpful

The Internet Model says even less

Compounding the issue of lack of support for security in the
Internet protocols, early TCP/IP implementations were woefully
poor: many exploitable bugs
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By default:

• Data in transit is east to read and modify as it is passed
through the various machines on the path to the
destination
• Many protocols used are not resistant to malicious

interference
• Authentication mechanisms are weak to non-existent

And the implementations were very fragile and easily hacked
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Note the two separate issues here:

• the protocols are fragile and easily breakable
• the implementations of those protocols were often poor

A good implementation of a bad protocol is bad

A bad implementation of a good protocol is bad
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Many of these issues have since been tackled (not always
successfully), particularly when commerce got involved

But there are still several areas that could be improved: see the
routing to Youtube problem earlier; and that wasn’t even
maliciously intended

New protocols and secure (we hope) extensions to existing
protocols are now available: e.g., HTTPS for the Web, SMTPS
for email

Management and use of cryptography has an overhead. This is
an extra workload on servers: some people are unwilling to pay
this price

More on security later



Long term plan

We shall now work our way up the layers, looking in detail at
what TCP/IP does for each

This is going to be a long journey!
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First, hardware

There are several popular hardware implementations. Some
you should have come across are

• Ethernet: a wired network
• ADSL and VDSL: telephone networks
• Wi-Fi: a short range wireless network
• Cellular: mobile phones

We shall look at some of these
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Exercise How many different radio/wireless systems does your
mobile phone support?
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Ethernet arose in 1982, from DEC, Xerox and Intel, based on
the earlier Aloha protocol

The original Ethernet supported 10Mb/s

Note: Mb/s = megabit/sec; MB/s = megabyte/sec

In comparison, current consumer Ethernet runs at 1Gb/s, while
typical top-end Ethernet runs at 100Gb/s, with 400Gb/s starting
to be used in datacentres and plans for 800Gb/s and 1.6Tb/s
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To be a bit more precise, the original Ethernet had a 10Mb/s
signalling rate (also known as line rate)

The signalling rate is the rate of delivery of bits across the
physical network

Due to layering encapsulation and other physical overheads,
this is overwhelmingly not the rate of delivery of bits to the
application you are running

For example, there is always a gap between packets where
data is not being transmitted!
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However, the signalling rate is the number marketers like to use

The rate actually realised can be much lower; e.g., a 54Mb/s
Wi-Fi 3 (802.11g) network might only deliver half that figure to
an application
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The Ethernet standard covers both the PHY and the MAC
layers, so we shall look at them together

And we begin with the frame format
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Destination

address

Source

address Data

C
R

C

ty
p

e

6 6 2 46-1500 4

Ethernet frame

Numbers are byte counts: so, e.g., the destination address is 6
bytes long

• 2 byte type indicates what kind of network layer data
follows, e.g., (hex) 0800 for an IP packet
• The data, maximum 1500 bytes
• Minimum 46 bytes. The data must be padded with extra

bytes if fewer than 46 bytes are supplied
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Destination

address

Source

address Data

C
R
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ty
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e

6 6 2 46-1500 4

Ethernet frame

• A higher layer must detect and remove this padding when
necessary
• 4 byte checksum, also called cyclic redundancy check

(CRC)
• Use to check for corruption errors in the frame
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The sending host fills in the other fields and computes and fills
in the CRC

The receiving host computes the CRC on what it gets and
compares with what is in the CRC field

If they differ, it is very likely the packet was corrupted

(There is a small chance that the CRC alone got corrupted and
the other fields are good; or an even smaller chance the frame
and the CRC both got corrupted in ways they still match)

Ethernet just drops corrupted frames; no more action is taken
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(Original) Ethernet is shared, so every host sees every frame
on the local network

Ethernet cable

Host DHost B Host CHost A

Original Ethernet

So how is a frame matched up to the intended destination host?
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Every Ethernet card has a unique address built into it

(Not the full story, but true enough for now)

So the destination address on the frame allows an Ethernet
card in a host to recognise that a frame is for it and so can read
and process it

There is a security issue here. . .
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The source address on the frame allows a host to determine
who sent the frame and so it can reply if needed

000010000000000000100000100110100011010011011101 is an
example Ethernet address, a 48-bit value

For convenience we write this as 08:00:20:9a:34:dd, six
hexadecimal numbers

08:00:20:9a:34:dd
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This address is enough for when the destination is on the local
Ethernet network: we have to work harder if the destination is
non-local

And the destination might not be on an Ethernet, so how can
we specify such a destination?

This is the job of the next layer, IP, which we look at later

Ethernet is purely a local area network technology
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What of the signalling on the wire?

Ethernet uses carrier sense, multiple access with collision
detection (CSMA/CD)
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Ethernet is a multiple access (shared) medium, meaning that
several hosts use the same piece of wire to send data to one
another

Ethernet cable

Host DHost B Host CHost A

Original Ethernet

Ethernet cable

Host DHost B Host CHost A

Original Ethernet

Suppose A wishes to send to B

If C is already sending to D, the whole network is occupied with
its signal, so A must wait
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If two hosts try to send simultaneously, there will be a collision

This is an actual physical condition where the electrical signals
from the two hosts get mixed and thus corrupted

So before they send data, a host listens to the Ethernet to see if
anyone else is using it at the moment: carrier sense

If not, it sends the data

Otherwise it must wait, listening until the carrier is free
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This still isn’t quite enough

A A

A listens A sends

A

collision!

C

C listens

C

C sends

C

Frame collision

So each host continues to listen while transmitting to make
sure there are no collisions: collision detection
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If a collision is detected, each host stops transmitting, waits a
(small) random period of time and retries with the carrier sense

The random wait means that a further collision is less likely as
one host will come in slightly later than the other and see its
signal while it is carrier sensing

Detecting collisions on an Ethernet is simple: if the signal you
are seeing on the network is not the same as the signal you are
putting on the network, that means someone else is
transmitting, too
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CSMA/CD flowchart
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Exercise Explain why we need to go back to carrier sense after
the random pause

Exercise Read further about jamming signals and what to do if
the transmission repeatedly fails
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Collision detection is why there is a minimum frame size

The frames must be on the wire long enough that the hardware
can detect a collision

The speed of the signal in the wire is the problem here!

(The speed of a signal in a cable is approx 2/3 c; 100m is 520
cpu cycles of a 1GHz cpu)

And this is made worse with later faster Ethernets

Exercise Find out how CSMA/CD differs from Aloha
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There have been many Ethernet physical layers

Standard cable max len rate

10Base5 Thick coax 500m 10Mb/s
10Base2 Thin coax 200m 10Mb/s
10BaseT Twisted pair 100m 10Mb/s
10BaseF Fibre optic 2000m 10Mb/s

Base means baseband, namely using a single chunk of
frequencies from 0 (the base) up to a single cut-off point
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And these evolved (just a selection here):

Standard cable max len rate

100BaseT4 Twisted pair 100m 100Mb/s
100BaseT Twisted pair 100m 100Mb/s
100BaseF Fibre optic 2000m 100Mb/s
1000BaseT Twisted pair 100m 1Gb/s
2.5GBaseT Twisted pair 100m 2.5Gb/s
5GBaseT Twisted pair 100m 5Gb/s
10GBaseT Twisted pair 100m 10Gb/s
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The cables used in these PHYs change over time. Unshielded
Twisted Pair (UTP) comes in various qualities:

• Category 1: No performance criteria
• Category 2: Rated to 1 MHz (used for telephone wiring)
• Category 3: Rated to 16 MHz (used for Ethernet 10BaseT)
• Category 4: Rated to 20 MHz (used for Token-Ring,

10BaseT)
• Category 5/5e: Rated to 100 MHz (used for 1000BaseT,

100BaseT, 10BaseT)

Category 5 has been replaced by Category 5e which has
slightly better construction specifications
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All the twisted pair cables are bundles of 4 pairs of wires with
an RJ45 plug on the end

Then we have shielded cables, where each pair has a metal foil
wrapper:

• Category 6: Rated to 250 MHz
• Category 6a: Rated to 500 MHz
• Category 8.1: Rated to 2000 MHz
• Category 8.2: Rated to 2000 MHz, special end plugs

Plus extra rules on how the plugs on the end are joined on



Networks
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You will see “Category 7” cable being sold

It is not standardised, and does not use the usual RJ45 plugs

Even worse, you will see it being sold with RJ45 plugs on, to be
compatible with most current consumer networks. This actually
reduces its performance to something like Cat6, but at an
increased cost

Currently (2023) the best cable to buy is Cat6a as it supports
any speed your home network is likely to have and is fairly
cheap



Networks
Physical Ethernet

Amusingly, you find reviews of Cat 8 cables on Amazon along
the lines of “I installed Cat 8 instead of WiFi and now my home
network is super-fast”

They forget using any kind of wired instead of WiFi is likely to
be faster, less latency and more stable than WiFi

And they would very probably get the same benefit from the
much cheaper Cat 5e or 6a

A connection cannot be faster than the slowest component: the
device interface, the cable and the switch connecting them

Currently very few home users will have anything faster than
1 Gb interfaces and switches



Networks
Physical Ethernet

Cat 5e and Cat 6/6a is what you will find most widely used
today

Cat 6a is roughly the same price as Cat 5e and gives some
future-proofing

In particular, Cat 5e is at the edge of supporting 1Gb and bad
installs can easily cause problems, dropping the speed to
100Mb. Cat6 has more “headroom”



Networks
Physical Ethernet

There is no testing body to ensure the Category standards are
met, so anyone can call any cable anything they like

Reports say that 80% of Cat 6 (and higher) cables (even
expensive ones) on sale do not meet the relevant standard;
many even fail the Cat 5e test



Networks
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The NBASE-T Alliance claims “an estimated 70 billion meters of
cabling, which is more than 10 trips to Pluto” has been installed

So people are trying hard to make new Ethernet standards that
don’t require ripping out the old cabling and installing new

Thus we have intermediate curiosities like 2.5GBaseT and
5GBaseT (standards developed after 10GBaseT), that run on
lower-spec cables

The higher speeds and more expensive cabling is usually found
only in specialist installations like data centres, HPC and
Internet exchanges



Networks

10Base5 Transceivers

By Robert.Harker at English Wikipedia, CC BY-SA 2.5, https:
//commons.wikimedia.org/w/index.php?curid=9891521

https://commons.wikimedia.org/w/index.php?curid=9891521
https://commons.wikimedia.org/w/index.php?curid=9891521
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UTP cable (Wikipedia)
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Screened Shielded Cat 6a (Kenable)
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Ethernet

Twisted pair differs from coaxial Ethernet in that it uses hubs or
(these days) switches to connect multiple hosts together

Hub or switch

Host Host Host

Hosts connected using a hub or switch
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Ethernet

Hubs were simple electrical repeaters. An incoming signal is
sent out on all outputs

There is a single collision domain as all hosts see all signals:
any pair of signals between any hosts will collide

The available bandwidth is shared amongst all the hosts
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A switch understands the link layer and can track where a
destination host is. It only sends the signal out on the single
output that has the destination host

Hub Switch

Hub vs Switch
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This requires the switch to read and understand the MAC
addresses in the frames and to track the socket where each
host is plugged in

This is extra complexity in the switch hardware, but reduces the
number of possible collisions, increasing throughput

Each output cable is now a separate collision domain

The full bandwidth is available on each output, simultaneously

Collisions only if two hosts send to the same destination
simultaneously
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No collision Collision

Collisions in switches
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If an output is busy, rather than have a collision, a switch may
choose to store and forward a packet later when that output is
free

Now there can be no collisions and we might think we can do
away with CSMA/CD

But buffers in the switch can fill up and then packets would have
to be dropped by the switch

Instead the switch can send a jamming signal on an input to get
it to back off and resend later: thus still using CSMA/CD
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Some switches can cut through, sending the start of the packet
onwards before the tail has arrived: more complex, but less
latency through the switch

Switches can run full duplex, with independent inward and
outward traffic to each host

This gives twice the total bandwidth of previously

No collisions are possible between opposing traffic as inward
and outward traffic runs over different twisted pairs (below 1Gb)
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Ethernet is moving faster: 10Mb/s to 1Gb/s and more, all using
the same basic CSMA/CD protocol, but using differing electrical
signalling

Ethernet cards can autonegotiate to select optimum speed

But it’s not just a case of increasing the frequency of the signal,
there are other complications to get around the electrical
limitations of the cables (discussed later, if we have time)
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Ethernet

Ethernet with speeds above 100Gb/s are called Terabit
Ethernet

200Gb/s and 400Gb/s Ethernet are available, while 800Gb/s
and 1.6Tb/s are under development

Mostly optical fibre rather than copper twisted pair, but some
support for very short (e.g., 2m) copper connections

Not likely to be seen in the home for many years!



Networks
Ethernet

Addendum: October 2023

Some ISPs have just announced they will sell > 1Gb/s FTTH
products, namely 1.6Gb/s (EE) and 2.2Gb/s (Vodafone in
2024), so providing a “True Gigabit” to the home

To take advantage of this your home network will need a
2.5Gb/s switch: these are available at a moderate price
premium over 1Gb/s switches

Your PC or laptop will need a 2.5Gb/s port: you can get USB-C
to 2.5Gb/s adaptors reasonably cheaply

Cat 6a will be fine (Cat 5e should work, too)



Wireless

The next physical medium we look at is wireless

Wireless networks have been around for a long time: for
example cellular telephone systems

Everything wireless is overseen by national and international
bodies: we can’t have a free-for-all in a wide area shared
resource

One wireless system can affect another hundreds or thousands
of miles away: there must be some sort of cooperation

So some wireless systems are only allowed with very low
power, e.g., Wi-Fi



Wireless

Europe has the European Telecommunication Standards
Institute (ETSI)

USA has the Federal Communication Commission (FCC)

Collaborating with the International Telecommunication Union
(ITU)

Such bodies manage the radio spectrum, allocating various
frequencies to various purposes, ensuring minimal interference
between the competing concerns for parts of the spectrum



Wi-Fi

The IEEE 802.11 group of standards deal with “wireless
Ethernet”, more commonly known as Wi-Fi

In principle, it is an analogue of CSMA/CD over wireless, but
with some extra problems unique to wireless

For example, the shared medium is now all around, not just
within a wire

So signals from multiple networks can interfere; not just the
hosts within one network



Wi-Fi

Wireless networks generally have fairly high error rates due to
interference from electrically noisy environments, signal
reflections, other wireless networks, etc.

So the bandwidth achievable is dependent on the
circumstances of the environment

Conversely, wireless networks generate interference
themselves which must be controlled so not to be annoying to
other people
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In 802.11, the allowed power of transmission is generally kept
quite low by the standards bodies to minimise interference

E.g., a typical laptop will transmit at about 32mW; it can read a
signal as low as 0.00000001mW

(A digital TV mast might transmit at 100kW)

Thus the range achievable by Wi-Fi is often quite limited —
deliberately

But a limited range can cause complications



Wireless Problems
When we have wireless, we get the hidden host problem:

A B C

Extents of visibility

A’s range C’s range

Hidden host

Hosts A can B can “see” each other; B and C can see each
other, but A cannot see C, so A cannot tell if its packets to B are
colliding with C’s to B



Wireless Problems

In reality, the ranges will not be circular, but something rather
complicated dictated by the environment

But the limited ranges mean that CSMA/CD will not work for
wireless

CSMA/CD relies on everyone’s signals being visible to
everybody for CD to work



Wireless Problems

Next difference: as packets are broadcast, wireless networks
are intrinsically insecure, so extra effort must be taken over
security and authentication

War Driving is driving with your laptop around the
neighbourhood until you find an unsecured wireless signal:
then you have free access to the Internet!

This is illegal in the UK and elsewhere

These days, many fewer people forget to secure their networks
than was common in the early days of Wi-Fi

Only use a Wi-Fi network if you have permission to do so



Wireless 802.11

There are several parts to the 802.11 standard, including
802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, 802.11ax and
more

You may now see them under the brandings:

Wi-Fi 1 802.11
Wi-Fi 2 802.11b
Wi-Fi 3 802.11g, 802.11a
Wi-Fi 4 802.11n
Wi-Fi 5 802.11ac
Wi-Fi 6, 6E 802.11ax

Wi-Fi 7 (802.11be) is due in 2024



Wireless 802.11

Other parts of 802.11, like 11c, 11d, 11e, 11f, 11h, 11i deal with
things like power management, quality of service, security and
authentication and so on



Wireless 802.11

The original standard specified signalling rates of up to 2Mb/s

Up to 100m (300 feet) indoors and 300m (1000 feet) outdoors

There was an infra-red mode as well as a radio mode, but this
was not widely implemented

802.11b extended this to rates of 5.5Mb/s and 11Mb/s



Wireless 802.11

They use the unlicensed 2.4GHz waveband

That means you do not need to get a licence to use that
frequency at low power

This was a frequency that was otherwise unusable
commercially and is subject to interference from microwave
ovens and other things

And the frequency fell within the capabilities of low-power chips
that were buildable at the time



Wireless 802.11

Freqs Signalling
GHz rate

WiFi 1 11 2.4 2Mb/s
WiFi 2 11b 2.4 11Mb/s
WiFi 3 11g 2.4 54Mb/s
WiFi 3 11a 5 54Mb/s
WiFi 4 11n 2.4,5 600Mb/s
WiFi 5 11ac 5 6.9Gb/s
WiFi 6 11ax 2.4,5 9.6Gb/s
WiFi 6E 11ax 6 9.6Gb/s
(WiFi 7 11be 2.4,5,6 46Gb/s)



Wireless 802.11

Improvements are achieved through more sophisticated signal
encodings and using more wireless channels simultaneously

Each will fall back to previous standards to maintain
compatability with earlier devices

For example, a 5GHz signal has problems going through walls,
so 11a can fall back to 11b if you move to the next room

Exercise Look these up. Particularly the use of multiple aerials
for beamforming and spacial multiplexing



Wireless 802.11

802.11 hardware is branded “Wi-Fi”, which is actually a
certificate of interopability given to manufacturers whose
equipment demonstrably works with other manufacturers’

Administered by the Wi-Fi Alliance, a consortium of interested
companies



Wireless 802.11

The bits in 802.11 are not simply transmitted directly: there is a
lot of environmental interference to overcome

Instead the signal is spread over many frequencies using
variety of techniques collectively called spread spectrum

Exercise Read about Direct Sequence Spread Spectrum
(DSSS)

Exercise And read about film actress Hedy Lamarr



Wireless 802.11

For Wi-Fi, the allocated frequency band (2.4–2.5GHz) is split
into 14 overlapping 22MHz channels each centred on specified
frequencies

The number of channels available depends on the country

• Most of Europe: 13
• North America: 11
• Japan: 14



Wireless 802.11

Channel GHz
1 2.412
2 2.417
3 2.422
4 2.427
5 2.432
6 2.437
7 2.442
8 2.447
9 2.452

10 2.457
11 2.462
12 2.467
13 2.472
14 2.484



Wireless 802.11

Those are central frequencies, with each channel being 22MHz
wide

So, for example, channel 1 is 2.401–2.423GHz and channel 2
is 2.406–2.428GHz

The channels are 5MHz apart, so neighbouring channels
overlap (as they are 22MHz wide) and interfere. Therefore you
need to take care which channels you use

There are recommendations on using channels



Wireless 802.11

• Separate channels by at least 2 (e.g., use 1 and 4) to
reduce interference
• Separate by 4 (e.g., use 1 and 6) to have no interference at

all
• This means we can have three non-interfering co-located

networks on channels 1, 6 and 11



Wireless 802.11

Separating networks physically gives more leeway:

• Separate by 1 (e.g., use 1 and 3) if the networks are more
than 40m apart
• Adjacent channels (e.g., use 1 and 2) are OK over 100m
• Channels can be reused when the networks are sufficiently

separated
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1 52 3 4 6 7 8 9 10 11 12 13

2

3

4

5

6

7

8

9

10

11

12

13

1

channel 14

14

Overlapping WiFi channels at 2.4GHz
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More subtle channel allocations allow a little overlap (e.g.,
using channels 1 and 3) that have a little interference, but a
greater overall aggregate bandwidth

Exercise Mobile phones have wireless apps that display the
wireless environment. Walk around and see what it is like
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WiFi Analyzer app



CSMA/CA

The Hidden Host Problem means 802.11 can’t use CSMA/CD,
like wired Ethernet

Instead, it uses carrier sense, multiple access, collision
avoidance (CSMA/CA)

This is similar to CSMA/CD, but with a big difference

• Carrier sense: to deal with the common case of
non-hidden hosts, first listen for a signal
• If free, send a packet
• If busy, wait until the end of the transmission and then

enter a contention period : wait a random period
• Go back to carrier sense



CSMA/CA

Waiting for the contention period is the collision avoidance

A random wait mean that several hosts wanting to transmit are
unlikely to all start transmitting simultaneously

We are trying to avoid a collision in advance rather than detect
one after the fact: we know that signal detection is problematic
in Wi-Fi

But collision avoidance does not guarantee no collisions,
particularly with hidden hosts, so we need more



CSMA/CA

Thus, on successful receipt of a packet, a destination host will
broadcast an acknowledgement (ACK) packet

This is just a packet to inform the sender that everything
worked well and there was, in fact, no collision or other loss

If the sender never gets the ACK, it will resend, starting from
the CS again

This ACK is important, as measurements have found loss rates
on the order of 30%

Note the ACK is also visible to everyone in range of the
destination, giving extra indication to others when a
transmission has finished



CSMA/CA

Listen

not freefree

Send

Wait

random

contention

Wait

timeout

for ACK

Wait

until

free

no

ACK

ACK

Done

Start

CSMA/CA flowchart
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Exercise Compare and contrast the CSMA/CA flowchart with
the CSMA/CD flowchart



CSMA/CA

Why use collision avoidance rather than collision detection?

Clearly, the contention period means more latency in
transmission

We do it because with wireless, collisions can be very hard to
detect

With Ethernet, detecting another host’s signal on a wire is easy
as the power of its signal is roughly the same as yours



CSMA/CA

In contrast, detecting another host’s radio signal can be very
difficult as it can be a tiny fraction of the power of yours, and
your signal will drown out the colliding signal and make it
undetectable

Recall the wide range of power that Wi-Fi signals encompass:
another destination might be transmitting quite powerfully, but
its signal can be very small by the time it reaches you



Wi-Fi

To help further with the visibility problem, there is optional
RTS/CTS handshaking, which can improve performance in
certain circumstances



RTS/CTS

A B C

A: RTS

A B C

A: data

A B C

B: CTS

CBA

B: ACK

A B C

C: RTS

1 32

C sees CTS

4 5

RTS/CTS handshaking

1. Before sending a data packet the source A can send a
request to send (RTS) packet to B; 2. If the destination B is
happy (it is not already receiving from another host that A
cannot see) it responds with a clear to send (CTS) packet; 2.
Every other host within the range of the destination will see the
CTS and so know not to send themselves; 3. The RTS and
CTS contain the length of the desired transmission so other
hosts know how long they will have to wait; 4. Similarly, the final
ACK is visible to everyone within range of B; 5. Then C can
start with its own RTS



RTS/CTS

This means there is even more latency overhead before data
starts to be transmitted, so RTS/CTS can be switched off or on
as required:

RTS/CTS always on: good for large or busy networks

RTS/CTS never on: good for small or lightly loaded networks
where every host can see all other hosts

RTS/CTS for large packets only: a compromise that reduces
the relatively large overhead for small packets



Wireless Rates

Although 802.11b is nominally 11Mb/s and 802.11g is
nominally 54Mb/s remember these are the signalling rates, not
the data rates

The signalling rate is the raw bit rate over the airwaves: a lot of
that is consumed in overheads

Realistically, 802.11b gives about 3 to 4Mb/s and 802.11g
about 20Mb/s

Some of the later 802.11 standard improve speeds by reducing
overheads (as well as using better encodings)



802.11

Exercise 802.11ac (branded “Wi-Fi 5”) is common and 11ax
(“Wi-Fi 6”) hardware becoming more common. Read up on
what they promise and what they deliver



Wireless Networks

While the use of access points is common, this is not the only
way to set up a wireless network

802.11 can be arranged in point-to-point networks called
Ad-Hoc or Independent Basic Service Set (IBSS)



Wireless Networks

Point−to−point connections

IBSS

H H

H H

Ad-Hoc network

Each host communicates directly with each other without an
access point

Clearly all hosts need to be sufficiently close to each other



Wireless Networks

But the usual Wi-Fi network is a Infrastructure or Basic Service
Set (BSS), where a central hub (access point) relays traffic
between hosts

BSS

AP

Access point

H H

HH

Internet
X

Usual access point setup
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This is more expensive to set up (as you have to buy an AP),
but covers a larger area

And is easier to manage by non-technical users

Also the AP can connect into a wired network and so the rest of
the Internet



Wireless Networks
Extended Service Set (ESS) connects several APs by a wired
network

AP AP AP

H

H

H

ESS

Extended network

This allows hosts to roam and things can be configured to
handoff automatically between APs if the required
authentication infrastructure is set up in the APs

An ESS can cover an area as large as you like
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Exercise Read about Wi-Fi Direct, another peer-to-peer
wireless connection between hosts, often used as a device
setup mechanism. Compare with Ad-Hoc mode

Exercise Read about Mesh networks



Wireless Security

While we are talking about authentication. . .

Wireless packets are readable by anybody in the
neighbourhood, so security is essential in a wireless network

We have two issues:

• is this machine allowed to connect to this network:
authentication
• ensure data in transit is kept secret: privacy

On Ethernet, being plugged into the network is the
“authentication”, while the physical security of the network is
the “privacy”

But only private from people not on the network!
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Original 802.11 employed the Wired Equivalent Privacy (WEP)
encryption scheme

Both ends of a communication share a secret key that is used
to encrypt the traffic between them

WEP is now easily breakable: after collecting a modest amount
of traffic the system can be broken

As can its successor, Wi-Fi Protected Access (WPA)
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Currently we use mostly WPA2, (IEEE 802.11i-2004)

Exercise Read about the break of the WPA2 protocol (Oct
2017)

Exercise Read about the new WPA3
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Two major ways to set up authentication are

• WPA-Personal: also called WPA-PSK (pre-shared key),
where an access point has a secret key, and a host
authenticates directly with the AP using the secret key
• WPA-Enterprise (802.11X): requires a separate

authentication server (typically a RADIUS server) that the
AP will contact. Much more fiddly to manage, but allows
roaming across an ESS. Also roaming across institutions
using hierarchical RADIUS servers

We usually find BSS using WPA-PSK and ESS using
WPA-Enterprise, but either can use either



Wireless Security

For WPA-PSK the secret key is usually derived from a
password for ease of use

The password is communicated off-line, e.g., written down
somewhere

Everybody on the network shares the same key/password;
authentication is done in the AP

WPA-Enterprise is more complex



Wireless Security

AP AP AP

RADIUS

server

RADIUS authentication

Access points do not authenticate, but ask a RADIUS server
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AP AP AP

AP AP AP

RADIUS

server

RADIUS

server

RADIUS

server

Multi-institution
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For WPA-Enterprise each user has their own key/password

Authentication is done in the RADIUS server on both the
username and the password



Wireless Security

Exercise Read about how Eduroam uses WPA-Enterprise

Exercise Read about RADIUS: Remote Authentication Dial In
User Service



Wireless Security

Some APs have Wi-Fi Protected Setup (WPS), a simplified way
of setting up WPA/WPA2 security

Designed for those people who find typing in a password too
challenging

It is seriously broken and should be disabled on your AP

Exercise A common system we see on public Wi-Fi is a
redirect to a login web page: sometimes called a captive portal.
What kind of security (privacy and authentication) does this
provide? Note this is not WPA-Enterprise



Wireless 802.11

The frame layout for Wi-Fi is the same as Ethernet

In particular it has the same format MAC addresses, e.g.,
00:04:ed:f1:ef:8a

This allows the transparent mixing of Wi-Fi and Ethernet in a
single network

An AP can pass on a Wi-Fi frame unchanged to an Ethernet;
and vice versa

Exercise What implication does this have for Ethernet collision
domains?

00:04:ed:f1:ef:8a


PHY Sublayers

This is a good argument for sub-dividing the physical layer!

Exercise For hardware hackers: read about the IEEE layers:

• Physical Medium Attachment (PMA) for things like frames
• Physical Coding Sublayer (PCS) for things like 4B/5B
• Physical Medium Dependent (PMD) for the hardware

But it does mean we don’t have to discuss Wi-Fi any further!



Other Wireless

Many other wireless networks exist, from local to wide-area



Other Wireless

Bluetooth gives short range, point-to-point communication

Point-to-point: just two hosts in the network

A range of 10m

Also uses 2.4GHz band

Not really designed to run IP, but can by layering a suitable
protocol (see PPP, later)

Bluetooth Low Energy (BLE), is a non-backwards-compatible
evolution designed to reduce power consumption



Other Wireless

Exercise Read about Adaptive Network Topology (ANT and
ANT+) for short range low power wireless, similar to BLE, but
for use with fitness (and other) sensors (by Garmin)

Exercise Read about Zigbee for short range low data rate, low
power wireless, for use in home automation and control



Networks

We now move to look at a different environment: longer
distance networks, in particular to the home

These have quite different requirements from, say, commodity
Ethernet: in particular you don’t always get to choose the
physical layer. Sometimes you have to make do with whatever
hardware is available, e.g., buried in the street



Networks
Analogue

Before digital networks were common, the physical layer of
choice was an acoustic modem, using the existing analogue
telephone network

This used MOdulation and DEModulation to convert bits into
acoustic symbols, i.e., sounds

The early Internet (Arpanet) ran over the existing analogue
telephone network



Networks
Analogue

Exercise Read about the V series of modem standards

Exercise Read about amplitude modulation, frequency
modulation and phase modulation and Quadrature Amplitude
Modulation (QAM) constellations



Networks
Digital

After analogue, public telephone systems started to support
purely digital networks

Exercise Read about Integrated Services Digital Network
(ISDN)

ISDN was the precursor to ADSL



ADSL
Asymmetric Digital Subscriber Line (ADSL) was an important
method of delivery, and drove the first big increase of the
Internet in the home

Analogue modems are limited to 56Kb/s, the maximum speed
available from a standard analogue telephone line where all
frequencies apart from a 3KHz chunk centred on the human
voice are filtered out and thrown away

The telephone wire — while only originally specified to be
capable of sending voice — is capable of more, ADSL tries to
take advantage of this

It uses many blocks of frequencies simultaneously —
broadband — that avoid areas of the spectrum that have
interference, and to make best use of areas of the spectrum
that don’t



ADSL

The data rate you get depends on the quality and length of the
copper loop connecting you to the telephone exchange: the
longer it is the harder it is to get a clean signal down it

And the amount of interference there is along the route of the
copper loop

ADSL2+ tops out at 24Mb/s, dropping to 2Mb/s at its longest
reach (about 4km, maybe up to 8km if you are really lucky)



ADSL

It is asymmetric in that is divides the available bandwidth
unequally into (say) 24Mb/s downstream (towards the user)
and 2Mb/s upstream (towards the Internet)

Which is what most home users want: a few clicks on a Web
link (low bandwidth) resulting in a large page download (high
bandwidth)



ADSL

But 24Mb/s is not enough for today’s video streaming,
multi-occupant houses: we need to go faster and ADSL and
updates to ADSL (e.g., VDSL) can’t keep up

Exercise ADSL is just one in a series of DSL standards,
collectively called xDSL. Read about these



The Last Mile Problem

This is part of last mile problem: how to bridge the gap between
the local telephone exchange and the final user

Also called the first mile problem



Fibre Hybrid

Currently, the most popular solution is to have Fibre to the
street cabinet (FTTC) and then use a DSL over the existing
copper wire (the copper loop) to the home

VDSL2 is used on the copper from the cabinet to the home:
with an asymmetric up to 80Mb/s downlink, 20Mb/s uplink

(The actual limits are more complex; and made even harder by
legal restrictions on advertisements of speeds in marketing)



Fibre Hybrid

VDSL (and VDSL2 etc.), another DSL standard, gives higher
data rates than ADSL over short distances

But the rates drop off rapidly with distance, and after about
1.6km its performance drops below that of ADSL

Exercise Read about the various distances, performances and
frequencies used by these standards



Fibre Hybrid

With VDSL, the distance you live from the street cabinet
governs what speed you actually get

In contrast, ADSL uses the old copper loop all the way from the
exchange to the home: this can be many kms

The FTTC “Fibre broadband” hybrid represents the current
cost-effective way of getting decent bandwidth to the home



Fibre

Ideally we would each have a high-bandwidth optical fibre to
our home

Optical fibre is not subject to electrical interference like copper
wires, and can carry huge (terabits is possible) datarates

We would like Fibre to the building/business (FTTB) or Fibre to
the premises (FTTP), where fibre comes to a building (business
or multiple occupancy building); or Fibre to the home (FTTH)
where fibres come to individual houses



Fibre

It will be very expensive to provide everybody with a fibre
connection: a lot of digging up the road is needed

The legacy copper telephone network was put into place over
many decades

Though progress on laying fibre is continuing and there are
plans to decommissioning the copper network at some point in
the future

In 2019 the UK government announced that there will be 100%
coverage of gigabit “broadband” by fibre or 5G cellular by 2025

Previously it had an “aspiration” to have 100% optical fibre by
2033 — much more realistic

Exercise Find out what the current Government target is



Fibre

The current big push is to install FTTP and there is a lot of
engineering works across the country digging up streets to
install it

Big companies like Openreach (BT) and Virgin as well as
smaller altnets, like Truespeed and City Fibre currently digging
up Bath

Offering up to gigabit speeds: usually advertised as 900Mb/s
(rules on advertising, again)

With an eye to the future, some altnets are installing hardware
that can provide up to 10Gb/s

FTTH/P is being marketed as “full fibre” to distinguish it from
FTTC
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copper
bundle

copper
wire

optical
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optical
fibre

optical
fibre

example
technologies

ADSL2+

24Mb/s

FTTC
VDSL2 100Mb/s

Current common connections in the last mile



FTTx

A street cabinet is where a bundle of wires or fibres for several
streets (say) split into smaller bundles going to the respective
streets

A distribution point is a place (another cabinet or underground
beneath a manhole or on a telegraph pole) where the bundles
split into the individual connections to their destinations

For example, a FTTH might have multiple fibres to a street
cabinet; a single shared fibre to the DP where the signal is split
optically on to individual fibres to the homes

Exercise Read about (the now defunct) FTTdp that took fibre
all the way to the DP



The Last Mile

In the UK we have:

5500 exchanges ADSL copper 24Mb

10,000s street cabinets
VDSL
FTTC

fibre +
copper

80Mb

1,000,000s distribution points
G.fast
FTTdp

fibre +
copper

300Mb

30,000,000 premises
Ethernet

FTTP
fibre 1GB



The Last Mile

In the UK there is a legal requirement: the universal service
obligation (USO) of a connection of at least 10Mb/s down,
1Mb/s up

BT (or other large provider, like KCOM in Hull) have to provide
this at a reasonable cost

It can be wired/fibre or even wireless



End of Analogue

BT wants to turn off all analogue (Public Switched Telephone
Network (PSTN)) networks by 31 Dec 2025

Meaning the voice network, i.e., telephone

Voice will be replaced by digital (Voice Over IP (VOIP)) over
copper or fibre to a modem in your home; your phone plugs into
the modem

In the long run they want to remove the copper, but this means
building fibre (or wireless) everywhere first



Cable TV

The cable TV system, where available, is another solution to
the Last Mile

Newer installations are full fibre, but there is also a lot of
another fibre/copper hybrid, with fibre to cabinets and then
copper to the home

However, the copper wires used is good(ish) quality coaxial
cable that is well screened against interference and crosstalk,
and so the data rates it supports are much higher



Cable TV

Telephone wire and coaxial cable

Picture from Virgin Media

Exercise Read up on Data Over Cable Service Interface
Specification (DOCSIS)



Wireless

Next: cellular networks, as used by mobile phones for the Last
Mile

The first important digital system was Global System for Mobile
Communications (GSM)

Retrospectively named 2G

(1G was the preceding analogue system)

Rates of 9.6Kb/s to 14.4Kb/s (similar to old analogue wired
modems)

High Speed Circuit Switched Data (HSCSD) takes this up to
57.6Kb/s



Wireless

General Packet Radio Service (GPRS), packet based, up to
171.2Kb/s

Uses several GSM channels

Enhanced Data rates for GSM Evolution (EDGE) uses better
encodings to get up to 384Kb/s, again using several channels

EDGE used by Third Generation (3G) systems

High-Speed Downlink Packet Access (HSDPA) ups this to
42.2Mb/s

Evolved High-Speed Packet Access (HSPA+) will do 168Mb/s



Wireless

4G is well established

Using Long Term Evolution (LTE) with the promise of 300Mb/s

LTE, marketed as “4G”, originally did not meet the proposed 4G
standard as it did not satisfy the proposed technical
specifications of a 4G system

In particular, a 4G network should support 1Gb/s for a
stationary host

The ITU (who say what “4G” is supposed to mean) actually
gave in to commerce and retroactively changed the definition of
4G to allow for LTE



Wireless

LTE is data traffic only, and does not have a voice channel

Currently on many LTE systems if you want to make a voice call
it has to drop back to 3G (or even 2G)

Some phones and systems support voice over LTE (VoLTE)
using a suitable digital encoding of sound over the data channel

Exercise Some systems support “Wi-Fi calling”, which is using
your Wi-Fi (rather than the cellular network) to connect to the
telephone system. Read about this



Wireless

5G is currently being deployed

It uses the available spectrum much more efficiently than 4G,
and employs frequencies up to 86GHz (LTE uses up to 6GHz)

Projections indicate users connected to a base-station will
share 20Gb/s download and 10Gb/s upload rates

And base-stations will support “millions” of devices per square
mile (enabling the Internet of Things)

A device will be able to connect even if it is moving at 500km/h
(e.g., in a plane); latencies will be 1ms, compared to the current
20ms on LTE



Wireless

Current sticking points over the adoption of 5G are:

• lack of support in “old” mobile phones
• phone 5G chipsets currently suck a lot of power
• the need to build a lot more base stations (using higher

radio frequencies means the range of a cell is smaller)
• or upgrading old ones and re-purposing existing

frequencies used by 3G



Wireless

6G? A new “G” appears roughly every 10 years, so maybe
2030, but this is uncertain as 5G has significant improvements
planned. Maybe a standard will be published in 2025

With targets of 100Gb/s to 1Tb/s using 100GHz to 1THz
(terahertz) frequencies

THz is between microwaves and infrared, not ionizing; current
mobile is MHz and GHz. The tech to generate THz waves is
still very new

(The base-stations will need really good onward connectivity!)



Wireless

2G and 3G signals are due to be phased out by 2033 so their
frequencies can be reused by 4G and 5G

Probably 3G will go first, as 2G is widely used in things like
Smart Meters, and as a low-power, long-range fallback,
particularly in rural areas

Many companies are looking at dates like 2025 for 3G removal

Exercise Read about how this conflicts with the limited support
for VoLTE in 4G



Wireless

Satellite networks can be used outside of well-connected urban
areas for the Last Mile

There are two main variants



Wireless

One Way satellite

Home ISP

satellite

Internet

One way satellite

One way satellite: this employs the usual asymmetry. Data
away from the home travels by telephone wire; data towards
the home travels through a satellite connection



Wireless

Two Way satellite

Home ISP

satellite

Internet

Two way satellite

Two way satellite: satellite connections both ways. More
expensive in equipment in the home, but not reliant on a
telephone network



Wireless

Satellites are very expensive to put up and to run

They cover a large area with a reasonably good bandwidth

They are good for remote and undeveloped areas with no other
local infrastructure



Wireless

Geostationary satellites have a large latency: about 1/10 sec,
which can be very noticeable in highly interactive applications
(games)

So lately providers are putting satellites into low orbits, but this
means they are forever moving (from the perspective of
someone at ground level)

This is fixed by having a large number of satellites so there is
always one overhead

Lower latency =⇒ lower orbit =⇒ faster moving satellites
=⇒ more satellites needed to maintain coverage



Wireless

Starlink (amongst others) are currently building a low orbit
satellite network

Targets are 300 Mb/s at 20ms latency

But this will need 10s of thousands of satellites (a problem for
astronomers!)

Due to the cost, this may turn out to be a “top up” service for
the hard to get at places; not a general connection for all



The Physical Layer

We have seen some implementations of the physical layer

There are very many more

There are many implementations as there are many physical
requirements of networks (distance, speed, power, etc.)

Fortunately, as we go up the layers, the amount of variety
decreases!



Link Layer Protocols

We now turn to some other link layer protocols

Serial Line Internet Protocol (SLIP) is an early protocol used on
modems to encapsulate IP traffic over serial (telephone) lines

It is a point-to-point protocol, meaning it links just two machines
to each other: the normal requirement in early dial-up systems



SLIP

c0 c0Data

SLIP frame

A very simple frame encapsulation with a terminating byte (hex)
c0; also often a starting c0 byte, too



SLIP

So how to send data that contains the byte c0?

Use byte stuffing

To send c0 actually send two bytes db dc

The pair db dc is reconstructed as c0 at the other end

Stuff db as the pair db dd, which the other end reconstructs as
db

A minor expansion of data, but it enables transparent
transmission of data



SLIP

There is no frame size limit, but it was suggested you should
support at least 1006 bytes

296 bytes was common (40 bytes of TCP/IP headers plus 256
bytes of data)

Larger frames have relatively less overhead, but at 9600b/s (a
typical early modem speed) 1006 bytes takes roughly 1 sec to
transmit

If there is a bulk transfer of full-sized frames at the same time
as an interactive session, the interactive session’s frames would
have to wait 0.5 sec on average to get through, much too slow

An interactive response of over 100-200ms is felt to be slow



SLIP

296 is a compromise: not too slow for interactive, not too small
for bulk transfer, but not particularly good for either

On more modern modems (56Kb/s) it was increased to 1500
bytes

Exercise Compute the average latency for 296 byte frames on
9600b/s; and 1500 byte frames on 56Kb/s

Exercise And how big a frame could we have on a 10Mb/s
Ethernet for the same latency?



SLIP

SLIP has several problems

Only IP in the next layer is supported (no type field in frame)

The ends must have pre-agreed IP addresses: no mechanism
for agreeing addresses

No checksum: even though telephone lines were noisy and
created data corruption

No authentication: no way to check who is connecting



PPP

Thus the Point-to-Point Protocol (PPP) was developed

Like SLIP it is a point to point protocol

It has three parts

• A framing layout for packets
• A link control protocol (LCP) for managing and configuring

links
• A set of network control protocols (NCP) to manage

network layer specific options



PPP

7E FF 03 Data CRC 7E

1 1 1 2 up to 1500 2 1

flagaddress
controlflag

proto-

col

PPP frame

• Frame delimiters 7E, start and end
• Address (always ff), Control (always 03)
• Protocol: tells us what the next layer is, e.g., IP is 0021,

LCP is C021 and NCPs are 80xy

• Cyclic redundancy check to spot corruption
• But no address fields (Exercise why not?)



PPP

• Up to 1500 bytes of data (but can be negotiated)
• Values are escaped (like SLIP) by 7d

• 7e→ 7d 5e

• 7d→ 7d 5d

• x , where x < 2016 →7d [x+20], so, e.g., 01→7d 21



PPP

NCPs can negotiate extras, like compression, frame size, etc.

And authentication, e.g., passwords

While it was devised to be used over telephone modems, PPP
is still actively used, e.g., in PPP over Ethernet (PPPoE) as it
allows authentication of a connection

Current FTTC products use (IP over) PPPoE over VDSL to
pass authentication to the ISP

Exercise Read about this

Exercise Look at the configuration of your home ADSL or
VDSL modem



Link Layers

Several other link layers exist: too many to talk about in any
detail

We have already seen the Ethernet frame for a local area
network

There are many link layers for carrying data over long
distances, at high data rates, both electrical and optical



Link Layers

For example, Asynchronous Transfer Mode (ATM) was popular
for a while

Designed by telephone engineers, it was really a connection
oriented digital voice network into which you could squeeze
data packets

It has fixed-length frames of 53 bytes (48 data plus 5 header)
— good for voice, not so good for data

Exercise Read about ATM and PPPoA, that layers (IP over)
PPP over ATM, as used in ADSL and DOCSIS



Link Layers

Multiprotocol Label Switching (MPLS) was designed post-ATM
when the technology decisions that drove the design of ATM
were deemed no longer applicable

Designed by network engineers to be a general long-distance
network, it is much better suited to modern data networks

Exercise Read about MPLS and how BT uses it in its 21C
Network



Networks
Ethernet Link Layer

We want to move up to the network layer: but before doing so
there is one more remark on the link layer

Recall Ethernet. The data on the wire:

Destination

address

Source

address Data

C
R

C

ty
p

e

6 6 2 46-1500 4

Ethernet frame



Networks
Ethernet Link Layer

The interesting fields here are the addresses

The addresses allow a frame to identify the intended
destination (and source)

This works well enough when the destination is on the local
Ethernet network

Which is shared (or switched), so the frame has no problem
being seen by the destination host



Networks
Ethernet Link Layer

What to do when the destination is non-local?

We can’t simply treat the world as a shared medium and
broadcast the packet to everybody

And the network at the destination might not even be an
Ethernet and will not have an Ethernet address

So we need hardware independent addresses to identify hosts
that work independently of the physical network

In the Internet Protocol, these addresses live in the network
layer



Networks Link Layer
IP

The network layer used in the Internet Protocol is called the
Internet Protocol (IP)

It has the major function of dealing with routing, determining
where a packet should go

Amongst a lot of other stuff, the IP header has network layer
addresses

These are hardware independent, and in the same format
across the entire Internet



Networks
IP

Each host on the Internet has an IP address that identifies it
uniquely over the entire Internet

At least, that was the original intention

This is certainly no longer true, for reasons we shall explore
later

But, for now, assume this is true



Networks
IP Header

16 bit total length
8 bit type
of service

4 bit
version length

header
4 bit

16 bit identification

R
F

D
F

M
F 13 bit fragment offset

16 bit checksum8 bit protocol
8 bit time

to live 32 bit source address

32 bit destination address Header options

Data

IP header

A bit hard to read, so conventionally we stack the header
vertically
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IP Header

Data

Header options

32 bits

R
F

D
F

M
F

32 bit destination address

32 bit source address

16 bit checksum8 bit protocol
8 bit time

to live

16 bit identification 13 bit fragment offset

16 bit total length
8 bit type
of service

4 bit
version length

header
4 bit

20 bytes20 bytes

IP header (usual layout)



Networks
IP

The source and destination addresses are both four bytes long:
we shall come back to the other fields shortly

10001010001001100010000000001110 is an example IP
address, a 32-bit value

This is 2317754382 in decimal: not terribly easy to work with

So for convenience we write this as 138.38.32.14, decimal
representations of four 8-bit values. The dots are purely to
make the number visually easier to read

But, importantly, there is structure in an IP address which helps
with routing



Networks
IP

In this example, 138.38.32.14. the first half 1000101000100110
(138.38) is a 16-bit network address, which identifies the
University of Bath

And 32.14 is a 16-bit host address, which identifies a single
machine on the University’s network

Note that we write 138.38, but this should really be thought of
as 1000101000100110, a bunch of 16 bits

Always remember that the dotted decimal notation is just a
convenient way of writing a chunk of bits: there are no decimal
numbers in the header!



Networks
IP

This division into network and host parts helps immensely in
routing, as all packets destined for the University of Bath can be
routed in the same manner

Only when a packet reaches the University is some local
knowledge of the network needed

Indeed, the host part of this address splits further into subnet
addresses that help local routing within the University

But the main point for now is that this IP address is independent
of Ethernet and so can be used regardless of the hardware
used



Networks
IP

So we have hardware independent addresses: but, now, there
is an new problem

Suppose I want to send a packet to 138.38.3.40 on the local
network. My data is (ultimately) encapsulated in an IP packet,
with my IP address as source and 138.38.3.40 as the
destination

(The question of how do we know the destination IP address
must be answered later)

Now the IP packet must be further encapsulated in a hardware
frame, Ethernet in this example. The OS can’t send the packet
on the physical medium until it knows the Ethernet address of
the destination

138.38.3.40
138.38.3.40


Networks
IP

Ethernet does not know about IP addresses: it can carry any
kind of data

IP does not know about Ethernet addresses: it can run on
many kinds of hardware

And this separation of layers, as we know, is desirable



Networks
IP

We need some kind of address discovery, so given the IP
address we can find the corresponding Ethernet address

This is done by the Address Resolution Protocol (ARP)

ARP is a very simple link-layer protocol that essentially
broadcasts a special frame on the local medium to the effect of
“who has IP address 138.38.3.40?”

All hosts on the local network hear this broadcast and the host
with that address replies “Me: and I have Ethernet address
08:00:20:9a:34:dd”

(There are questions of security here. . . )

138.38.3.40
08:00:20:9a:34:dd
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IP

The OS gets the ARP reply and can now use this information to
write the correct address in the Ethernet frame

Only now can the original packet be sent



Networks
IP

We don’t want to use ARP for every packet we send, so there is
an ARP cache kept by the OS kernel that records the relation
138.38.3.40↔ 08:00:20:9a:34:dd

Entries in the cache time out and are removed after, say, 20
minutes

This is in case the host using 138.38.3.40 goes away and is
replaced by a different host that uses the same IP address, but
has a different Ethernet address: recall IP addresses are not
associated with the hardware

Once expired, the next packet to 138.38.3.40 will need a fresh
ARP

138.38.3.40
08:00:20:9a:34:dd
138.38.3.40
138.38.3.40
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A quick note regarding when the destination is not on the local
network

IP routing for the source host is quite simple: if the destination
is on the local network, send the packet directly. This probably
uses ARP (on the first packet) to get the hardware address of
the destination
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If the destination is not on the local network, to solution is to
send the packet to a gateway host and let it deal with where to
send it next

A gateway is just a machine on more than one network

host gateway

gateway

Gateway

This keeps the complexity of the software needed on the hosts
down: only the gateway will need to have a bit of intelligence
about routing
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So information a source host needs to know includes:

• its own address and network
• the address of a gateway machine

We shall see later how it gets this information
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So, for a host the routing software is:

• is the destination on the local network?
• yes: send it directly, possibly with an ARP, if needed
• no: send it to the gateway, possibly with an ARP, if needed

Note in the latter case, the host might need to do an ARP for
the gateway
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In the non-local case, the packet is going to the gateway, so we
would need to ARP for the hardware address of the gateway

The packet, with IP address of the final destination, is put into a
frame with Ethernet address of the gateway

Since the packet needs to go to the gateway

So, here, the physical and network addresses in the Ethernet
frame are completely unrelated!
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This is another reason why we need both hardware and
software addresses

The IP address is for the ultimate destination; the hardware
address is for the next hop
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ARP is not restricted to Ethernet and IP, but can be used to pair
any physical and network layer addresses

Exercise Is ARP needed on a PPP connection?



ARP

ARP is a simple protocol

On an Ethernet, the ARP broadcast has to be put in an
Ethernet frame, so what destination address does it put on the
frame?

It broadcasts an ARP Request packet (protocol number 0806)
in an Ethernet frame with destination hardware address
ff:ff:ff:ff:ff:ff and source its own Ethernet address

All hosts on the local network read the frame

The target host recognises the request for its IP address



ARP

The target sends an ARP Reply packet (in a normal Ethernet
frame) containing its own Ethernet address

It knows the source’s Ethernet address as read from the
request packet

The source gets the reply and reads out the target’s Ethernet
address. It can now use that Ethernet address to send IP
packets

The other hosts on the network need do nothing



ARP

2 2 1 1 2 6 4 6 4

protocol

type

hardware

type

28 bytes

hw

size

prot

size op
Ethernet address IP addr Ethernet address IP addr

ARP packet

Sender Target TargetSender

ARP packet

The Ethernet frame type for ARP is 0806
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2 2 1 1 2 6 4 6 4

protocol

type

hardware

type

28 bytes

hw

size

prot

size op
Ethernet address IP addr Ethernet address IP addr

frame

type
addressaddress

Ethernet header ARP packet

Ethernet source Sender Target TargetSenderEthernet destination

0806

ARP packet within Ethernet frame

Contained within an Ethernet frame

The Ethernet type field allows the software that reads the
packet from the Ethernet card to pass the contents of the
packet to the software that implements ARP
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2 2 1 1 2 6 4 6 4

protocol

type

hardware

type

28 bytes

hw

size

prot

size op
Ethernet address IP addr Ethernet address IP addr

ARP packet

Sender Target TargetSender

ARP fields

• Hardware type: 1 for an Ethernet address
• Protocol type: 0800 for an IP (version 4) address
• Sizes: sizes in bytes of the address fields, 6 for Ethernet, 4

for IP



ARP

2 2 1 1 2 6 4 6 4

protocol

type

hardware

type

28 bytes

hw

size

prot

size op
Ethernet address IP addr Ethernet address IP addr

ARP packet

Sender Target TargetSender

ARP fields

• OP: 1 for a request, 2 for a reply
• Address fields, with lengths as given: the data
• In a request the destination hardware field is not filled in as

this is what we are trying to find!
• In a reply the sender Ethernet address is the address we

seek



ARP

If no machine on the local network has the requested IP
address, or that machine is down, no reply will be forthcoming

In this case, after a few seconds, and a few repeated ARP
requests, the OS returns an error message to the application
trying to make the IP connection

This might be “no such host” or “host unreachable”



ARP

It is sometimes useful to give an ARP reply even if nobody has
asked for it. For example a new machine joins the network or
an existing machine changes its IP address for some reason

This is a gratuitous ARP

All machines on the local network are free to read any ARP
request or reply they see and modify their own ARP caches
accordingly



ARP

So a gratuitous ARP would help break old associations that are
no longer valid but still cached

Without a gratuitous ARP a host might send an IP packet to the
old cached, but now out-of-date hardware address



ARP

ARP is purely a local network thing: discover a hardware (next
hop) address on the local network

And it makes no sense for gateway to forward an ARP to
another network, which might not even be of the same physical
type



ARP

There is a interesting trick that shows ARP can be used for
things other than it was designed to do: and shows how the
Internet Protocols are incredibly malleable

Used in the days before switches were common: this trick is
unlikely to be used these days
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This trick allows us to extend an Ethernet (or other network)
over a physically larger distance than its specifications allow,
and to join a wireless network to a wired one so they appear to
be a single network

A bridge is a host that joins two physical networks into one. It
has two interfaces, one on each network

Note: this is different from a gateway we mentioned earlier, that
connects two different networks



ARP
ARP Bridging

bridge

Network 1 Network 2

h3

h1 b1 b2

h2

ARP bridge

This example joins a Wi-Fi to an Ethernet, but we could have
any two networks that share a MAC address type

If host h1 wishes to send to host h2 it must determine its
hardware address (as it is on the “same” local network)

So h1 does an ARP broadcast for h2, just as normal

The bridge sees this request and responds on behalf of h2 (a
proxy ARP), but it supplies its own hardware address b1



ARP
ARP Bridging

Now h1 sends data to what it thinks is h2, but is actually the
bridge

The bridge reads the data packet, sees it is destined for h2 (by
its IP address) and forwards it to the other network where h2
can read it

Furthermore, it rewrites the forwarded frame’s header to have
h2 as destination and b2 as source

If h2 replies, it can either use b2 which it got from the original
packet or do an ARP request, which the bridge proxies in a
symmetrical way
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In either case the packet goes to the bridge, which forwards it
to h1, again rewriting the frame addresses appropriately

This is all transparent to h1 and h2 who believe they are on the
same network

If h1 is communicating with both h2 and h3 its cache will show
them to have the same hardware address b1: this is not a
problem



ARP
ARP Bridging

Exercise Find out if your home network does ARP bridging, or
if it simply acts like a switch on a single network

Exercise Make sure you understand the difference between
what a gateway does, what a switch does and what a bridge
does



Virtual Bridging

Bridging is useful, but shouldn’t be taken too far

Larger networks have more traffic

Just think of the ARP broadcasts alone!

It is often better to split a large network into several smaller
ones: see subnetting, later



RARP

Exercise Read about Reverse ARP (RARP): given a hardware
address find the IP address



Network Layer

We have briefly seen the Network Layer header in the IP to see
its addresses

We now need to look at the Internet Protocol (network layer) in
more detail

It is the basis the Internet is built upon

It is actually relatively simple, but allows more complex stuff to
be layered on top

We shall start by describing IP version 4, IPv4

And talk about IPv6 later



IP

IP is a best-effort, connectionless, unreliable, packet based
protocol

Recall: “unreliable” means “not guaranteed reliable”

“best-effort”: no guarantee of delivery, or of any special
features, like quality of service

“connectionless”: each packet is independent of all others,
there is no relationship between individual packets (in this layer)



IP

IP’s primary purpose is getting packets from source to
destination

It doesn’t rely on any particular property of a link layer, so it can
run on top of almost any link layer, even unreliable ones

But, first, some vocabulary



IP

Recall that IP is a cooperative system: for a packet to get from
source to destination it is handed from one network to the next,
hop by hop

The nodes in the network have various roles:

• Host. A machine you actually use to do some work
• Bridge. Connects two physical networks together
• Gateway. Provides a connection off the local network
• Router. A machine joining two or more networks and

whose primary function is to determine where a packet
goes next (i.e., routing)

These are not mutually exclusive: gateways and routers can be
hosts; gateways do trivial routing



IP

Marketing alert: things you see described as “routers” in the
shops are unlikely to be actual routers, which are specialist bits
of equipment

To them, the word “router” seems to means “a box you plug into
the network”

It should really mean “a box that engages in routing protocols”



IP

The basic idea is that a packet does not know how to get from
source to destination: this is the routers’ job (and it can be quite
complex: see later)

The IP layer takes bytes from the transport layer and prepends
a header to support routing (and other things), producing
packets often called datagrams in this layer

The IP specification says datagrams can be up to 64KB in size,
but they are usually in the region of 1500 bytes (Ethernet,
again), but can be much larger (e.g., 9000 bytes) in specialist
networks

We return to the IP header
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Data

Header options

32 bits

R
F

D
F

M
F

32 bit destination address

32 bit source address

16 bit checksum8 bit protocol
8 bit time

to live

16 bit identification 13 bit fragment offset

16 bit total length
8 bit type
of service

4 bit
version length

header
4 bit

20 bytes20 bytes

IPv4 datagram header
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• Version. Four bit field containing the value 4. A later
version of IP (IPv6) contains 6
• Header length. There are some optional fields, so the

header can vary in size, so this is needed to pinpoint the
end of the header. Given as a number of 4 byte words.
Four bits, maximum value 15, so maximum header length
of 60 bytes
• Type of service. Eight bits. To indicate to a router how this

datagram should be treated in terms of cost, speed and
reliability (if possible)

E.g., for audio it is better to get data through quickly rather than
100% reliably as the human ear is more sensitive to gaps than
occasional errors
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The TOS field, these days called the Differentiated Services
Field (DS field), is to inform routers on the best way to treat this
datagram

This allows the implementation of Quality of Service (QoS)

The full range of options available is complex (see RFC2474 for
details), but can indicate things like

• Minimise delay. Do not hold onto this datagram longer than
necessary, and perhaps prioritise it over others
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• Maximise throughput. Not quite the same as minimising
delay, since collecting together several small datagrams
and sending them off together may be more bandwidth
efficient
• Maximise reliability. Try not to drop this datagram if the

router is becoming overloaded; drop another datagram first
• Minimise cost. For this datagram cost is more important

than reliability or speed. This datagram can be delayed if it
makes transmission cheaper
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Early routers ignored the TOS field, but these days QoS is very
important

Modern routers do (or should) pay attention to the DS field

Here, as in some other parts of the IP specification, a router
may ignore some information if it wishes. It might be the
software is so old it does not recognise a modern field; or it
might simply be unable to make use of the information. You are
strongly recommended to act on the information, though

Exercise Look up the problems Explicit Congestion Notification
(ECN) had when it was introduced
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• Total Length. Of the entire datagram, including header, in
bytes. 16 bits, so giving a maximum size of 65535 bytes.
Much larger than domestic networks need, but too small
for high-speed networks

As usual, larger packet sizes mean lower overheads:

• Time overhead in hosts of splitting data into datagrams,
adding headers, then removing headers and reassembling
• Bandwidth overhead as each header is 20 or more bytes

that is not data; plus more gaps between datagrams
• Time overhead in routers of processing packets
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The Total Length field is essential over Ethernet as it pads short
frames

Thus we get better independence from the MAC/PHY layers
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• Identification. 16 bits. A value that is unique to each
datagram sent by the source, often incrementing by 1 for
each successive datagram sent

Used in fragmentation to reassemble the fragments of a single
datagram. All the fragments get their own IP header, but share
the same identification

So we need to discuss fragmentation
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translation
Protocol

Many kinds of hardware in the Internet

The path a packet takes from source to destination will typically
go through a wide variety of differing kinds of hardware
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For example, your home Ethernet/Wi-Fi might support 1500
byte packets, while your VDSL link might have a maximum of
1480 bytes

Thus IP must face the problem of differing link layer properties,
in particular maximum frame size
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If a big datagram hits a part of the Internet that can only cope
with small datagrams, there is a problem

IPv4 deals with this by fragmentation: a datagram can be
subdivided by a router into several smaller datagrams; it is the
destination’s problem to glue them back together

In the right order

The fragmentation fields in the IP header deal with this
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• Flags. Three bits: two used and one reserved

1. RF. Reserved for later use, must be 0 (see RFC3514 for a
suggested use)

2. DF. Don’t fragment. If a host can’t (or doesn’t want to) deal
with fragments this bit is set to inform the routers on the
path to the destination. A router might choose an
alternative non-fragmenting route, or simply drop the
datagram and send an error message back to the source
which can then send smaller datagrams.
All hosts are required to be able to accept datagrams of
576 bytes

3. MF. More fragments. All fragments except the end
fragment have this set
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Fragment Offset. Where this fragment came from in the original
datagram

IP

header

IP

header

IP

header

data

data data

MF=1 MF=0

id = n

id = n id = n

offset = aoffset = 0

tot len = a + header len tot len = b + header len

len a len b

Fragmenting an IP datagram
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• Fragment Offset. 13 bits, giving the byte offset divided by
8. E.g., value of 20 means an offset of 160 bytes

So 13 bits is enough to cover the 16 bit range of sizes

And every fragment (apart from the end fragment) must be a
multiple of 8 bytes long: the router doing the fragmentation
must ensure this

Note that a datagram may be split into any number of smaller
fragments, not just two
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Every fragment has a copy of the original IP header, but with
the various fragmentation and length fields set appropriately

In more detail: each fragment header will be a copy of the
original header apart from

• total length: set to the fragment size
• MF: set to 1 if this is not the end fragment
• fragment offset: set appropriately
• (TTL and checksum: set appropriately)
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In particular, all the fragments of the original datagram have the
same the identification field value

When the fragment with MF = 0 is received, its fragment offset
and length will give the length of the original datagram

The destination can then reassemble the original datagram
when all the fragments have arrived

Fragments are IP datagrams, so as always, they can arrive in
any order; or not at all
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IPv4 spends a lot of effort coping with fragmentation

It is costly and should be avoided

• Performing fragmentation in a router takes time
• More overhead as more datagrams for a given amount of

data
• More overhead as more datagrams are traversing the

network
• More datagrams means a greater probability one will be

lost or corrupted
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• If a fragment is lost, the entire original datagram must be
retransmitted: there is no mechanism in IP to indicate
which fragment was lost
• Fragments are datagrams in their own right and can

themselves be fragmented

Fragment processing software (particularly reassembly) has a
history of buggy implementations leading to hacked machines

Exercise Consider what happens when a fragment is further
fragmented. Differentiate the cases of MF = 0 and MF = 1
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Fragmentation is such a costly process that modern
implementations try very hard to avoid it

They employ MTU Discovery
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Setting DF in the header prohibits fragmentation; if a router
cannot avoid fragmenting it drops the datagram and returns a
“fragmentation needed but DF set” error message back. The
sender can then send smaller datagrams

This allows MTU Discovery. The Maximum Transmission Unit
(MTU) is the largest datagram a host or network can transmit

The path MTU is the smallest MTU for the entire path from
source to destination

A datagram not larger than the path MTU will not get
fragmented

MTU Discovery works by sending variously sized datagrams
with DF set, and monitors the errors returned
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When a datagram reaches the destination with no
fragmentation error we have found a lower bound for the path
MTU

This bound is approximate as the network is dynamic and paths
may change!

This is the approach IPv6 adopts: don’t have fragmentation in
routers, but require MTU discovery (see later)

Note: a host is not required to implement MTU Discovery in
IPv4: it’s just good if it does as fragmentation is such a large
overhead
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Back to the IPv4 header fields
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Data

Header options

32 bits

R
F

D
F

M
F

32 bit destination address

32 bit source address

16 bit checksum8 bit protocol
8 bit time

to live

16 bit identification 13 bit fragment offset

16 bit total length
8 bit type
of service

4 bit
version length

header
4 bit

20 bytes20 bytes

IPv4 datagram header
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• Time To Live. An eight bit counter used to limit the lifetime
of a datagram

Poorly configured routers might bounce datagrams back and
forth or in circles indefinitely, thus clogging the network with lost
datagrams

The TTL starts at 64, or 32, say, and is reduced by one as it
passes through each router
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If a TTL ever reaches 0 at a router, that datagram is discarded,
and an error message (“time exceeded in-transit”) is sent back
to the source of the datagram

This limits errant datagrams: eventually the TTL must reach 0
and the datagram is dropped

Eight bits means a maximum path of length 255, but this seems
enough for the current Internet: no valid paths as long as this
are known

The width of the Internet is the length of the longest path: this is
uncertain and constantly changing but definitely over 32
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Originally the TTL was to be a measure of time, reducing by
one for each second in a router. In practice no implementations
did this, but just decremented by one regardless. This is now
the expected behaviour

Again: this is IP being pragmatic, following what people actually
do in implementations, rather than the letter of the specification

Exercise Why doesn’t everyone simply put 255 into the TTL
field?
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• Protocol. This eight bit field connects the IP layer to the
transport layer. This is a value indicating which transport
layer software to pass the contents of the datagram to. For
example, UDP is 17 and TCP is 6
• Header checksum. As for the Ethernet header, this is a

simple function of the bytes in the IP header. If the
checksum is bad, the datagram is silently dropped. A
higher layer must detect this and perform whatever action it
needs. Recall that the IP layer is not guaranteed reliable
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The checksum is checked in each router, as well as the final
destination

This ensures corrupted datagrams are dropped as soon as
possible

Note the checksum includes the TTL field so it must be
recomputed and rewritten in the datagram by each router the
datagram passes through (this increases the time a router must
spend on each datagram)
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• Source and Destination Address. 32 bit numbers that
uniquely determine the source and destination machines
on the Internet

“Uniquely” is now not true

32 bits limits us to at most 4,294,967,296 hosts on the Internet

Not enough, and a significant chunk of those addresses are
reserved for special purposes and can’t be used for host
addresses

We will come back to this very important problem later
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The optional header fields allow for items that are either

• not common, so you don’t want to pay the overhead of
always having them, or
• protocol extensions that are useful but were not included in

the original IP specification

When IP was first devised, networks ran over telephone
modems at a few thousand bits/sec. Now we expect giga and
terabits. The physical layer has changed immensely while basic
TCP/IP is pretty much unchanged!

A flexible approach across the entire TCP/IP suite such as
allowing for options is part of this
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IP layer options are not much used. Options include

• Security: privacy and authentication
• Record Route. Each router records its address in the

option header as the datagram passes by
• Timestamp. Each router records its address and the

current time in the header as the datagram passes by
• Strict Source Routing. A list of addresses that give the

entire path from source to destination
• Loose Source Routing. A list of addresses that must be

included in the path from source to destination
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Most IP options are for debugging or profiling behaviour, and
not much used

These days, things like privacy and authentication are mostly
done in other layers

Moreover, the IP header length field has a maximum value of
60 bytes; the fixed part of the header is 20 bytes; thus options
can use up to 40 bytes

This severely restricts what we can do in the options
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We now go back and look at the IP addresses in more detail

Roughly (and incorrectly) speaking, every machine on the
Internet has a unique address

These are not random, but allocated in such a way to make
routing between hosts much easier

If there were no structure on the addresses every router
everywhere would have to know where every host in the world
was

Impossible, for technical, political and security reasons

(Note that MAC addresses do not encode any network
information, another reason for separate software addresses!)
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Recall the Internet is a collection of networks

An IP address is split into two parts:

• A network number
• A host number on that network

The host number defines the host “uniquely” on a network

The network number defines a network “uniquely” on the
Internet
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As we have already seen, to an end host routing is trivial

• If the destination is on the same network, simply put the
packet out on the network
• If not, send the packet to a gateway, and let it deal with the

problem

It can tell if the destination is on the same network as itself by
comparing the network part of their addresses

If they are the same, they are on the same network!
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To a gateway or router the problem is to send the packet on
towards the destination network

Which one? This is the difficult bit

But there are very many fewer networks than hosts, so this is
already a great simplification

Currently (2023): around 115000 top-level networks

A router contains a table of IP addresses, with a next-hop
neighbour router associated with each address

(Actually a more complicated datastructure than a simple table,
but we can think of it as a table)

Containing network addresses, but individual host addresses
are possible, too
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Each row in the table contains

• A destination address. This can be the address of a single
host, but is usually a network address
• The address of the next hop router, i.e., the address of

where to send the packet next. This is the address of a
router that is directly connected to the current one
• Which interface to send the packet out on to get to that

router. A router has many interfaces and this describes
which one to use
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When a packet arrives at a router it checks the table

• If the packet destination matches a host address in the
table, send the packet to the indicated host on the
indicated interface
• Else if the packet destination’s network part matches a

network address in the table, send the packet to the
indicated host on the indicated interface
• Else if there is an entry in the table marked “default”, send

the packet to the indicated host on the indicated interface
• Else error: drop the packet and return an error message

“network unreachable” to the source
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For now, we can regard routers as machines with tables like
this that tell them where to send packets. We will see how the
tables are created later

End hosts have routing tables, too: they are very simple, just
encoding the local/non-local decision
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Destination Gateway Genmask Flags Metric Ref Use Iface

138.38.96.0 * 255.255.248.0 U 0 0 0 eth0

127.0.0.0 * 255.0.0.0 U 0 0 0 lo

default 138.38.96.254 0.0.0.0 UG 0 0 0 eth0

A simple routing table as might be found in an end host on
network 138.38.96

• Send local traffic directly to the destination out on interface
eth0

• Otherwise send to the default gateway 138.38.96.254,
also on interface eth0

138.38.96
138.38.96.254
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The netmask (Genmask in the example) tells us how to divide an
IP address into network and host parts. More details later, but a
1 bit set in the mask indicates this bit is part of the network
address

Work down the table ANDing the destination address on a
packet with each netmask in turn. If the result equals the
Destination value, we use this row to route the packet

A mask of 255.255.248.0 is
1111111111111111111110000000, so for this example the
network part is the top 21 bits of the IP address

“default” is actually destination 0.0.0.0, and so always
matches any address after an AND with mask 0.0.0.0
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There is also a loopback address 127.0.0.1 for a virtual
internal network connecting the machine to itself on (virtual)
interface lo0

This is useful for many things, such as testing
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A table from a machine with more than one real interface:

Destination Gateway Genmask Flags Metric Ref Use Iface

213.121.147.69 * 255.255.255.255 UH 0 0 0 ppp0

172.18.0.0 * 255.255.0.0 U 0 0 0 eth0

172.17.0.0 * 255.255.0.0 U 0 0 0 eth1

127.0.0.0 * 255.0.0.0 U 0 0 0 lo

default 213.121.147.69 0.0.0.0 UG 0 0 0 ppp0

There are three interfaces: eth0, eth1 and ppp0 (as well as lo)

A packet with address 213.121.147.69 goes directly out on
interface ppp0; Packets with addresses in the network 172.18

go directly on interface eth0; Packets with addresses in the
network 172.17 go directly on interface eth1; Otherwise packets
are routed to the gateway 213.121.147.69 on the interface
ppp0; The first row of the table is actually redundant here, but is
kept as it can speed up the checking in a common case Other
information, in particular the flags, will be explained later
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Exercise Look at the routing table on your machine. E.g.,
ip -r route show

under Linux.
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How should we divide the 32 bit IP address into network and
host parts?

8 bits for network? Then 28 = 256 networks each with
224 = 16777216 possible hosts

• Not enough networks for the entire Internet!
• Too many hosts for most institutions
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24 bits for network? Then 16777216 networks each with 256
possible hosts

• Plenty of networks
• Not enough hosts per network for large installations
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16 bits for network? Then 65536 networks each with 65536
possible hosts

• Not really enough networks
• Plenty of hosts per network
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One solution: do all of the above

Divide the space of IP addresses into parts, where each part
has a different network/host split

We shall now describe a class scheme that is historically
important, but no longer used — for reasons that will become
clear
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Class A networks. From 0.0.0.0 to 127.255.255.255

The leading bit of the address is 0

Have 7 bits for network and 24 bits for host

This is 126 networks (networks 0 and 127 are reserved) each
with 16777216 host addresses

The dotted-decimal representation is helpful here: address
x.y.z.w has x as network, y.z.w as host
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Class B networks. From 128.0.0.0 to 191.255.255.255

The leading bits of the address are 10

Have 14 bits for network and 16 bits for host

This is 16384 networks each with 65536 host addresses

The address x.y.z.w has x.y as network, z.w as host
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Class C networks. From 192.0.0.0 to 223.255.255.255

The leading bits of the address are 110

Have 21 bits for network and 8 bits for host

This is 2097152 networks each with 256 host addresses

The address x.y.z.w has x.y.z as network, w as host
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The remaining addresses are kept for separate purposes

Class D. 224.0.0.0 to 239.255.255.255; leading bits 1110.
Used for multicasting (details later)

Class E. 240.0.0.0 to 255.255.255.255; leading bits 1111.
Reserved for future use
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IP address ranges
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An example: the University of Bath has been allocated
addresses in the network 138.38.0.0

This is in the class B address range and so there are 65534
possible hosts

Network 17.0.0.0, a class A address, is allocated to Apple

Network 193.0.0.0, a class C address, is allocated to Réseaux
IP Européens (RIPE), the Internet Registry responsible for the
allocation of IP addresses within Europe
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Two of the host addresses on each network are treated
specially

Host parts of “all zeros” and “all ones” are not used as general
host addresses, but are reserved for a special purpose

E.g., 138.38.0.0 and 138.38.255.255 in a class B

Thus the number of usable host addresses in a network is 2
fewer than you might think

138.38.0.0
138.38.255.255


IP Addresses

• Host part all 0s: “this host”. Originally specified to refer
back to the originating host. But some implementations
mistakenly used this as a broadcast address, so for safety
it is not commonly supported as a valid host address. For,
say, a class B network 17.16, a packet sent to 172.16.0.0

should boomerang right back to the sender. But rarely
does
• Host part all 1s: broadcast address to network. E.g.,
172.16.255.255 sends to all hosts on the 172.16 network;
very commonly used
• (Network part all 0s: “this network”. E.g., 0.0.12.34 would

send to a host on the current B network. Again, not often
implemented)
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So this is why you have two fewer addresses available than you
might think

• . . . 255 is a broadcast address
• . . . 0 may or may not be supported, so best to avoid it
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And there are several special addresses, for example loopback
addresses:

• Network 127.0.0.0: the loopback network. Always
implemented. The address 127.0.0.1 is commonly used
as a way for a host to send a packet to itself over the
internal loopback network on interface lo.
• Notice this is different from the same host sending to itself

via an external network (e.g., using the interface’s own
address) as the former packet possibly won’t go through
the normal Ethernet/whatever software and hardware.
• The loopback network is there even if there is no real

network hardware attached
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So the class scheme allowed IANA to allocate large chunks of
addresses to people who need them, and small chunks to
those that only need a few

This scheme has been historically very successful, but with the
growth of the Internet has revealed several weaknesses. These
days, a classless allocation is used (CIDR, later)

Thus this allocation is sometime called classful

To understand classless allocation, we first need to look at
subnetting
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Suppose you have been allocated class B network: 64
thousand host addresses are very hard to manage

Think of the broadcast traffic (e.g., ARP)

Physical/Technical issues (e.g, limits on Ethernet)

Political issues (e.g., traffic from one department must be kept
separate from another department)

A single big network is not a very good idea
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We can use subnetting to split our network into smaller pieces

Subnets can be administered by separate departments and are
joined by routers

Just like the Internet!

And to do this, also just like the Internet, we further split the
host part into some bits for the subnetwork and the rest for the
actual hosts

network subnet host

host

Subnet addressing
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Hosts will need to know which bits are the subnet part to be
able to decide how to route packets: there is no class system
here

We use a subnet mask

For example, the University of Bath has a class B, address
138.38. The top 16 bits are the network address

The netmask 111111111111000000000000 indicates which
bits are in the network part
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The Department of Mathematical Sciences has a subnet
consisting of addresses 138.38.96.0 to 138.38.103.255 (2048
host addresses)

This corresponds to the netmask
11111111111111111111100000000000
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network address 138.38.96.0 10001010 00100110 01100000 00000000
broadcast address 138.38.103.255 10001010 00100110 01100111 11111111
netmask 255.255.248.0 11111111 11111111 11111000 00000000

A machine can tell if an address is on a network if the address
ANDed with the netmask gives the network address

This is not on a nice byte boundary, so visually is harder for
humans to work with using decimal x.y.z.w style notations

x.y.z.w
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So 138.38.100.20 is on the subnet

host address 138.38.100.20 10001010 00100110 01100100 00010100
netmask 255.255.248.0 11111111 11111111 11111000 00000000
AND 138.38.96.0 10001010 00100110 01100000 00000000
network address 138.38.96.0 10001010 00100110 01100000 00000000
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But 138.38.104.20 is not on the subnet

host address 138.38.104.20 10001010 00100110 01101000 00010100
netmask 255.255.248.0 11111111 11111111 11111000 00000000
AND 138.38.104.0 10001010 00100110 01101000 00000000
network address 138.38.96.0 10001010 00100110 01100000 00000000
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138.38 is split into many subnets of appropriate sizes for each
Department, Centre or other sub-part of the University

Outside of 138.38 the subnetting is invisible so no changes to
global routing tables are necessary if we rearrange our network

Subnets can be further subnetted for exactly the same reason
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The subnet is described as “138.38.96.0, netmask
255.255.248.0”

More commonly as “138.38.96.0/21”, where 21 is the number
of 1 bits in the netmask

You don’t have to use the top n bits for a netmask, but it is
overwhelmingly common to do so

The /n notation is only for a top-n-bit netmask

The “all 0s” and “all 1s” addresses now apply within the subnet :
all 1’s broadcasts to the subnet; and don’t use all 0s
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So how does this relate to classful addressing?

Everybody wants a class B as C is too small and A is too large

Called the Three Bears Problem

There are no class Bs left: they have all been allocated

But, as the Internet grows, people want more addresses
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Can we split some class As?

Doable, but needs everyone to take care their software
understands that those addresses are no longer class A

Most class A’s have now been split and the subnets allocated to
various institutions
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Can an institution simply use several class Cs?

Yes, but awkward as this leads to multiple networks, each
needing separate routing

For example, having eight class C networks 194.24.0.0 to
194.24.7.0 would require all global routers’ tables to have eight
entries that all point to the same destination

And internally to the institution there are eight separate
networks, too
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Class E has 286 million reserved addresses; can we use them?

Wouldn’t last long; perhaps under a couple of years if allocated

More problematically, class E addresses are treated as illegal
by much software, particularly on routers, so they are difficult to
bring into play

(A recurrent problem with improving Internet protocols: a lot of
software out there assumes the old way of doing things is the
only way, and rejects any patterns or protocols it doesn’t
recognise)
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Some while ago it was recognised that the growth of the
Internet meant that a new way of allocating addresses was
needed

Three solutions are used:

• Change the way classes are defined and used
• Use private addresses with network address translation
• Increase the number of addresses available by changing

the IP

We shall be looking at each of these
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Classless Interdomain Routing (CIDR) takes class C networks
and joins them together in such a way that simplifies routing

Blocks of C addresses are allocated to regions, e.g.,

194.0.0.0-195.255.255.255 Europe
198.0.0.0-199.255.255.255 North America
200.0.0.0-201.255.255.255 Central and S America
202.0.0.0-203.255.255.255 Asia and the Pacific
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Starting with about 32 million addresses per region

This allows easy routing: anything 194 or 195 goes to Europe

Repeat the idea within each region: contiguous block of C
networks are allocated to ISPs or organisations

Keeps simple routing within the region

Note that the software within routers does need to be updated
to support this: but this has now been done everywhere
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E.g., 194.24.0.0 to 194.24.7.255, normally written
194.24.0.0/21 or even 194.24/21: exactly like subnetting

194.24.0.0 11000010 00011000 00000000 00000000
194.24.7.255 11000010 00011000 00000111 11111111
255.255.248.0 11111111 11111111 11111000 00000000

Any packet with address that has addr AND 255.255.248.0 =
194.24.0.0 should be routed to that ISP or organisation

A network of 232−21 = 211 = 2048 addresses, i.e., 2046 hosts
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This is a very flexible and backwards-compatible scheme

End hosts do not need to know about CIDR

Classless networks can be subnetted

CIDR has allowed the continued growth of the Internet well
beyond the original possible size by using addresses that would
otherwise be wasted: allocated but not used

And we have repurposed class A and B networks similarly
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In fact, classful networks are no longer used: CIDR is the
only way addresses are currently allocated

CIDR merges small networks into a larger one

Subnetting divides a large network into smaller ones

CIDR is sometimes called supernetting

Thus we have:

• Classful: implicit, fixed split of network/host
• Classless: explicit (netmask), variable split of network/host



CIDR

CIDR has been very successful, and has extended the life of
the Internet significantly by providing a source of addresses
from the previously underutilised classful ranges

Not enough. . .



Addresses

There are currently about 51 billion devices connected to the
Internet (www.statistica.com; 2023)

But there are only about 4.3 billion usable IPv4 addresses

How is this possible?

www.statistica.com


NAT

This brings us to the second approach to address exhaustion

Some IP addresses are reserved for private networks, originally
reserved to allow local experimentation:

• 10.0.0.0-10.255.255.255 (Class A)
• 172.16.0.0-172.31.255.255 (Class B)
• 192.168.0.0-192.168.255.255 (Class C)

One class A-size network, 16 class B and 256 class C-size
networks are guaranteed never to be allocated for public use in
the Internet



NAT

Routers on the public Internet will never forward packets with
such addresses, and will simply drop them immediately

They are called unroutable addresses



NAT

But such addresses can be used by anyone locally for any
purpose: a common use is NAT

Network Address Translation (NAT) uses the malleability of
packets to map many hosts onto a single address

A private network can be set up, using one of the above
address ranges, e.g., 10/8

A gateway host joins the private network to the public Internet,
rewriting the addresses on packets as they go past



NAT

Public

Internet
G

network
address
translation

gateway

Private network

AB

BA

GB

BG

10.0.0.0 network

A B

138.38.0.0
network

C

Network Address Translation

A packet from 10.0.1.1 (A) is sent to 212.58.226.33 (B); B is
not on the local network so the packet is sent to the gateway;
The gateway overwrites the source address with its own public
address (G) and forwards the packet; The packet reaches B in
the normal way; B replies with a packet with destination
address G; The gateway recognises this packet as a reply to A
and rewrites the destination address to A before passing it on
to the private network; A thinks it is connected to the public
Internet, and B thinks data is coming from G
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G needs to keep a record of connections from A to the world
and recognise replies to outward travelling packets

C will want to do the same as A; so G must be able to
distinguish replies to A from replies to C; even if both were
communicating with B

And rewrite the replies to C with C’s address

This is all doable in practice!

Explanation later, in the next layer



NAT

Exercise If both A and C are communicating with B, what are
the addresses on their packets as they reach B? And on the
replies as they reach G?

Exercise Compare with bridging, a similar idea but for very
different reasons



NAT

As a fortunate side-effect, NAT provides some measure of
protection to hosts on the private network from external attack

Machines on the public Internet (e.g., B) cannot initiate traffic to
A as 10.0.1.1 is a private, unroutable address

No public router will forward a packet with such an address: it
will simply drop it

External hosts will generally not even know what A’s address is
as they never get to see it

Even if a packet somehow gets to the gateway, the gateway will
not know how to rewrite its address as this was not a reply to
an outgoing packet; so it get dropped here, too



NAT

NAT has helped immensely to mitigate the address exhaustion
problem

Previously, every host on a network would need a unique public
IP address

The growth of the Internet at home, for example, would have
sucked up addresses at a huge rate

But now all your home appliances can share just one public
address

Exercise Count the number of network attached devices you
have at home



NAT

Problems arise when the data in the packet contain IP
addresses that, say, will be used to set up new connections.
E.g., the File Transfer Protocol (FTP)

(Original) FTP would send an IP address to the server to
indicate where to set up a new connection

In our example, this would be its private, unroutable address
that the external server couldn’t contact

Unless the gateway is intelligent enough to realise this is an
FTP exchange, look inside the data and know where the IP
addresses are to be found (in the application layer data) and
rewrite them (in the application layer data) the addresses will
remain untranslated and the protocol will fail



NAT

Not many protocols do this kind of thing these days, but each
one of those that do must be treated specially by the NAT
gateway

Note this is a problem due to a violation of layering in the
protocol: IP layer information in the application layer

Exercise Read about FTP, Universal Plug and Play (UPnP)
and the Simple Service Discovery Protocol (SSDP)



NAT

NAT is used widely as it is very effective

It allows you to have many machines but only use one public
address

Many mobile phone companies are now using carrier grade
NAT to supply IP connectivity to the millions of phones they
manage

Carrier grade NAT: NAT done in the ISP rather than by the
end-user

Exercise What IP address does your phone have for its mobile
data connection (not its Wi-Fi connection)?

Exercise Read RFC6598 and about 100.64.0.0/10

100.64.0.0/10


NAT

Without NAT, public IP addresses would have run out years ago

But there are costs to NAT

• Complexity in the gateway software
• Scalability problems in the gateway tracking large numbers

of connections
• Bad interactions with some protocols
• Difficulty of making end-to-end connections when both

ends are behind a NAT gateway (e.g., Skype, SIP)
• Loss of “an IP address identifies a host uniquely”: a

problem for law enforcement



NAT

There is also the inability for external hosts to initiate
connections to hosts behind NAT

So you can’t run servers on hosts behind the NAT

But this invisibility is generally a good security feature

This can be worked around, though not neatly

Exercise Read about port forwarding (later)

Exercise Read about STUN



NAT

NAT is the reason the Internet did not grind to a halt many
years ago through the lack of available addresses

Thus putting off the need for a proper solution to the problem

Some people still argue that there is no reason to do anything
else than use more NAT

Even to the extent of using multi-level NAT (NAT within NAT)!



NAT

But even with CIDR and NAT, the entire range of usable IPv4
addresses has now been allocated

2011: IANA has distributed all its reserves of addresses to the
Regional Internet Registries (RIRs)

2019: RIPE’s allocation (covering Europe, Middle East and
Central Asia) have run out

Old addresses that are no longer needed get recycled; there is
even a black market in IP addresses!

We need a more radical solution



IPv6

The next approach to the IP address exhaustion problem is to
change IP itself

The next version of the IP is IPv6 (occasionally called IPng for
“IP next generation”)

Slowly growing in use, it will take a while to replace all of IPv4

128 bit addresses; CIDR-style allocation only

Exercise Find out about IPv5. And IPv0-IPv3



IPv6

IPv6 was designed to

• have a larger address space
• reduce the size of router tables
• simplify the protocol so routers can process packets faster
• provide security and authentication
• pay proper attention to type of service (DS)



IPv6

• have better multicasting support
• have mobile hosts with fixed IP addresses
• allow room for evolution of the protocol
• permit IPv4 and IPv6 to coexist during the transition



IPv6
32 bits

Version Flow label

Payload length Next header Hop limit

Source address

16 bytes

Destination address

16 bytes

40 bytes

Traffic
class

40 bytes

IPv6 Header



IPv6

• Version, 4 bits. The number 6. This is identical in position
to IPv4 and can be used to distinguish packets in
mixed-version environments. Additionally, in an Ethernet
frame, IPv4 has protocol number 0800, while IPv6 is 86DD,
but remember you might be using a different physical layer
that does not give the type of its data
• Traffic class, 8 bits. Like TOS (DS) in v4
• Flow label, 20 bits. Allows routers to recognise related

packets in a single flow and treat them identically (and so
faster)



IPv6

• Payload length, 16 bits. The number of bytes following the
fixed 40 byte header. Unlike v4, this not the packet length
as it does not include the header in the count
• Next header, 8 bits. Like the protocol field in v4, but also

allows for v6 optional header fields, if any
• Hop limit, 8 bits. The TTL field, renamed to make it clear

how it is actually used



IPv6

• Source and destination addresses, 128 bits each.

Four times as long as v4 addresses

2128 = 3× 1038 addresses, enough for an address for every
molecule on the surface of the Earth

There are unicast, multicast and anycast addresses: details
later



IPv6

Addresses are typically written in hex, with colon separators,
e.g., fe80:0000:0000:0000:21c:c0ff:fea3:99f4

A :: may appear once as a shorthand for a string of 0s. As
many as you need to make the address up to 128 bits

Thus the above address can be written
fe80::21c:c0ff:fea3:99f4

Remember this is notation for:
1111111010000000 0000000000000000 0000000000000000

0000000000000000 0000001000011100 1100000011111111

1111111010100011 1001100111110100



IPv6

The University of Bath has been allocated
2001:0630:00e1::/48

Meaning 128− 48 = 80 bits of address for hosts on the
University network

280 = 1.2× 1024 addresses, which is about 280 trillion times
the size of the whole current IPv4 Internet!

Exercise Check my arithmetic

Exercise Look up the IPv6 address of facebook.com

facebook.com


IPv6

Back to the other IPv6 header fields

There are no fragmentation fields

A router never fragments IPv6, but simply drops the packet and
sends back a “packet too big” message to the source. The
source can then send smaller packets

Processing within a router is therefore much simpler and
packets can be sent onwards much faster

Every IPv6 host is required to do path MTU discovery



IPv6

The flow label helps identify packets within a single “flow”, i.e.,
a connection or session

Packets with the same flow label can be treated identically and
so sent onwards faster by a router

In essence a session identifier

Exercise Reflect on this: aren’t sessions supposed to be done
in a different layer?



IPv6

No header length field: the header is always 40 bytes

No fragmentation fields: no fragmentation in routers

No checksum field: there are checksums in other layers. The
protocol designers thought that yet another checksum would
not be helpful here. IP is not required to be reliable, anyway

Also we don’t have to recompute a checksum in every router as
the TTL decreases. Again, faster in routers



IPv6

v4 has 13 fixed fields; v6 has 8; much simpler for a router to
process

v6 addresses are 4 times the length, but the header is only
twice as long



IPv6

The next header field daisy-chains options, called extension
headers, or gives the protocol (TCP, UDP, etc.) of the next layer

Next header

Data

(if needed)

16 bits

Data Length

Option Header

Thus the only limit on the options is the total datagram limit

Furthermore, most options are not even looked at by routers:
again to get faster processing in the routers



IPv6

Optional headers include:

• Routing options: c.f., loose source routing in IPv4
• Authentication
• Security
• Jumbograms: packets up to 4GB in length!
• And others

Note the type of the header option is given in the previous
header option, or the main IPv6 header for the first option



Next header

40 bytes

Transport layer data

F
ix

ed
 h

ead
er

E
x

ten
sio

n
s

P
ay

lo
ad

IPv6 options daisychain



IPv6 Jumbograms

A note on IPv6 jumbograms

It needs, of course, the hardware, link and transport layers to
support large packets

For example, Infiniband supports up to 4k frames, while a lot of
modern Ethernet hardware seems to support 9216 byte frames

We’ll see later that UDP and the handshake TCP MSS have
only 16 bit length fields (64k bytes), so tweaks are needed
there, too (RFC2675)



IPv6 Jumbograms

Jumbograms can only be used locally, e.g., within datacentres,
as the outside world almost certainly won’t support them!

Exercise Frame CRC algorithms were designed when frames
were small. Read about the problems they have with
jumbograms



IPv6
Transition to v6

IPv4 address allocations have run out, so we need to move to
IPv6

But it is expensive to do so, as it needs application rewrites, as
a lot of application software assumes IP addresses are 4 bytes
long and thus fits in an integer on a typical computer

So many people (ISPs, websites etc.) are pretending the
exhaustion problem does not exist

Even though the majority of modern routers and end hosts
contain the necessary IP (and transport) level software support



IPv6
Transition to v6

We can’t turn off the Internet and replace v4 by v6 overnight

Though, by design, the two protocols can run side-by-side on
the same networks



IPv6
Transition to v6

IPv6 was devised in 1996, but has yet to achieve mainstream
use

As of October 2023 figures from ipv6-test.com say they see
about 64% of world traffic is IPv6

About 56% of UK traffic is IPv6

Uruguay (top): 94%

Many countries are under 1%

ipv6-test.com


IPv6
Transition to v6

Some large companies, e.g., Google, support IPv6 connections
(as well as IPv4): they want to encourage the transition

But many ISPs don’t as it requires extra work and support: so
many home users can’t use it

There have been a variety of transition mechanisms suggested,
often based on NAT-like packet mangling

But they are all complicated and unsatisfactory, for the same
reasons NAT is unsatisfactory



IPv6
Transition to v6

Exercise Read about NAT64 (RFC6146) and DNS64
(RFC6147) for connecting IPv6-only clients to IPv4 servers

Exercise Read about IPv4 mapped addresses, that allows
server code that is purely IPv6, but accepts IPv4 client packets

Exercise Read about 464XLAT (RFC6877) for IPv4-only clients
that translates IPv4 addresses to IPv6 addresses for transport
and then back to IPv4 addresses for the destination server



IPv6
Transition to v6

In the near future IPv6 will need to be supported properly by
everybody

Exercise Find out if your home ISP supports IPv6

Exercise RFC6177 suggests giving home users a /56 network.
How many host addresses does this correspond to?



Addresses

We now take another look at IP addresses

In particular there are several types of address that can refer to
more than one host at a time



Addresses

IPv4 has three types of address

• Unicast: an address refers to a single destination (ignoring
NAT!). A “normal” address
• Broadcast: as in the link layer, a single packet goes to

every host in the local network. But, now, the “network” is
at the IP layer, so may comprise more than one link layer
network
• Multicast: in between uni- and broadcast. A single packet

goes to one or more hosts



Addresses

IPv6 adds

• Anycast: a packet goes to any one of a selection of
servers, usually the “closest” in some sense

In fact, IPv6 also removes broadcast as its job can be done by
multicast

So we need to look at four types of address



Unicast Addresses: v4 & v6

Unicast

• 1-to-1 data flow; one source, one destination
• Most current IP traffic is unicast



Broadcast Addresses: v4

Broadcast

• 1-to-many data flow; one source, “all” destinations
• Broadcast is simple: a single packet read by all hosts on

the local network
• Reduces traffic on the local network as (for most link

layers) we don’t have copies of mostly-identical packets,
one for each destination, but just one packet that is read by
every host
• Scales well (locally): it is independent of the number of

destination hosts
• Don’t have to know how many destination hosts there are



Broadcast Addresses

Broadcasts are generally limited to the local network: otherwise
the entire Internet would be permanently flooded

We have seen IPv4 broadcast addresses before: when the host
part of the IP address is all 1s

E.g., 172.16.1.255 on the subnet 172.16.1/24

We can also use 255.255.255.255 as a broadcast to the local
network for when we don’t yet know our network address



Broadcast Addresses

As mentioned, IPv6 does not support broadcast separately, so
there are no IPv6 broadcast addresses per se

IPv6 uses multicast to achieve the same effect



Multicast Addresses: v4 & v6

Multicast

For sending a single packet to multiple hosts, not necessarily all
hosts

E.g., for streaming radio we could send individual unicast
packets to all listening hosts, but it would be much more
efficient to send a single packet that the listening hosts receive
and the non-listening hosts don’t

Also, we can’t use broadcast as broadcast is network-limited:
listeners can be spread far and wide over multiple networks



Multicast Addresses: v4

One class of IPv4 addresses is reserved for multicast

1 1 1 0 Multicast group ID

28 bits

Multicast addresses

In IPv4, class D (224.0.0.0 to 239.255.255.255) addresses
are used for multicast



Multicast Addresses: v4

Multicast groups are formed from those hosts that wish to
receive packets from a given source. e.g., a group to listen to
BBC Radio 4

A multicast group id is a 28 bit number with no further structure:
about 270 million possible groups

The set of hosts listening to a particular multicast address is
also known as a host group

Host groups can cross multiple networks and there is no limit
on the size of a group; and generally you can’t know how big
the group is



Multicast Addresses: v4

Some group addresses are preallocated by IANA: the
permanent host groups

• 224.0.0.1: all multicast aware hosts on this subnet (not all
IPv4 hosts support multicast)
• 224.0.0.2: all multicast routers on this subnet



Multicast Addresses: v4

The process of joining and leaving groups is governed by the
Internet Group Management Protocol (IGMP)

A host that wishes to join a multicast group provided by a
server sends an IGMP message towards the server

The routers on the path to the server take note and so know to
route multicast packets for this group towards the joining host

The server itself is not interested or involved in the IGMP
message



Multicast

source router routerrouter

router

source router routerrouter member

membermember

dup

duprouter non−member

A B

C

A B

C

Unicast vs. Multicast



Multicast Addresses: v4

Similarly for a host leaving a group: a host is supposed to send
an IGMP message towards the server that the routers can read
and act upon

Extra complication arises as hosts may not (or can’t if they
crash) always send “group leave” messages

So there is more protocol to monitor and maintain groups using
timeouts and maintenance messages

Exercise Read about this



Multicast Addresses: v6

While multicast was optional in IPv4, it is required in IPv6
(otherwise it would not have broadcast!)

IPv6 multicast is much as v4, but simplified



Multicast group ID

112 bits

11111111 flags scope

8 bits 4 bits 4 bits

IPv6 multicast addresses

• Addresses start with hex FF
• Four bits of flags, including the T bit which means transient

group (as opposed to a permanent IANA allocated group)
• Four bits of scope. Limit the range of this multicast to, e.g.,

the local network; the organisation; the country; worldwide



Addresses
Multicast

Exercise Read about how IPv4 uses the TTL to limit scope

Exercise Find out what IPv6 needs to do to broadcast to the
local network



Addresses
Multicast

Multicast is not used as much as it should be

It is used in routing protocols (i.e., those protocols that help
routers create their routing tables), but relatively little elsewhere
in IPv4

Exercise Read about the Simple Service Discovery Protocol
(SSDP)

Exercise And the Multicast Domain Name System (mDNS)



Addresses
Multicast

Multicast is hard to use for an on-demand system (e.g., BBC
iPlayer, Netflix) as it requires everyone in the group to be
receiving the same thing at the same time

While ideal for a live transmission, multicast does not work
when everyone wants to watch things at different times

Most big streaming providers rely on having many local
distribution points containing identical data, even for live
streams



Addresses
Not Multicast

source distribution point

distribution
point

A B

C

Content distribution points

The source supplies (relatively few) distribution points using
unicast, which serve content directly using unicast

Exercise Read about content delivery networks



Addresses
Multicast

Furthermore, most providers use have to use unicast as
multicast is not well supported in home systems

And routing companies want to avoid supporting multicast,
claiming undue complexity to support it: each group needs
extra state in every router the multicast traffic passes through,
making scaling to the full Internet a problem

A router must keep a record of all multicast paths passing
through it, so routers on popular paths (e.g., in internet
exchanges) might need to keep a large amount of data



Addresses
Multicast

Multicast is used by some pay-tv services, but usually in the
context of a closed and controllable system, e.g., a institutional
intranet multicasting a seminar, or holding a multi-way video
conference

Generally in the case where the same institution owns all the
infrastructure from source to destinations

Exercise Read about BT TV



Addresses
Anycast: v6

Anycast

Anycast in IPv6 sends a single packet to a single destination
chosen out of several possible destinations

For example, replicated Web servers: have many servers
around the world with identical content and the same anycast
address. A browser would get pages from the closest server,
thus sharing load

The reply would be unicast



Addresses: v6
Anycast

Only works well with connectionless transport protocols (see
later) as multiple requests might go to different servers: this
doesn’t fit well with connection-oriented protocols

Address format?

Any unicast address that happens to be assigned to more than
one server. It is up to the routers to figure this out



Addresses: v6

There are anycast groups, much as multicast groups and a
join/leave protocol

Notice the symmetry: muticast is groups of clients, while
anycast is groups of servers

Anycast has plenty of potential, but we need to be using IPv6 to
get it properly, though some people do support it in IPv4

Exercise 1.1.1.1 is an anycast address. Investigate

1.1.1.1


Addresses

How does a host get an IP address?

An Ethernet address is burned into the hardware, so there’s no
problem there

IP addresses are software addresses, so they must be set up
somehow

The simplest way is for the host simply to be configured to have
that address, stored in a configuration file on the host
somewhere

An administrator takes into account certain criteria, e.g.,
network or subnetwork addresses, and gives the machine a
currently unused address

But it is not always feasible to do this



DHCP

• Not all machines have administrators, e.g., home PCs
• Some administrators are not sufficiently competent to

allocate addresses correctly, e.g., home PCs
• Some installations have too many machines to get around

and configure them all, e.g., in the library
• Some installations have machines that come and go all the

time, e.g., laptops in the library



DHCP

The best way of approaching this fairly simple but time
consuming task is to use a computer

The Dynamic Host Configuration Protocol (DHCP) does just
this

When a machine needs an IP address it can use DHCP to get
one



DHCP

When a host boots and finds it needs an IP address, it makes a
DHCP broadcast

This is like the host saying “can anyone give me an IP
address?” to the network

In contrast to ARP, with DHCP there is usually just one
(occasionally more as backup) host that is configured to
respond to DHCP requests, as allocation of addresses must be
centrally managed to avoid duplication

Again in contrast with ARP, this request is a network layer local
broadcast, actually using an IP packet with address
255.255.255.255

255.255.255.255


DHCP

A DHCP server (i.e., the DHCP program running on some host)
listens for such requests; it will choose a currently unused IP
address and send it back to the requesting client

The value might be chosen by the server according to some
defined policy, or (more usually) the next free address taken
from a list of currently unused addresses

The client gets this reply and reads its IP address which it can
then use to configure itself



DHCP

In outline:

1. the client broadcasts “Who out there is willing to do DHCP
with me?” (a DHCPDISCOVER message)

2. one or more servers broadcast a reply. “I will. Here’s an
address” (DHCPOFFER)

3. the client picks a server and broadcasts “Can I have that
address, please?” (DHCPREQUEST)

4. the chosen server broadcasts “OK, it’s yours” (DHCPACK)
5. the client sets its IP address



DHCP

Exercise Find out the details, e.g., what happens if a packet
gets lost? For example, the DHCPACK



DHCP

DHCP runs over (UDP over) IP, so DHCP packets must have IP
source and destination addresses

But the client doesn’t yet know its own IP address, or any
server’s address, but it must fill in the IP address fields with
something

Source: 0.0.0.0. This is what we are trying to find

Destination: 255.255.255.255. A local network broadcast

Exercise So what would the link layer address be?



DHCP

Packets returning from the DHCP server will have the server’s
IP address as source, and the broadcast 255.255.255.255 as
destination

Again, the client doesn’t yet have an IP address, so we have to
resort to a broadcast to everybody

This is extra work for all hosts on the network (reading then
ignoring the DHCP reply packets), but DHCP exchanges are
relatively rare so it’s not so bothersome

There are security implications though. . .

There is an identification field in the DHCPOFFER that allows a
host to recognise a reply is for itself and not mistakenly take an
offer for some other host that is doing DHCP at the same time



DHCP
DHCP

A DHCP server has a pool of available addresses that it can
assign to hosts as they need them

When a host leaves the network, it should send a DHCPRELEASE

to the DHCP server

Thus releasing its IP address to be reused for another host

But not all clients are well behaved, or might have crashed
before sending a release



DHCP
DHCP

To fix this, DHCP gives a lease time on an address

The address is usable by the requesting host for this period of
time

If the lease expires the host can request a renewal of the lease
from the server

Which will then grant a further lease on the address

The renewal request and reply can be a normal unicast
(non-broadcast) interchange, as the client already has an IP
address



DHCP

If a host leaves the network or crashes, a renewal request will
not be forthcoming

Thus the server can know, when the lease has expired, that the
allocated IP address is no longer needed, and can be put back
into the pool

(There are many protocols like this, that need a timeout to catch
something bad happening)



DHCP

How long is the lease time?

This is configurable by the DHCP server’s administrator

A short period is used when there is a fast turnover of
machines (e.g., laptops in the library)

A long period, up to infinity, is used for more permanent
machines, e.g., desktops

The administrator of the DHCP server needs to pick suitable
values

Exercise What is the lease time from your access point on your
home network?



DHCP

Besides addresses, DHCP can supply

• IP address
• netmask
• gateway
• name servers
• lease times
• print servers

• boot servers
• mail servers
• host name
• web servers
• and so on



DHCP

But usually just

• IP address
• netmask
• gateway
• name servers (for DNS, see later)

which is the minimum needed to get a host up and running and
talking to the wider Internet

And the lease time



DHCP

After getting a new address, a client might broadcast an ARP
reply containing its new address

This unrequested gratuitous ARP informs other hosts on the
network of the new address association so they can update
their ARP caches, e.g., invalidating an old association with this
IP address



DHCP

Thus, DHCP solves the address, gateway and netmask (and
other) configuration problem

But there is a wider issue we’ve alluded to several times that we
must now discuss



Internet/Network Layer

Many times, in many circumstances, when things go wrong, we
have said things like “blah blah and send an error message
back”

For example, in MTU discovery we had “drop the packet and
send an error message back”

Or when a TTL drops to zero, we had “drop the packet and
send an error message back”



Internet/Network Layer

So how is such a message sent?

We only have packets, so the message must be in a packet

Just another IP datagram, with particular contents

An Internet Control Message Protocol (ICMP) packet



ICMP

ICMP is used for general control of the Internet, in particular
errors

ICMP packets are contained within IP packets, but are
considered to be part of the network layer

Thus the data field in an IP datagram might contain transport
layer stuff, or it might contain network layer stuff



ICMP

32 bits

16 bit checksum8 bit code8 bit type

8 bytes

32 bits various uses

Data

8 bytes

ICMP Packet



ICMP

• Type: kind of message, e.g., “TTL expired”, “destination
unreachable”, “fragmentation needed but DF set”
• Code: additional information, e.g., “destination

unreachable” has “network unreachable” and “host
unreachable” codes
• Checksum
• A fixed size field that has varying purposes for different

types
• A general data field, if needed



ICMP

Thus ICMP packets of various types are used to indicate the
different kinds of error message

For example, when a TTL on a packet decrements to zero, the
router drops the packet, creates an ICMP “TTL expired” packet
and sends it back to the source address, as given in the
dropped packet

This message (in an IP packet) will have IP source address of
the router; and destination address the source of the problem
packet



ICMP

But, remember, ICMP packets are IP packets and so can be
lost, delayed, duplicated or otherwise corrupted

And so ICMP errors can be generated for ICMP packets, with
certain reservations

ICMP messages are classed as either a query or an error

E.g., ICMP “echo request” (ping) is a query, but “TTL expired” is
an error



ICMP

ICMP errors are not generated for

• ICMP errors (e.g., TTL expires on a ICMP packet)
• a packet whose destination is a broadcast or multicast
• a packet whose source is a broadcast or multicast
• a packet whose link-layer address is a broadcast
• any fragment other than the first

This is to prevent broadcast storms, where a single error is
multiplied up into many ICMP packets

Non-initial IP fragments don’t contain enough identifying
information for the OS to do anything useful with them, so don’t
bother with them (Exercise How do you know if you have an
initial fragment?)



ICMP

Type Err Code

ECHOREPLY reply from a ping
DEST UNREACH e network unreachable

e host unreachable
e port unreachable
e fragmentation wanted but DF set

REDIRECT e routing redirect for network
e routing redirect for host

ECHO ping
TIME EXCEEDED e TTL reached 0

e fragment reassembly time exceeded

Messages marked “e” are errors. There are many other types
and codes, but the above are the most common in practice.



ICMP
Ping

ICMP has many other uses

For example, we can discover if a machine is up and running
using ICMP ping

A program, usually called ping, sends an ICMP “echo request”
(also usually called a “ping”) packet, waits a second, then
repeats



ICMP
Ping

32 bits

16 bit checksum

8 bytes

Identifier Sequence number

Optional data

8 bit type 8 bit code

(0 or 8) (0)
8 bytes

ICMP ping headers

• ICMP type 0, code 0, with some random identifier
• A functioning host OS that gets a ping should return a

“echo reply”
• This has ICMP type 8, code 0, and a copy of the identifier,

sequence and data



ICMP
Ping

• The identifier field allows the originator OS to match up
replies with requests
• The sequence starts at 0 and increases by 1 for each ping

sent

This allows us to spot lost, duplicated or reordered packets



ICMP
Ping

% ping www.yahoo.co.uk

PING homerc.europe.yahoo.com: 56 data bytes

64 bytes from rc3.europe.yahoo.com (194.237.109.72): icmp_seq=0. time=160. ms

64 bytes from rc3.europe.yahoo.com (194.237.109.72): icmp_seq=1. time=154. ms

64 bytes from rc3.europe.yahoo.com (194.237.109.72): icmp_seq=2. time=176. ms

64 bytes from rc3.europe.yahoo.com (194.237.109.72): icmp_seq=3. time=159. ms

64 bytes from rc3.europe.yahoo.com (194.237.109.72): icmp_seq=4. time=161. ms

^C

----homerc.europe.yahoo.com PING Statistics----

5 packets transmitted, 5 packets received, 0% packet loss

round-trip (ms) min/avg/max = 154/162/176

The ping command also keeps track of round trip time (RTT),
the time between sending a request and getting the
corresponding reply

Note lots of variance in the RTT: this is typical
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Ping

Some versions of ping can enable the IP header option record
route: this makes IP save the address of each intermediate
router in the header

But, as noted earlier, there can only be 60 bytes of options in
IPv4, giving space for up to 9 addresses (with the overheads of
the option header and other bits and pieces), so only 9
addresses are recorded



ICMP
Ping

% ping -R www.bbc.co.uk

PING www.bbc.net.uk (212.58.244.70) 56(124) bytes of data.

64 bytes from bbc-vip115.telhc.bbc.co.uk (212.58.244.70): icmp_seq=1 ttl=52

time=89.0 ms

RR: rjb.cs.bath.ac.uk (172.16.2.1)

fire.cs.bath.ac.uk (138.38.108.253)

swan-fwsm.bath.ac.uk (138.38.1.46)

university-of-bath.ja.net (146.97.144.38)

xe-0-0-0.bathbc-rbr1.ja.net (146.97.67.46)

xe-1-0-0.brisub-rbr1.ja.net (146.97.67.33)

swr.londpg-sbr1.ja.net (146.97.37.202)

ae29.londpg-sbr1.ja.net (146.97.33.2)

ae0.londhx-sbr1.ja.net (146.97.35.105)

64 bytes from bbc-vip115.telhc.bbc.co.uk (212.58.244.70): icmp_seq=2 ttl=52

time=25.7 ms (same route)

^C

--- www.bbc.net.uk ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 1000ms

rtt min/avg/max/mdev = 25.734/57.370/89.006/31.636 ms
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Traceroute

There are lots of routes of more than 9 hops, so using ping to
discover a route is limited; besides many routers ignore or
discard this option

The traceroute program is a clever way to find routes by
deliberately generating errors and looking at the ICMP
messages that result

It sends a packet to the intended destination, but with an
artificially small time-to-live



ICMP
Traceroute

When the TTL drops to zero on a hop, the packet is dropped
and an ICMP “TTL exceeded” is returned by the router that
dropped it

As the source address on this ICMP error is the router’s, this
tells us where the packet had got to

Repeat for increasing values of TTL to get the entire route



% traceroute mary.bath.ac.uk

traceroute to mary.bath.ac.uk (138.38.32.14), 30 hops max, 46 byte packets

1 136.159.7.1 (136.159.7.1) 0.779 ms 1.131 ms 0.642 ms

2 136.159.28.1 (136.159.28.1) 1.369 ms 0.910 ms 1.489 ms

3 136.159.30.1 (136.159.30.1) 2.339 ms 1.937 ms 0.988 ms

4 136.159.251.2 (136.159.251.2) 1.458 ms 1.071 ms 1.831 ms

5 192.168.47.1 (192.168.47.1) 1.434 ms 1.554 ms 1.008 ms

6 192.168.3.25 (192.168.3.25) 29.192 ms 30.094 ms 25.374 ms

7 REGIONAL2.tac.net (205.233.111.67) 25.413 ms 33.002 ms 32.677 ms

8 * * *

9 * 117.ATM3-0.XR2.CHI6.ALTER.NET (146.188.209.182) 82.403 ms 58.747 ms

10 190.ATM11-0-0.GW4.CHI6.ALTER.NET (146.188.209.149) 56.376 ms 67.898 ms 73.462 ms

11 if-4-0-1-1.bb1.Chicago2.Teleglobe.net (207.45.193.9) 66.853 ms 46.089 ms 44.670 ms

12 if-0-0.core1.Chicago3.Teleglobe.net (207.45.222.213) 48.817 ms * 75.093 ms

13 if-8-1.core1.NewYork.Teleglobe.net (207.45.222.209) 106.198 ms 94.249 ms 73.375 ms

14 ix-5-3.core1.NewYork.Teleglobe.net (207.45.202.30) 75.286 ms 89.873 ms 98.789 ms

15 us-gw.ja.net (193.62.157.13) 143.686 ms 159.212 ms 166.020 ms

16 external-gw.ja.net (193.63.94.40) 172.803 ms 189.216 ms 191.260 ms

17 external-gw.bristol-core.ja.net (146.97.252.58) 206.403 ms 185.438 ms 192.989 ms

18 bristol.bweman.site.ja.net (146.97.252.102) 196.685 ms 206.221 ms 183.763 ms

19 man-gw-2.bwe.net.uk (194.82.125.210) 197.968 ms * 174.809 ms

20 bath-gw-1.bwe.net.uk (194.82.125.198) 209.307 ms 221.512 ms 199.168 ms

21 * * *

22 mary.bath.ac.uk (138.38.32.14) 250.670 ms * 186.400 ms
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Traceroute

The traceroute command sends three probes for each stage
so we can see time variations

Hop 8: no error packet was received for this TTL. There are
many possible reasons, e.g., on a long route it is possible the
router is setting an initial TTL on the reply that is too small to
reach us

An increasingly common possibility is that the router refuses to
send ICMP errors for TTL exceeded in a weak attempt at
security
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A * before the name means the name lookup took so long
traceroute decided to stop waiting and carry on. The name
subsequently turned up

Sometimes the same line is repeated: this is because some
routers forward packets with TTL 0. This is a bug

There are many bugs out there in the real world!

Exercise Traceroute usually sends out UDP packets as probes,
while some implementations use ICMP pings, while others use
TCP SYNs. Find out why



ICMP
Traceroute

ICMP errors are required to contain the IP header and at least
8 bytes of the original data in the packet that caused the
problem

This is so the OS in the source machine can match up the
ICMP packet with the original packet and relay the error
message back to the appropriate original application

There may be several applications running, sending packets,
and getting ICMPs back

Eight bytes contains the interesting parts of the next layer
headers (in particular the ports of UDP and TCP) and this will
be enough to identify which outgoing packet this is a reply to



ICMPv6

ICMPv6 in IPv6 plays a similar, but expanded role

For example, the ICMPv6 Neighbour Discovery Protocol also
does the job of ARP

With a Neighbour Solicitation request and Neighbour
Advertisement reply

Exercise Read about this and compare with ARP



Routing

We now look at one of the fundamental aspects of IP: routing

A packet does not know how to get to its destination

It must rely on the routers to send it in the right direction

So how do the routers do that?



Routing
A router can’t possibly know where everything in the world is: it
is only connected to a handful of neighbour routers

How can a router in England know that to send a packet to
Australia it might have to forward it to America first?

If there is more than one path, which should be chosen?

There are many relevant criteria:

• The smallest number of hops
• The fastest: some links might be faster than others, e.g.,

undersea cable vs. satellite
• The cheapest: transit is not free!
• The most reliable
• And so on (c.f., the TOS field in IP)



Routing

There is also policy based routing, where non-technical issues
must be taken into account

You may wish to restrict where your traffic passes through

At one point, there was a law in Canada that said all traffic that
starts and ends in Canada must never leave Canada. Even if it
would be cheaper and faster to go via the USA, say



Routing

We normally think of two classes of routing:

• Local routing within an organisation, requiring an interior
gateway protocol (IGP)
• Non-local routing between organisations, requiring an

exterior gateway protocol (EGP)

Very different requirements, with exterior protocols mostly
driven by politics and economics



Host Routing

We should revisit small routing tables:

Destination Gateway Genmask Flags Metric Ref Use Iface

213.121.147.69 * 255.255.255.255 UH 0 0 0 ppp0

172.18.0.0 * 255.255.0.0 U 0 0 0 eth0

172.17.0.0 * 255.255.0.0 U 0 0 0 eth1

127.0.0.0 * 255.0.0.0 U 0 0 0 lo

default 213.121.147.69 0.0.0.0 UG 0 0 0 ppp0

The destination address on a packet is ANDed with each
netmask (Genmask) in turn: if the result is equal to the
Destination, route via the given interface

Use the first match moving from the longest mask to the
shortest: top to bottom in this table
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Flags:

• U: the interface is up (i.e., working)
• G: the route is to a gateway/router. Otherwise the

destination is on the local network
• H: the route is to a host. The destination address is a

single host, not a network
• D: this entry was created by an ICMP redirect
• M: this entry was modified by an ICMP redirect



Host Routing

A static route is one added by hand, e.g., the ip route add

command in Linux

Routing tables on most non-routers are trivial and set up
“manually” by the operating system at boot time, often with the
use of DHCP

In this context, DHCP is regarded as “setting by hand”

However, sometimes routing tables are not perfectly set up
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H2

R1 H1 R2

ICMP redirect

ICMP Redirect

H2

R1 H1 R2

ICMP redirect

ICMP Redirect

H1 wants to send to H2 but H1’s routing table tells it to route via
R2; When the packet reaches R2, R2 sees it should be routed
out on the interface it came in on: so R2 knows H1’s table
needs improving; R2 forwards the packet to R1 and sends an
ICMP redirect to H1; H1 gets the redirect and uses it to update
its routing table. The route will be marked D or M; Next time H1
will be able to route directly to R1
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ICMP can modify routing tables in a small way, but is not the
main way routes are set up in big routers

We could get administrators to set up the tables

But better is to get the routers to do it themselves

Dynamic routing is the passing of routing information between
routers



Dynamic Routing

There are many dynamic routing protocols:

• Routing Information Protocol (RIP)
• Open Shortest Path First (OSPF)
• Border Gateway Protocol (BGP)
• Exterior Gateway Protocol (EGP)
• And so on

Each protocol is suited to a certain purpose, no single protocol
fits all



Dynamic Routing

We start at routing the top level, namely the Internet. Local
networks have different requirements

The Internet is managed as a collection of Autonomous
Systems (AS), each administered by a single entity, e.g., a
University or company

Between ASs run exterior gateway protocols (EGP), currently
BGP and formerly EGP (now obsolete)

Each AS chooses a suitable routing protocol to direct packets
within itself: these might be interior gateway protocols, e.g., RIP
and OSPF. Large institutions might even run BGP internally and
have their own internal ASs
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An AS is denoted by a 32 bit integer

There are currently (2023) over 115000 ASs

Top-level routers will need an entry in their tables for each AS
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The University of Bath is within AS786, JANET

All of JANET is one big AS: routing within JANET is an internal
issue

In fact JANET runs BGP internally. Bath has internal AS64857
within JANET
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BGP allows policy based routing: it’s not just the shortest or
fastest path that it chooses

It is a distance-vector protocol



Routing

There are two main ways of finding routes:

• distance-vector protocols
• link-state protocols

• distance-vector protocols
• distance-vector
• path-vector

• link-state protocols

And distance-vector is usually sub-divided into distance-vector
and path-vector
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Distance-vector gathers collections (vectors) of hop counts
(distances) from its neighbouring routers to selected
destinations. From this it computes its own vector of distances

RIP is an example of a distance-vector protocol, occasionally
used in smaller networks

In contrast, link-state gathers graphs of connectivity from all the
routers (or some subset) and uses this to compute its own map.
OSPF is an example

Distance-vector is simple, but has problems

Link-state is more complex, but has advantages
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In either case routers periodically send all or parts of their view
of the world to their neighbours

Some protocols use broadcast, some multicast

A message would be “My view of the network is this. . . ” in the
case of link-state

Or “I know a route to this destination using this number of hops”
in the case of distance vector
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The routers can then update their tables in light of this

For example, in distance vector:

• suppose a router knows a route (i.e., the next hop router)
for a given destination of a given number n of hops
• it receives a message from another neighbour that

includes a route of m hops to that destination
• if m + 1 < n it can update its route to now go through that

neighbour, as that is a shorter (fewer hops) route



Routing

This is simple to implement and run, but such protocols have a
slow convergence problem

This means that if the network changes (e.g., a link is broken,
or a new link is made) it takes many interchanges of information
for the routers to adjust to the new routes

And this can manifest in bad ways
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Slow Convergence
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Counts grow slowly

R3 knows a route to network N of hop count 1; After a break in
the network R3 finds that route no longer works; So it sends a
message to its neighbours (R2) saying “no route to N”. It uses a
count of 16, which is interpreted as infinity; R2 updates its
routing table; But R2 also gets a periodic update message from
R1 saying “route of 3 hops”; So R2 now thinks the best route is
via R1, 4 hops; And when R2 sends its periodic update
message “4” to R1 and R3, R1 now thinks there is a route via
R2 of 5 hops; and R3 thinks there is a route of 5 hops via R2;
After the next update, R2 thinks there is a route via R3 of 6
hops; And so on; Eventually the hop count reaches 16, i.e., no
route, and so this route is dropped; This is called the count to
infinity problem; If there was a valid route, it might take a long
time to converge to that route
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Meanwhile real data packets are bouncing forwards and back
between the routers

The local information that distance vector provides is not
enough

RIP uses distance vector and this is a real problem for it

So RIP should only used on small networks that are fairly stable

Link state protocols, e.g., OSPF, converge faster, but need
more complicated graph traversal algorithms to determine best
routes
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BGP is a path vector variation of distance vector: this includes
the path (multiple hops) to the destination, which can be used
to spot the loops that lead to count-to-infinity

ASs do not change very much so slow convergence is not such
a big problem anyway

Exercise Read about path vector systems



BGP

BGP does have other problems, particularly authentication

Through accident or malice it is easy to trick BGP

For example, it would be relatively easy to get BGP to transit
data through an evil third party

Also, see the problem with the route to Youtube, earlier
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Exercise Read about the 2018 hack on the cryptocurrency
website MyEtherWallet.com that started by subverting BGP to
send DNS traffic to a rogue server

Exercise Read about the BGP problem of April 2021, where
Vodafone Idea (AS55410) published bad routes

Exercise Read about the proposed Resource Public Key
Infrastructure (RPKI), RFC6810

Exercise Read about the Mutually Agreed Norms for Routing
Security (MANRS) initiative for ISPs and routing exchange
operators

MyEtherWallet.com
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Exercise Read about RIP

Exercise Read about Dijkstra’s algorithm for finding shortest
paths in a graph; and OSPF which uses this algorithm
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We now move up a layer: the Transport Layer

The Internet Protocol has three main protocols that run on top
of IP: two are for data, one for control

The data protocols are complementary

• one is fast, unreliable, connectionless: UDP
• the other is more sophisticated, reliable and

connection-oriented: TCP

The control protocol, ICMP, we have already seen and is
usually considered as part of the network layer

Other data protocols exist in this layer, but TCP and UDP are
currently the important ones



Transport Layer
Ports

Both UDP and TCP use the concept of ports

On a single server machine there can be many programs
running, web, email, and so on: how does a client indicate
which service it wants from the server?

And when a reply packet arrives back at a client, how does the
OS know which of the many processes running on the client
that packet should be delivered to?

This is done by ports

A port is just a 16 bit integer: 1-65535



Transport Layer
Ports

Every TCP and UDP connection has a source port and a
destination port

When a service starts
— i.e., a program that will deal with the service starts —
it listens on a port
— i.e., it informs the operating system that it wishes to receive
data from packets directed to that port number

E.g., an email server may indicate it wants packets addressed
to TCP port 25; a browser would listen on port 80 (and 443)
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The OS checks that port is not already being used by another
program, and subsequently ensures packets with that
destination port are sent to that service program

So when a TCP packet with destination port 25 arrives its data
will be given to the email program

An analogy: a host as a block of flats. To address a letter to a
specific person you need both a building address (IP address)
and a flat number (port)



Transport Layer
Ports

TCP and UDP ports are entirely separate: one service can be
listening for a TCP connection on a port and another service for
UDP on the same port number

The OS can distinguish the two as they are port within different
protocols

TCP and UDP are completely separate and do not interact at
all (at the transport level)
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Certain well-known ports are associated certain services

• web server on port 80 (or 443 for a secure version)
• email server on port 25
• FTP on port 21
• Microsoft SQL server on 1433
• hundreds of others. See /etc/services and RFC6335

A range of ports are reserved for privileged (root/administrator)
programs; most are available to any program that wants to use
them

Typically, port numbers under 1024 are reserved for privileged
programs

/etc/services
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These associations of port numbers to services are purely
convention and for convenience only: no port is special and you
can run any service on any port

It just means you don’t have the extra problem of determining
the port for, say, the web server: it is almost always 80 (or 443)

You can run a web server on port 25 if you wish: you will just
confuse anyone who tries to send you email
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80 Web

23 Telnet

25 email

serverclients

12346

12345

32110

23232

Transport layer ports

Ports also enable multiple simultaneous connections between
two machines, e.g., fetching several web pages

The source port (destination port on the returning packet)
allows the client OS to identify which packet belongs to which
client program
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Ports

Source ports are usually chosen afresh “at random” (usually:
just increment by 1 for each time) for each new connection and
are called ephemeral ports as they only live for the duration of
the connection

There is no technical difference between ephemeral and
well-known ports, just the way they are used

The quad

source address
source port
destination address
destination port

specifies a connection uniquely: the hosts involved and the
processes on those hosts
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The pair (source address, source port) is often called a socket

A full quad is then called a socket pair

Both TCP and UDP have port fields early in their headers: this
is so that the port numbers are included in the “IP header plus
8 bytes of data” that an ICMP error contains

Thus the OS can identify which process an ICMP belongs to

And a non-initial IP fragment won’t have such identifying
information, so this is why ICMPs are not generated for errors
involving such fragments
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NAT and Ports

And ports are how a NAT firewall does its magic of matching
returning reply packets to request packets

It keeps a list of private (internal) socket pairs against public
(external) socket pairs

And this is enough to match up replies with requests



Transport Layer
NAT and Ports

Exercise Read about Port Address Translation

Exercise Sometime we wish to allow an external host to initiate
a connection with a private host behind NAT. Read about port
forwarding

Exercise Reflect upon the idea that ports are “process
addresses”, namely a way to identify a particular process within
a destination
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We start with the User Datagram Protocol (UDP) as it is
simpler, though historically it came along much later than TCP

UDP is the transport layer for an unreliable, connectionless
protocol

Recall that “unreliable” means “not guaranteed reliable”

UDP is not much more than IP with ports

UDP packets are typically called datagrams (like telegrams:
simple individual messages)



UDP
Header

32 bits

16 bit source port 16 bit destination port

16 bit UDP length 16 bit UDP checksum

8 bytes

UDP header

• Ports: as described
• Length: of the entire packet, including the 8 bytes of the

header: this could be deduced from the IP layer, but this
keeps layer independence
• Checksum: of the UDP header, the data and some fields

from the IP header



UDP

Incorporating fields from the IP header is poor design, as it ties
UDP to IPv4

Changing the Network layer (e.g., to IPv6) involves changing
the way this checksum is computed

Thus adding extra complication to the v4 to v6 transition

The checksum is optional: put 0 in this field if you want to save
a little time: recall UDP is unreliable!



UDP

UDP is a very thin layer on top of IP

It is as reliable or unreliable as the IP it runs on

It is just about as fast and efficient as IP, with only a small
overhead (8 bytes)



UDP

UDP is widely used as it is good in a few areas:

• One shot applications. Where we have a single request
and reply. For example, DNS
• Where a fast response is required. We have no overhead

in setting up a connection before data can be exchanged
(see TCP). E.g., DNS
• Where speed is more important than accuracy. For

example, media streaming, where the occasional lost
packet is not a problem, but a slow packet is



UDP

No provision is made for lost or duplicated packets in UDP. Any
application that uses UDP must deal with these issues itself, as
required

For example, DNS over UDP sets a timer when a request is
sent. If the reply takes too long in coming, assume the request
or the reply was lost and resend the request

Duplicates are not a problem with DNS

A video streamer might just patch over a lost packet with a copy
of a previous packet; and so on

Exercise UDP is ideal for streaming video and audio, but a lot
of services use HTTP over TCP. What are the advantages and
disadvantages of doing this?



UDP

UDP is a widely used protocol (e.g., streaming video or audio),
but we also require a reliable way of sending data

Thus the need for TCP



TCP
The Transmission Control Protocol (TCP) is the transport layer
for a reliable, connection-oriented protocol

Often called “TCP/IP”

It is hugely more complicated than UDP as it must create a
reliable transport from the unreliable IP it runs on

There is a lot of complication to deal with the error cases, such
as packet loss and packet duplication

There is overhead in setting up (and taking down) the
connection to manage these mechanisms

And more to complexity improve performance and flow control

A lot of state about each connection needs to be stored by the
OS
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The basis of the reliability is the use of acknowledgement
(ACK) packets for every packet sent

If host A sends host B a packet, B must send an ACK packet
back to A to inform it of the safe arrival of the packet

If A does not get an ACK, it resends the packet

But ACKs on their own do not solve all the problem



TCP

This is due to the Two Armies Problem: suppose two armies A
and B wish to coordinate an attack on C

A sends a message to B: “attack at dawn”

How does A know that B got the message? A cannot safely
attack until it knows B is ready

So B sends an acknowledgement to A: “OK”

But the ACK might be intercepted and A might not get the ACK
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B can’t attack until it knows A got the ACK

So A should send an ACK for the ACK back to B

But this might not get through. . .

For full reliability it looks like we need an infinite regress!
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TCP avoids the Two Armies Problem by using timeouts and
packet retransmissions

For every packet:

A starts a retransmission timer when it sends to B

If the timer runs out before it gets an ACK, it resends the packet
and restarts the timer

Repeat until A gets an ACK (or A gives up)
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Problems to solve include:

• how long to wait before a resend? This might be a slow but
otherwise reliable link and resending will just clog the
system with extra duplicate packets
• how many times to resend before giving up? It might be

the destination has gone away entirely (perhaps
disconnected or crashed)
• how long B should wait before sending the ACK? You can

piggyback an ACK on an ordinary data packet, so it may
be better for B to wait until some data is ready to be
returned rather than sending an otherwise empty ACK.
This saves on packets sent
• IP datagrams can arrive out of order, so we need some

way to recognise which ACK goes with which packet
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Other problems TCP also needs to address include:

• how to maintain order in the data? IP datagrams can arrive
out of order, so we need some way of reassembling the
original data stream in the correct order
• how to manage duplicates? Resends can produce

duplicate packets (if the original was not actually lost) so
we need some way to recognise and discard extra copies
• Flow control: how to increase the rate of sending packets

when things are going well, and decrease the rate when
they are not
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TCP packets are often called segments

(Reminder: “segment”, “packet”, “datagram”, “frame” all mean
pretty much the same thing, just in different layers)

A TCP header is complicated as it must address many complex
issues
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32 bits

Options

16 bit source port 16 bit destination port

32 bit sequence number

32 bit acknowledgement number

4 bit
header
length

16 bit window size

16 bit checksum 16 bit urgent pointer

20 bytes

C
W

R

E
C

E

U
R

G

A
C

K

P
S

H

R
S

T

S
Y

N

F
IN

reserved
4 bits

20 bytes

TCP header
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• Ports: identical to UDP (on purpose: actually UDP copied
TCP)
• Two 32 bit values: sequence and acknowledgement
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Sequence numbers

These numbers are the heart of TCP’s reliability

Every byte in a TCP connection is numbered

The 32 bit sequence number starts at some random value and
increases by 1 for each byte sent

So if a segment contains 10 bytes of data, the sequence
number on the next segment sent will be 10 greater
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The sequence number in the header is the number of the first
byte of data in the segment

The destination acknowledges those bytes it has received by
filling in the ACK field with the appropriate byte number and
setting the ACK flag
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The reverse connection from destination to source has its own
sequence number as TCP is fully duplex

Everything we say here is true for data travelling in the reverse
direction: the reverse traffic has its own independent sequence
numbers and flow control
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Note that a destination might not immediately get the whole
segment that was sent due to fragmentation in the IP layer

IP must wait for all the fragments and reconstruct the segment
before it can pass it on to TCP and then TCP can send the ACK

And this can play havoc with TCP’s timers

Another reason to avoid fragmentation



TCP
Sequence numbers

The returning ACK field contains the sequence number of the
next byte the destination expects to receive, e.g., if the
sequence number is 20001 and 14 bytes are received it returns
20015 in the ACK field

ACKs can be piggybacked on normal returning data packets,
they don’t need to be separate packets

This helps reduce the amount of network traffic
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ACK 11

ACK 21

ACK 61

etc

lost

A B

SEQ 21−30

SEQ 31−40

SEQ 41−50

SEQ 51−60

SEQ 21−30

SEQ 61−70

SEQ 1−10

SEQ 11−20

ACK 21

ACK 21

ACK 21

ACKing lost segments

A is sending 10 byte
segments to B, and B is
ACKing them; The segment
containing bytes 21-30 is
lost; When B next gets a
segment it still ACKS with 21:
that’s the byte it wants next;
While the ACK travels back
to A, A is still sending new
data; Eventually A gets
duplicate ACKs from B: this
is a sign of a problem; A
resends bytes 21-30; When
B gets these bytes it can
ACK all the way up to 60
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In fact this diagram is not realistic: it is over-simplified to fit on
the slide

TCP specifies that A should continue until it get gets three
duplicate ACKs (i.e., four ACKs with the same sequence
number, not piggybacked on data and not changing the
advertised window) before resending

This is to avoid triggering resends too easily, e.g., it might be
just a case of A’s packets being slightly reordered in transit,
where a resend is not actually required (remember TCP runs
on top of the unreliable IP)

Exercise When might we receive many ACKs with the same
sequence number, but nothing is in error?
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The sequence number wraps around after
232 − 1 = 4294967295 bytes

This is under 10 seconds for a 10Gb/s Ethernet

Additional mechanisms to extend the count have had to be
devised in the light of modern fast networks

Exercise E.g., using the TCP header timestamp option. Read
about PAWS

Much more on SEQ and ACKing later, but note that sequence
numbers solve the segment ordering problem, too
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Back to the TCP header

• 4 bits header length: measured in 32 bit words: the header
can have options, so is of variable length

So maximum is 60 bytes. Minimum is the fixed part: 20 bytes

• Many flags performing various functions
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Most of these will be described in more detail as we go along:

• URG: urgent data
• ACK: the acknowledgement field is active
• PSH: push this data to the application as fast as possible
• RST: reset (break) the connection
• SYN: synchronise a new connection
• FIN: finish a connection
• ECE: congestion notification
• CWR: congestion window reduced
• 4 reserved bits, set to 0
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• 16 bits of advertised window size: for flow control

TCP implements flow control, i.e., adjusting the rate of sending
packets up or down to make best use of current conditions
(a) in the network and (b) in the receiving host

The advertised window deals with (b)

The destination has only a limited amount of buffer memory it
can store new segments in

If the application is not reading the data as fast as it arrives, the
buffer will fill up
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The window size is the amount of buffer the receiver has left:
the receiver sends this value in each segment going back to the
sender

If the space left is very small, the sender can slow down
sending until space in the receiver is freed up
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A B

100

Initially B has space 100 in its buffer

Initially B has space 100 in its buffer

A B

100

80 bytes

A sends 80 bytes

A sends 80 bytes

A B

20

B saves the data in the buffer

B save the data in its buffer

A B

20

reply + adv 20

On the next returning segment, B advertises 20

On the next returning segment, B advertises 20

A B

20
20 bytes

A now knows it shouldn’t send more than 20

A now knows it shouldn’t send more than 20

A B

0

Next advertisment would be 0

Next advertisement would be 0

A B

40

Until B reads some of the data

Until B reads some of the data

A B

20

On the next returning segment, B advertises 20

reply + adv 40

And can advertise the space
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Thus B can tell A to slow down or speed up as appropriate to its
remaining buffer space

16 bits gives a maximum buffer of 65535 bytes: much too small
for modern hosts that have megabytes to play with

There is a header option to scale this up to something
reasonable

Symmetrically, A has its own advertised window that it sends to
B

The other flow control mechanism to deal with varying
conditions in the network comes later
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• Checksum of the header, the data, plus some fields of the
IP layer

Again, bad design!

• Urgent pointer: active if the URG flag is set

The urgent pointer is a pointer into the data stream that
indicates where the current urgent data block ends

Urgent data includes things like interrupts that need to be
processed before any other data that is buffered
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The OS should notify the application when an URG is received,
e.g., using an interrupt

The OS interrupt code would then read through the urgent data
block and act appropriately on what it finds there



TCP

In a similar vein we have the

• PSH flag: set to indicate the destination OS should pass
data to the application as soon as possible

The destination OS might be holding back data for some
reason before passing it on to the application, e.g., collecting
together segments into one large buffer for efficiency reasons

Or holding back notifications to the application that data has
arrived: again not to swamp the application with loads of
notifications of small amounts of data

This flag says send the buffered data to the application, don’t
wait
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Originally it was intended the client application could set the
PSH when it felt the server should not be hanging about
buffering data

These days, there is no mechanism (in the sockets API) for
applications to specify this, but the TCP software itself sets
PSH when appropriate, e.g., when the client’s send buffer
empties

The idea here is that there is no point for the receiver waiting for
more data, as there is no more to send right now
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After the fixed header there are the options, including window
scale and maximum segment size

After the options header is the data, which can be empty, e.g.
for a pure ACK
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TCP Options are many and varied

Timestamp kind 8 len 10 timestamp value timestamp echo reply

4 bytes 4 bytes

End of list kind 0

No operation kind 1

Window

scale factor kind 3 len 3 shift

count

Maximum

segment size kind 2 len 4 MSS

2 bytes

SACK ACK kind 5 len

left edge of 1st block

right edge of 1st block

repeat for all blocks

kind 4 len 2
SACK

permitted

Some TCP optional headers
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Options start with a 1 byte kind which indicates what the option
is to do

Kinds 0 and 1 are one byte long; others have a length field

No operation (NOP) is used to pad to align fields to a multiple
of 4 bytes

Maximum segment size (MSS) specifies how large a segment
we can cope with: the headers are not included in count
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The MSS is the largest TCP segment the host can process

Note that this segment might be reconstructed from more than
one IP fragment, so might not be directly related to the MTU

However, if we want to ensure no IP fragmentation, the MSS
must be set to the MTU minus headers: 40 = 20 + 20 bytes for
IP and TCP

Thus a TCP implementation must be able to process a MSS of
576− 40 = 536 bytes

The MSS is usually communicated in the option header in the
setup of the TCP connection, and is typically set to avoid
fragmentation
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As previously mentioned, the window scale option allows us to
multiply up the value in the advertised window size header field

This optional field contains a value from 0 to 14

A value of n scales by 2n: thus a maximum window of
214 × 65535 = 1,073,725,440 bytes (a gigabyte)

But that’s still only about a second’s worth of data in a 10Gb/s
Ethernet!

A large window is very important is modern fast networks to get
the most out of the available bandwidth: we don’t want the
client to have to keep stopping to wait for the server



TCP
Options

My desktop uses a window scale of 7: 27 × 65535 = 8388480
bytes, or a maximum of 8MB buffer space per connection

Its initial window size on a new TCP connection is 14600,
meaning 27 × 14600 = 1868800 bytes, so a buffer of a bit
under 2MB has been allocated (for this socket)

Exercise Go back and re-read the section on advertised
windows
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Timestamp (TS val) puts the time of day into the segment
header, allowing accurate measurement of the round trip time
(RTT) of a segment and its ACK. Useful for computing
retransmission times (see later)

Timestamp Echo Reply (TS ECR) in an ACK segment is the
timestamp being returned to the sender so it can compute the
RTT

Selective acknowledgement (SACK) is an extension of the ACK
mechanism that allows more flexible ways of acknowledging
segments. SACK is negotiated in the connection setup with a
SACK Permitted option
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Several options are only allowed in the first segment of a new
connection, e.g., Window scale, MSS and SACK Permitted

This is because some things, e.g., buffer space, need to be set
up before a connection and varying them mid-connection is
difficult or makes little sense
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TCP is connection oriented, meaning a connection is set up
between source and destination, and all packets that flow within
this connection are related, through the sequence numbers,
and they all use the same state, such as advertised window

For example, a connection to fetch a web page from a server
will involve many segments

Note that each TCP connection is separate from all others and
has its own state

It is important to realise that this is a connection in the transport
layer
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The underlying layer, IP, is not connection oriented, and each
individual datagram is treated individually, e.g., might take a
different route to its destination: IP is connectionless

Thus TCP connection has a weak version of sessions: though
no further session mechanism is provided, e.g., no session
resumption
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UDP is not connection oriented. Each datagram in UDP is
treated individually

UDP is a connectionless protocol

Of course, both connection oriented and connectionless
protocols are useful in the right circumstances
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Setting up a TCP connection is complicated, as there is a lot of
state that must be set up, e.g., sequence numbers, initial
advertised windows, and buffers amongst other things

Similarly, closing a connection is not trivial: we must ensure all
segments in flight have been ACKed properly. Perhaps
segments need to be resent. Thus a connection will hang
around for a little after closing to ensure everything is tidied up

Fortunately for the application programmer, all this detail is
taken care of by the TCP layer software in the operating
system: though it does have occasional repercussions in the
application if the connection needs to outlive the application for
a while
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Setup and Teardown

Before TCP can send data, it exchanges some packets with the
setup information
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SYN n

Establishment

SYN m, ACKn+1

ACK m+1

active open passive open

TCP setup handshake

Three segments are needed to exchange the information
needed to make a new connection; The initiator, the client,
sends a segment with the SYN flag set and its initial sequence
number (ISN), n, is randomly generated; The receiver, the
server, replies with another SYN segment containing its own
ISN, m; It also ACKs the client’s ISN with n + 1, the sequence
number of the next byte it expects from the client; The initial
SYN can be lost just like any other segment, so we need to
ACK it independently of the first data byte, which comes later;
The client ACKs the server’s ISN with m + 1
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This is called a three way handshake

These segments contain no user data: they are overhead in
setting up the connection

Overhead in time and overhead in packets on the network

After the handshake we can start sending data

The client (first one to initiate) is said to do an active open,
while the server does a passive open
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SYN n

SYN m

SYN n, ACK m+1

SYN m, ACKn+1

Establishment

TCP simultaneous open

It is possible (but rare) for both hosts to do an active open,
where the SYNs cross each other in flight

Matching TCP port numbers will identify when this happens

This is defined to produce one new connection, not two
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FIN s

ACK s+1

ACK r+1

FIN r, ACK s

Normal Termination

active close passive close

TCP teardown

Closing a connection takes up to four segments; TCP is full
duplex, and a connection in one direction may be closed
independently of the other; The FIN flag is set to indicate a half
close: this indicates no more data will be sent from this end;
We can still receive data at this end; The FIN is ACKed; When
the other end wants to close, it sends a FIN and gets an
appropriate ACK; Note there may still be data (and the
corresponding returning ACKs) flowing from the server to the
client before the server decides to close; The first close is
called an active close; The other end does a passive close
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FIN s

ACK s+1

ACK r+1

FIN r, ACK s

Normal Termination

active close passive close

Active close from left

Normal Termination

FIN s ACK r

ACK s+1

FIN r

ACK r+1

passive close active close

Active close from right

Either end can initiate the active close; it does not need to be
the host that did the active open
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ACK s+1

FIN s,ACK r+1

FIN r, ACK s

3 Segment Termination

active close passive close

Three segment close

The passive close FIN can be piggybacked on the ACK: this
then takes only three segments
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FIN s

ACK s+1

ACK r+1

FIN r

Termination

Simultaneous active close

There can (rarely) be a simultaneous active close: this takes
four segments again
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Connections are almost always ended by the FIN handshake,
but there is another way to end a connection when something is
badly wrong

This is to send a reset (RST) segment, i.e., with the RST flag
set

This is for error cases, e.g., a segment arrives that doesn’t
appear to be for a current connection, the server will reply with
a RST

For example, if a server crashes and reboots while the client is
still sending the server will not know what to do with the
segments it is receiving; so it replies with a RST
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When a host gets a RST it ends the connection immediately,
discarding all state and buffered segments

Often seen by the application as a “connection reset by peer”
message
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Termination

A connection ended by FINs is called an orderly release; if
ended by a RST it is an abortive release

RSTs are not ACKed: the connection ends right here

Exercise Think about the security aspects of this: a third party
can inject a RST segment into a connection to kill it
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The various stages a TCP connection can be in (setting up,
tearing down, transmitting data, etc.) are complicated

There is a standard TCP state diagram that describes how TCP
should act in most cases

Though it only covers non-error cases: it does not say what to
do if, say, a SYNFIN segment arrives

And it shows little about timeouts and retransmissions
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CLOSED LISTEN

SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACK

FIN_WAIT_1

FIN_WAIT_2

CLOSING

TIME_WAIT

SYN_RCVD

send
SYNACK

simultaneous
open

send ACK

ACK

active

close

passive

close

2MSL timeout

data transfer

simultaneous
close

send ACK

timeout

or close

close

rcv SYNACK

rcv

rcv FIN

rcv FIN

rcv ACKrcv ACK

close: send FIN
send FIN
close:

send FIN
close:

rcv ACK

passive open

send SYN

send ACK

rcv RST

rcv RST

rcv SYN
send SYNACK

send SYN

active open

rcv SYN

rcv FIN

send ACK

send ACK

rcv FINACK

TCP State Diagram
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We start (and end) in CLOSED

There are the two opens: active and passive

LISTEN is a server waiting for a connection

ESTABLISHED is the normal data transfer state

And the two closes: active and passive

This state diagram is followed for each end of a connection, i.e.,
each socket in the socketpair



TCP
TCP State

SYN

SYN+ACK

ACK

data+ACK

data+ACK

CLOSED

active open

SYN_SENT

ESTABLISHED

ESTABLISHED

SYN_RCVD

LISTEN

passive open

CLOSED

FIN

ACK

FIN

ACK

data+ACK

data+ACK

CLOSE_WAIT

passive close

LAST_ACK

CLOSED

CLOSED

TIME_WAIT

FIN_WAIT_2

active close

FIN_WAIT_1

Typical TCP Timeline
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The active close is somewhat complicated by the need for
reliability

The TIME WAIT state (also called 2MSL state) appears before
the final close: the active-close end of the connection must
remain non-closed until a time period has passed
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CLOSED LISTEN

SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACK

FIN_WAIT_1

FIN_WAIT_2

CLOSING

TIME_WAIT

SYN_RCVD

send
SYNACK

simultaneous
open

send ACK

ACK

active

close

passive

close

2MSL timeout

data transfer

simultaneous
close

send ACK

timeout

or close

close

rcv SYNACK

rcv

rcv FIN

rcv FIN

rcv ACKrcv ACK

close: send FIN
send FIN
close:

send FIN
close:

rcv ACK

passive open

send SYN

send ACK

rcv RST

rcv RST

rcv SYN
send SYNACK

send SYN

active open

rcv SYN

rcv FIN

send ACK

send ACK

rcv FINACK

TCP State Diagram
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At this point this end of the connection has received a final ACK
and sent its final ACK

In a perfect world this would be enough to close the connection

But we have to deal with the case of the final ACK being lost

And resent if it didn’t get to the other end
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Just because the application is done with the connection, it
doesn’t mean the connection is finished and the OS can
discard all the connection state

The maximum segment lifetime (MSL) is a value that
represents the longest time a segment can live in the network
before being discarded (probably through TTL expiry)

This was originally defined to be 2 minutes, but
implementations often choose smaller values, like 60 seconds

A TCP connection is required stay in TIME WAIT for twice the
MSL



TCP
TCP State

This is in case the final ACK (of the final FIN) was lost and
needs to be retransmitted

The OS has to keep the connection hanging around for a little
to cover this case

Even if the process that used the connection has exited

And while in this wait state if a new process tries to make a
connection using the same ports it will be denied: the old
connection is still active. We don’t want to deliver late packets
to the new process

In this sense the TCP connection and the process using it are
quite separate entities
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When an application exits, the OS sends FINs on behalf of the
application for all currently open connections. This makes sure
everything is tidied up nicely (even if the programmer didn’t)

And if it was an active close, OS needs to hold the connection
in the 2MSL state for a while: the connection definitely outlives
the application!

If a host is shut down normally, rather than crashing, the
operating system will (should!) send FINs for all currently open
connections

It really should do the TIME WAIT, but often implementations
don’t bother as this would hold up the shutdown
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We now take a look at how TCP manages to get the best out of
a connection

For example: TCP gets reliability by acknowledging every byte
sent. Does this mean two segments for every data packet: one
data packet out, one ACK packet back?

It is possible to implement TCP like this, but performance would
be poor

So a typical TCP implementation will be a bit more smart on its
use of ACKs: we have already mentioned delaying an ACK to
let it piggyback on a returning data segment
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That is just first of many strategies a TCP implementation can
employ while still following the TCP protocol

We shall look at a few basic strategies, starting with more detail
on the advertised window
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Advertised Window

As data arrives at its destination the OS puts it into a buffer,
ready for the receiving application to read it. We have already
seen the TCP advertised window in a returning segment which
indicates how much of this buffer space is left

The space left depends on

• how fast the sender is sending the data
• how fast the application is reading the data

If the data arrives faster than it is read, the buffer will fill up
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Advertised Window

The advertised window is how TCP tells the source to slow
down or speed up

It is a sliding window mechanism, used as a form of flow control

Imagine the bytes being sent as a long stream, starting at byte
0 (actually byte n, given by the initial sequence number) and
going up

A sliding window describes the range of bytes in the stream the
sender can transmit next
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As the window gets smaller, the sender should send more
slowly

As the window gets bigger, the sender can send more quickly

The sender recomputes the space available in the receiver
every time it receives an ACK
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Advertised Window

The left hand edge of the window is defined by the
acknowledgement number in the latest ACK

The right hand edge is then given by adding on the size of the
advertised window

The window size is sent in every ACK segment

As more ACKs are received, the window closes as the left edge
advances
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As the application reads data, the window opens as the right
edge advances

Rarely, the window can shrink (right edge recedes), perhaps if
the buffer shrinks due to the memory being needed elsewhere



TCP Strategies
Advertised Window

1 2 3 4 5 6 7 8 9 10 11 12

close openshrink

advertised window

13 14 15

not ACKed yet can’t send yetACKed free space

TCP sliding window

This is from the point of view of the sending end of a
connection; The situation is that we have just sent a segment
with bytes 5-7; then received an ACK of 5 with a window of 7;
Bytes to the left of the window (1-4) have been ACKed and are
safe in the destination; The advertised window tells us there is
space for 7 bytes in the destination: bytes to the right (12
onwards) cannot be sent yet as the destination has nowhere to
put them; Bytes within the window are either not ACKed yet, or
represent free space; unACKed bytes (5-7) are those that have
been sent by the sender, possibly received by the destination,
and an ACK not yet received by the sender and possibly not yet
sent by the receiver; The free space (8-11) is the actual number
of bytes that the sender can be sure that can be buffered; The
sender can compute this free space as the latest window value
minus the number of bytes sent but as yet unACKed; Thus the
sender knows the limit on how much more data it can currently
send
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It is not unusual for the window to reduce to 0, for example
when the destination application is reading its data slowly

The sender will have to wait before sending more data

When the receiver is ready to receive more data it will send a
duplicate ACK with the same ACK number as the ACK with
window 0, but now with a non-zero window: this is a window
update segment

It may or may not contain data itself

Complications arise if this window update gets lost: the Persist
Timer (see later) is used here
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The next strategy we have mentioned before

Instead of immediately ACKing every segment, we can slightly
delay it and piggyback it on returning data
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keystroke

echo keydata

data

ACK

ACK

Client Server

keystroke

echo key

data

ACK

data + ACK

time

Immediate ACK Delayed ACK

Immediate vs. delayed ACK

For example, when logged in to a remote terminal each
keystroke is echoed back to your screen; An immediate ACK
would use four segments; A delayed ACK piggybacking on the
data for the echoed key uses just three segments
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As far as the user is concerned, they see the keystroke echo in
the same way, with no extra delay, but fewer segments are sent

It is important to reduce the traffic on a heavily loaded network

It also reduces the chance of a lost segment



TCP Strategies
Delayed ACKs

By delaying, we might also be able to ACK more than one
segment at a time

If we receive, say, two segments in a period we are delaying,
we can simply ACK the last segment: this implicitly ACKs the
previous two segments

An ACK is actually about acknowledging bytes, not
acknowledging segments, but will usually align with segments

So an ACK indicates which byte we are expecting next and
says all previous bytes have been safely received

This reduces traffic again
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data 1−5

data 6−10

ACK 16

data 11−15

ACKing bytes received

ACKs acknowledge bytes received, not segments
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So how long to delay an ACK?

If too long, the sender might think the segment was lost and
resend

If too short, we do not get so many free piggybacks or multiple
ACKed segments

A typical implementation will delay for up to 200ms
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The TCP specification says you should send an ACK for at
least every second full-sized segment and you must not delay
for more than 500ms

This one of the many timers associated with TCP

Each time you receive a data segment the TCP software should
set a timer for that segment that expires after 200ms



TCP Strategies
Delayed ACKs

If the segment has not already been ACKed (e.g., on a
returning data segment), ACK it when the timer expires

Many operating systems have a single global timer that fires
every 200ms rather than a timer per segment received

When the timer goes off, all unACKed segments are ACKed

Not so accurate as per-segment timers, but much easier to
implement
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Delayed ACKs

There is another rule concerning delayed ACKs

If you get an out-of-order segment (its sequence number is not
the one you are expecting next, e.g., a segment was possibly
lost), you must not delay, but send an ACK immediately

This might well be a duplicate ACK of one you sent earlier. This
is to inform the sender as soon as possible that something
might have gone wrong

Though the other end will wait for three duplicate ACKs just to
be sure before resending
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Nagle

Next strategy: when sending keystrokes (or other small data)
over a network there is a lot of wasted bandwidth

A keystroke could be 1 byte

This is sent in a TCP segment that has 20 bytes of header

This is contained in a IP datagram with 20 bytes of header

And so on down the layers
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So we are sending (for the sake of argument) a 41 byte packet
for each byte of data

Such a packet is called a tinygram

The proliferation of tinygrams causes additional congestion in a
network

Nagle created a strategy for reducing this

It applies to the sender of the tinygram (client)
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Nagle’s Algorithm:

a TCP connection can have only one outstanding un-
ACKed small segment: no additional small segments
can be sent until that ACK has been received

If you are sending tinygrams, only send one and wait until you
get its ACK before sending any more

Any small segments waiting to be sent should be collected
together into a single larger segment that is sent when the ACK
is received
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This segment can also be sent if either (a) you collect enough
small segments to fill a MSS segment, or (b) they have
collectively exceeded half the destination’s advertised window
size

This leaves open the definition of “small”

Variants choose anything from “1 byte” to “any segment shorter
than the maximum segment size”
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Note that when window scaling is in effect, “small” must be at
least the size of the window scale factor, as we can’t advertise
a window smaller than that

But that won’t be a constraint until the scale is bigger than a
segment, e.g., 210 = 1024, but 211 = 2048 > 1500
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This is a very simple strategy and reduces the number of
tinygrams without introducing extra perceived delay (over that
delay there is there already)

The faster ACKs come back, the more tinygrams can be sent

When there is congestion, so ACKs return more slowly, fewer
tinygrams are sent
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Nagle can reduce the number of segments significantly when
the network is heavily loaded

On the other hand, sometimes buffering up tinygrams is not a
good idea: e.g., in a graphical interface over a network, each
mouse movement becomes a tinygram. Buffering the segments
would cause the cursor to jump erratically

Nagle can be turned off for such cases
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Silly Window Syndrome

Another problem with tinygrams is manifested as silly window
syndrome
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data

ACK n, ws = 1

ACK n, ws = 0

1 byte of data

A B

1 byte of data

ACK n+1, ws = 0

etc

ACK n+1, ws = 1

Silly Window Syndrome

A is sending data to B, but
B’s buffer is nearly full and B
is reading only one byte at a
time; B’s buffer fills, and B
ACKs with a window of 0; A
holds off sending more data;
B reads a byte; B sends a
window update segment,
size 1; A get this and sends
as much data as possible,
i.e., 1 byte; B ACKs with
window 0; B reads a byte; B
sends an update, size 1; A
sends 1 byte; And so on
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We are back to the two segment per byte high overhead: this is
silly window syndrome

Better is for B not to send an update of 1, but wait until there is
more space

Clarke’s algorithm to avoid SWS is in the server

never send an update for a window of 1; only advertise
a new window when either (a) there is enough space
for a full segment, or (b) the buffer is half empty
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Congestion

Nagle (in the client) and SWS (in the server) fit together
naturally

Note that TCP code doesn’t have to implement Nagle or SWS
or delayed ACKs or any of these strategies: it’s just a good idea
if it does!
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Nagle and SWS are good for when there is a small amount of
data being transmitted

We need to look at the case of sending large amounts of data

We want the data to get to the destination as fast as possible,
but we now have to consider not just the ability of the
destination to cope, but also the capacity of the network itself
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Congestion happens when more data is being sent than the
network can handle: routers will drop packets if there is not
enough onward bandwidth to cope

There are several strategies in TCP to help deal with and avoid
congestion

The first issue is how to spot congestion, given that it might be
happening in a part of the network many hops away from both
source and destination
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We watch for segment loss

Segments can be lost though errors in transmission or being
dropped at a congested router (or at the destination)

Poor transmission is less usual these days, so we can assume
loss is due to congestion (which is common these days)

Thus TCP treats missing or duplicate ACKs as a sign of
congestion

Exercise A missing ACK is understandable as a sign of
congestion: reflect briefly on why duplicate ACKs can be
caused by congestion
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router may drop

to congestion
packets due

S D

R

heavy traffic

congestion window
to manage congestion

en route

causing congestion

low traffic low traffic

advertised window

at destination
to manage buffering

Congestion somewhere on the path

Congestion can happen in a router due to lack of capacity in an
onward link; a router will drop a packet if it can’t cope
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Just as the advertised window deals with “congestion in the
destination” (it’s not really congestion), we have the congestion
window for congestion in the network

So how do we determine the congestion window? It’s not a
thing the source or destination can know directly

We do this by sending segments and watching what ACKs we
get



TCP Strategies
Congestion

If we have a lot of data to send we do not want to wait for each
ACK before sending the next segment

Better is to send several segments and then wait to see from
the ACKs which were safely received
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But sending too many segments at once is bad when the
network is congested: our segments will be dropped. We’ll just
be making things worse for everyone, including ourselves

So, if we have an estimate of the capacity of the network (the
congestion window), we will be sending many segments at
once, but not too many

If we get it right, we will have a continual stream of segments
going out and ACKs coming back
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Slow Start & Congestion Avoidance

We estimate the network congestion by watching the number of
ACKs coming back

This estimate controls the congestion window

This is an another constraint on sending additional to the
advertised window: it’s a bad idea to send more data than
indicated by the either window
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We describe a basic flow control strategy (RFC2001/RFC2581)
that estimates the congestion window; many modifications exist
(TCP Tahoe, TCP Reno, TCP Vegas, . . . )

The congestion window (cwnd) is initialised to the maximum
segment (MSS) size of the destination

A variable, ssthresh, the threshold, is initialised to 64KB (say)

Every time a timely ACK is received, the congestion window is
increased by one segment
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Poor use of bandwidth Slow Start (no delayed ACKs)

data

ACK

data

ACK

Slow Start with no delayed ACKs
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Poor use of bandwidth Slow Start

data

ACK

data

ACK

delayed
ACKs

Slow Start with delayed ACKs
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Slow Start & Congestion Avoidance

So initially we send one segment

Then two at a time

Then four. . .

This is called slow start
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It is actually a near-exponential increase in the congestion
window over time

It is “slow” in comparison with an earlier version of TCP that
started by blasting out segments as fast as possible before the
performance of the network was known

In slow start, the increase continues until we reach the current
threshold ssthresh or returning ACKs are duplicated or timed
out
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Slow Start & Congestion Avoidance

Of course, the rate is also limited by the advertised window of
the destination: we can only send the minimum of the current
congestion window and the advertised window

Note that the congestion window is a limit set by the sender,
while the advertised window is a limit set by the receiver
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If we reach ssthresh without a problem, we change to the
congestion avoidance phase

Now we increase the congestion window cwnd by one segment
for each round trip time (RTT)

So one per burst of segments

This is now a linear increase over time
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Slow Start & Congestion Avoidance

threshold

slow start
region

congestion avoidance
region

time
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Slow start and congestion avoidance regions
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Eventually the network’s limit will be reached and a congested
router somewhere will start dropping segments

The sender will see this when either (a) it gets some duplicate
ACKs, or (b) there is a timeout waiting for ACKs

Note we might be in either of the slow start or the congestion
avoidance phases when congestion occurs: particularly if
ssthresh was initially set very large, as its often done these
days
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When congestion is detected

• the threshold ssthresh is set to half the current transmit
size. This is the smaller of the current congestion window
and the advertised window. Also, this is rounded up to a
minimum of two segments
• if it was a timeout, the congestion window cwnd is set back

to one segment, and go back into slow start
• when ACKs start coming through, we resume increasing

the congestion window again, according to whether we
were in slow start or congestion avoidance (i.e., whether
cwnd is less than ssthresh or not)
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threshold

thresholdslow start
region

congestion avoidance
region

time
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Converging on the optimum rate

The sender eventually converges on a rate that is neither too
fast, nor too slow
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And it is dynamic

If conditions on the network change, it will soon adapt to the
new rate, be it faster or slower

If there is no congestion on the network, the rate increases until
it reaches the advertised window: the limiting factor is then the
destination, not the network

This strategy is very effective: get the flow up quickly, but don’t
overshoot network capacity. Also, back off quickly and try again
when a loss happens
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Fast Retransmit

As previously mentioned, when an out-of-order segment is
received the TCP protocol calls for an immediate (possibly
duplicate) ACK: it must not be delayed

Thus the sender will start seeing duplicate ACKs

This is to inform the sender as soon as possible that something
is wrong

Jacobson’s Fast Retransmit strategy builds on the idea that the
receipt of several duplicated ACKs is indicative of a lost
segment
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Fast Retransmit

Recall that the argument is that one or two duplicate ACKs
might simply be due to out-of-order delivery, as IP is unreliable

Three or more is taken to mean something is wrong

If this happens, the sender should retransmit the indicated
segment immediately: fast retransmit
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Fast Recovery

Next, Jacobsen says do not go into slow start but do congestion
avoidance: this is the fast recovery strategy

We don’t want slow start as the duplicate ACKs indicate that
later data have reached the destination and is buffered there

So data is still arriving (mostly) and we don’t want to abruptly
cut the flow by doing slow start

Fast Retransmit & Fast Recovery are quite effective at getting
the flow going again after a loss

Exercise Read RFC2001 for the details we have not mentioned
here
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There have been many tweaks to this basic flow control
strategy

• Larger initial ssthresh
• Larger initial cwnd
• Slow start counting number of segments ACKed, not just

the number of ACKs
• Treating duplicate ACKs like a timeout
• On timeout, setting cwnd to half ssthresh, not just 1

segment
• Fast recovery: wait for the ACK of the entire transmit

window before entering congestion avoidance
• Many more
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Exercise Read about other strategies, such as TCP Reno, TCP
Vegas, TCP New Reno, TCP Hybla, BIC, CUBIC, etc.
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And other kinds of congestion strategy exist and are used

For example, BBR (specifically BBRv3) from Google is not
(primarily) loss based, but develops a model of the state of the
network by monitoring RTTs and the achieved bandwidth of a
connection

It remembers and uses past behaviour as a predictor: not just
the current ACK loss behaviour

Of course, this involves a lot of CPU cycles and could not have
been done in the early days of the Internet

Exercise Read about this
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Other strategies involve the routers — they are where the
congestion is happening, after all!

Particularly Explicit Congestion Notification (ECN), which aims
to indicate congestion before it happens by routers setting flags
in the IP TOS/DS header when they think congestion is
imminent, so that the hosts get forewarning and can slow down

Exercise Read about ECN and its use of flags in both the IP
header and the TCP header
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Exercise Read about Random Early Detection/Drop (RED),
which is also used in routers

Exercise We use ICMP to indicate other kinds of errors, but
why is it not a good idea to use ICMP when a router drops a
packet due to congestion?
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Exercise Use tcpdump to watch these strategies in operation.
The netcat program is an easy way to set up connections and
send data



TCP Strategies
Path MTU Discovery

The next strategy we have seen already: it is aimed at getting
the largest segment size a connection can handle. But not too
large

IP layer fragmentation is expensive, so we employ path MTU
discovery: but now we need to look at it from a TCP perspective

TCP has (potentially) more information: namely the optional
MSS header sent in the setup handshake
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Path MTU Discovery

We can send segments of decreasing size, starting with the
minimum of the MSS of the sending interface and the MSS
announced by the other end, or 536 if the other end did not give
an MSS

And with the IP flag DF (Don’t Fragment) set

Note the cross-layer activity here!
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If an ICMP error “fragmentation needed but DF set” happens
during a TCP connection, the congestion window should
remain unchanged, but it should only resend one segment
before ACKs start appearing again

This is to reflect the fact that it’s not congestion at fault here, but
we do need to back off a bit to allow ACKs to start coming
through again

It is recommended you try a larger MTU once in a while, e.g.,
every 10 minutes, as routes can vary dynamically
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Next: TCP has several timers. We have seen

• 2MSL
• Delayed ACK

These are just the start!
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Retransmission Timer

We now consider the timer that determines when to resend in
the absence of an ACK: a retransmission timeout (RTO)

• too short a time is wasteful on slow but otherwise reliable
networks
• too long a time is poor for the data rate

And we want a dynamic behaviour that adapts to changing
conditions rather than a simple fixed timeout
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Retransmission Timer

If the network slows down (e.g., heavy other traffic causes less
bandwidth for your packets) the timeout should increase

If the network speeds up (e.g., other traffic reduces) the timeout
should decrease

Jacobson gave an easy algorithm: keep a variable, the round
trip time RTT for each connection

RTT is the best current estimate for the time of a segment
going out and the ACK returning

If we haven’t received an ACK in approximately this time, deem
it lost
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Retransmission Timer

In more detail: when a segment is sent, its timer starts

If the ACK returns before the timeout, TCP looks at the actual
round trip time M and updates RTT using

RTT = αRTT + (1− α)M

α is a smoothing factor, usually 7/8 for easy arithmetic
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Retransmission Timer

Thus RTT increases or decreases smoothly as conditions
change and doesn’t get too upset by the occasional straggler
that is unusually late (or early)

Next, we need to determine a timeout interval given RTT

This should take the standard deviation of the RTT into
account: if the measured RTTs have a large deviation it makes
sense to have a larger timeout

True standard deviations are tricky to compute quickly (square
roots), so Jacobson suggested using the mean deviation
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Retransmission Timer

Mean deviation:

D = βD + (1− β)|RTT −M|

D is close to the standard deviation and is much easier to
calculate quickly

A typical value for β is 3/4
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Retransmission Timer

The timeout value is set to

T = RTT + 4D

The 4 and the values for α, β were found to be good in practice

When sending a segment (or, in practice, a burst of segments)
set the timer to expire after time T
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What if the timer expires before the ACK is received?

• we resend the segment, of course
• but we also need to update RTT somehow

But we can’t use RTT of the resent segment as we might get
the somewhat delayed ACK of the original segment, not of the
resent segment
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RTT?

ACK

timeout, resend

send

ACK

Retransmission Ambiguity

This is the retransmission ambiguity problem
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The measured RTT would be much too small

Karn’s algorithm is to double the timeout T on each failure, but
do not adjust RTT

When segments start getting through normal RTT updates
continue and RTT quickly reaches the appropriate value

This doubling is called exponential backoff

Alternatively, as is common these days, we have the option
header timestamp and this solves the retransmission ambiguity
directly
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Persist Timer

The next timer in TCP is the persist timer , sometimes called the
persistence timer

Its role is to prevent deadlock through the loss of window
update segments
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Persist Timer

data

ACK, ws = 0

lost

ACK, ws = n

persist timeout

ACK, ws = m

window probe

persist timeout

Persist timer

A sends to B; B replies with an ACK and a window size of 0; A
gets the ACK and holds off sending to B; B frees up some
buffer space and sends a window update to A; This is lost; Now
A is waiting for the window update from B and B is waiting for
more data from A: deadlock; To prevent this, A starts the persist
timer when it gets the 0 window from B; If the timer expires, A
prods B by sending a 1 byte segment: a window probe; If B
gets this, the ACK will contain B’s current window size; If the
window is still 0, A resets the timer and tries again later
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Persist Timer

The persist timer starts with something like 1.5 sec, doubling
with each probe and is rounded up or down to lie within 5 to 60
seconds

So the timeouts are 5, 5, 6, 12, 24, 48, 60, 60, 60, . . .

The persist mechanism never gives up, sending window probes
until either the window opens, or the connection closes

The persist timer is unset when a non-zero window is received
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Keepalive Timer

Yet another timer in TCP is the keepalive

This one is an optional part of the TCP/IP standard, and some
implementations do not have it as it is occasionally regarded as
controversial

When a TCP connection is idle no packets flow between source
and destination

So part of the path could break and be restored and the
connection is none the wiser

This gives us a bit of resilience against flaky networks



TCP Timers
Keepalive Timer

On the other hand, sometimes a server wants to know if a client
is still alive: each client TCP connection uses some resources
in the server (buffers, timers, etc.)

If the client has crashed these resources could better be used
elsewhere

To do this the server sets a keepalive timer when the
connection goes idle

A typical value is 2 hours
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When the timer expires, the server can send a keepalive probe

This is simply an empty segment (i.e., no data)

If the server gets an ACK, everything is OK

If not, the server might conclude the client is no longer active
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There are four cases

1. the client is up and running: the keepalive probe is ACKed
and everybody is happy. The keepalive timer is reset to 2
hours

2. the client has crashed or is otherwise not responding to
TCP: the server gets no ACK and resends after 75
seconds. After 10 probes, 75 seconds apart, if there is no
response, the server terminates the connection with
“connection timed out” sent to the server application
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3. the client has crashed and rebooted. The client gets the
probe and responds with a RST. The server gets the RST
and terminates the connection with “connection reset by
peer” sent to the application

4. the client is up and running, but is unreachable, e.g.,
broken routing. This is indistinguishable from case 2, so
the same events ensue
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There are several reasons not to use keepalive

• they can cause a generally good connection to be closed
because of a temporary failure of a router
• they use bandwidth
• some network operators charge per packet
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The latter two are not particularly good arguments as the cost
is just a couple of packets every 2 hours

It is usually possible to disable keepalive in the application:
some people think that keepalive should not be in the TCP
layer, but should be handled by the application layer (i.e., the
non-existent session layer)
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Many other strategies to improve throughput have been
proposed

Some have been widely adopted

Exercise Read about the problems of long fat pipes

Exercise Read about Protect Against Wrapped Sequence
numbers (PAWS), Selective Acknowledgement (SACK)
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Exercise Multipath TCP (MPTCP) has been suggested both for
extra performance, failover and for mobile hosts that roam
between, say, cellular and Wi-Fi (used in iOS7). It layers one
MPTCP connection over one or more TCP connections, e.g.,
using both the cellular and Wi-Fi links simultaneously for one
MPTCP connection

Exercise And potential alternatives to TCP. Read about TCP
for Transactions (TTCP), Stream Control Transmission Protocol
(SCTP), Datagram Congestion Control Protocol (DCCP)
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QUIC (originally “quick UDP Internet connection”, now just a
name, not an acronym) is a Google-originated alternative to
TCP (RFC9000)

Originally designed as a transport layer for HTTP/3 (the next
version of HTTP), QUIC can be used as a general transport
protocol

It is reliable, connection oriented, has congestion control, is
encrypted and authenticated and is transmitted within UDP
datagrams (port 443, mostly)
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The last is important as routers have a tendency to mess with
(or drop) packets if they don’t recognise the protocol

There have been several new protocols in the past that have
failed to gain popular use as routers would not recognise them

In fact, the QUIC header is encrypted (inside the UDP packet)
to prevent routers inspecting or trying to modify it
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Note: QUIC uses UDP purely to avoid router problems: it would
be better to layer directly over IP, but history won’t let us do that

QUIC is not a lightweight protocol: it is as heavyweight as
TCP+TLS

It is “quick” in the sense of “fast”, not “simple”
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Support for QUIC is growing in OSs and applications, for
example the Chrome browser uses QUIC whenever possible to
fetch Web pages

It has a 3 way opening handshake, like TCP, but this handshake
also negotiates encryption

This saves time over the current schemes that open TCP and
then establishes encryption (see TLS, later)
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Multiple data streams are multiplexed over a single connection,
again saving time over TCP that would need to start up a
connection for each stream

For example, a Web page might fetch dozens of items (text,
images, JavaScript, . . . ) from the same server

These could all be sent within a single QUIC connection
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Current browsers do try to multiplex multiple streams over a
single TCP connection, but this causes problems as an error in
one stream causes TCP’s error mechanisms to kick in, affecting
all streams in the connection, even if the other streams had no
error in themselves

QUIC does this multiplexing more efficiently, never stopping a
good stream within a connection

QUIC manages errors at the stream level, not the connection
level
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And:

• more sophisticated ACK mechanisms
• connection migration, e.g., WiFi to cellular
• sophisticated flow control (still under development)
• and lots of other stuff building on the knowledge gained

since TCP was first invented



TCP Alternatives

QUIC is growing, but it will be a long time before it replaces
TCP (lots of code to rewrite!)

And TCP with TLS has had decades of tuning, so QUIC has a
lot of work to do to catch up

Exercise Read about how QUIC reduces connection
overheads and about the head-of-line blocking problem

Exercise Read about SPDY, the predecessor to QUIC, and its
relationship to HTTP/2

Exercise Read about the middlebox (router) problem and why
it means that new protocols will have a hard time on the Internet
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Exercise And don’t forget UDP: UDPLite, RUDP, UDT, etc.
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TCP is a huge success: from 1200 bits/sec telephone lines to
gigabit networks and beyond it has turned out to be massively
flexible and scalable

It took a lot of work, though!



TCP

Here is a small part of the output from ss -io (socket statistics)
on a Linux machine:

tcp ESTAB 0 0 172.16.2.1:34956 34.117.14.220:https

timer:(keepalive,31sec,0)

ts sack cubic wscale:7,7 rto:220 rtt:18.341/0.5 ato:40 mss:1368

pmtu:1420 rcvmss:647 advmss:1368 cwnd:2 ssthresh:7

bytes_sent:7179 bytes_retrans:240 bytes_acked:6939

bytes_received:6747 segs_out:515 segs_in:508 data_segs_out:198

data_segs_in:188 send 1.19Mbps lastsnd:28652 lastrcv:29228

lastack:28632 pacing_rate 2.39Mbps delivery_rate 634kbps

delivered:191 app_limited busy:32268ms retrans:0/8

rcv_space:13800 rcv_ssthresh:64156 minrtt:17.318
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Next: back to IP addresses (again!)

IP addresses (v4 or v6) are bunches of bits: but we are used to
addressing machines by names such as linux.bath.ac.uk

The Internet would probably be a lot less easy to use if we had
to refer to 212.58.233.253 rather than www.bbc.co.uk

The IP addresses are essential as they are hardware
independent and have structure that aids routing

But the names are what makes things like the Web usable

Note we now have three kinds of addresses: physical, network
and human

linux.bath.ac.uk
212.58.233.253
www.bbc.co.uk
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So we have a repeat of the hardware-software address gap that
ARP is for: there must also be a mechanism for turning
linux.bath.ac.uk into 138.38.3.40

In the early Internet every host had a file containing the names
and addresses of all machines on the Internet

A simple look into this table sufficed

We can’t do that now, though!

Exercise The file lives on as /etc/hosts under Unix. Look at
this file

linux.bath.ac.uk
138.38.3.40
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An ARP-style discovery broadcast would have to go to the
entire Internet, so this approach is also infeasible

So there is another protocol, the domain name system (DNS)
to do this

There is no sensible, secure and economic way to have a
single database that contains all the names and addresses on
the Internet, so this information has to be distributed amongst a
large number of machines called DNS servers

That is, machines running a DNS server program



Aside

In the usual way, when talking about these things, we blur the
distinction between the service and the host it lives on. The
host might well be running other services, such as DCHP, as
well

Exercise Find out the services your home Access Point runs



DNS

Names are hierarchical: linux.bath.ac.uk is a name of a
machine in the domain bath.ac.uk

bath.ac.uk is a network in the domain ac.uk, and so on

ac.uk is the name for the JANET network, and is in the domain
uk

uk is in the domain . (dot or root)

Each node in this tree is called a label

linux.bath.ac.uk
bath.ac.uk
bath.ac.uk
ac.uk
ac.uk
uk
uk
.
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www.llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogoch.com

is a valid name

Labels may be up to 63 bytes long

www.llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogoch.com
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.

arpa com edu gov int mil net org us uk... ...

states ac co net

bath bbc

www

ic

yahoochannel4

www

in−addr

138

38

32

14

www.bbc.co.uk.

top level domains

country domainsgeneric domains

ad

Andorra

...

second level domains

www

www.yahoo.com.

14.32.38.138.in−addr.arpa.

tv

Tuvalu

cs

www.cs.bath.ac.uk.dnsdns.cs.bath.ac.uk.

linuxlinux.bath.ac.uk. moodle

The DNS hierarchy
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It is this tree we use to distribute the database

The root of the tree is called . (dot) and this label is currently
managed by the Internet Corporation for Assigned Names and
Numbers (ICANN)

They manage the top level domains (TLDs), including com and
uk

“Manage” means they keep the lookup tables for that level and
they say who can get labels in the next level

They get to charge money for labels in the next level

But the important bit is that they delegate management of lower
labels to other organisations

.
uk
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Labels under uk are managed by the UK Network Information
Centre (NIC), currently run by a UK company called Nominet

Note that ICANN gets to say that Nominet is in charge of uk

Nominet delegates labels under ac.uk to the Joint Information
Systems Committee (Jisc) (previously United Kingdom
Education and Research Networking Association (UKERNA))

Labels under bath.ac.uk are managed by DDAT for the
University of Bath

Labels under cs.bath.ac.uk are managed by the Department
of Computer Science DDAT

uk
uk
ac.uk
bath.ac.uk
cs.bath.ac.uk
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At each level, the relevant organisation keeps a list of labels it
has delegated and who is responsible for them

At the lowest levels, for the leaves of the tree (the hosts), the
relevant organisation keeps the name-to-IP-address mapping
of the hosts

So, starting a dot, we can work our way down the tree to find
the machine we want
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All this is done by name servers

These are just computers that run the DNS protocol

E.g., ns1.bath.ac.uk is (the name of) a name server for the
University

Also there is ns2.bath.ac.uk, for resilience and spreading load

They contain replicas of the same information

A few years ago, there was a convention of having an off-site
replica, too, e.g., Bath used ns2.ja.net

ns1.bath.ac.uk
ns2.bath.ac.uk
ns2.ja.net
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DNS servers do two things

(a) Keep the table of name to IP address mappings for the
domain

(b) Help the local hosts when they need to do a lookup of
non-local addresses

The former is “just” a lookup in a database

If a host on the Bath network needs to look up a local name,
linux.bath.ac.uk, say, it sends a request to one of the local
servers, e.g., ns2.bath.ac.uk

And the local server will look it up and return the answer

linux.bath.ac.uk
ns2.bath.ac.uk
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How does that host know which machine to ask? In particular,
how does it know the local DNS server’s IP address?

Every host has the IP addresses of one or more local
nameservers, typically in a file (e.g., /etc/resolv.conf) that
was set up by an administrator or was created by DHCP (or
SLAAC)

So it can send the DNS request to one of these servers
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The second function is more interesting: we shall look at an
example

If a host in the University requires a name lookup of a non-local
name, say news.bbc.co.uk, it sends a DNS request to the
local DNS server, ns1.bath.ac.uk, say

news.bbc.co.uk
ns1.bath.ac.uk
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In this example, the Bath server does not have responsibility for
the name news.bbc.co.uk, but it will helpfully do a lookup for
us. It will run down the DNS tree in a recursive lookup

The Bath server ns1 sends a start of authority (SOA) request to
a random top level server to find who is responsible for the uk

label

news.bbc.co.uk
ns1
uk
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At the top level, there are about 80 machines dotted about the
world that serve the DNS root; they all have identical
information

They have names like a.root-servers.net (198.41.0.4),
b.root-servers.net (170.247.170.2), and so on

And the local nameserver has the IP addresses of these
machines in a file: otherwise we would never get started!

The selected top level server responds to the Bath nameserver
with something like ns1.nic.uk, together with its IP address

This a machine that is responsible for uk labels

a.root-servers.net
198.41.0.4
b.root-servers.net
170.247.170.2
ns1.nic.uk
uk
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The Bath server now sends a SOA request to ns1.nic.uk for
co.uk

It gets a reply ns1.nic.uk. It just so happens this is
responsible for both uk and co.uk

So the server sends a SOA request to ns1.nic.uk for
bbc.co.uk

It gets ns.bbc.co.uk

ns1.nic.uk
co.uk
ns1.nic.uk
uk
co.uk
ns1.nic.uk
bbc.co.uk
ns.bbc.co.uk
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It now knows the server reponsible for the address we want

The server sends an address (A) request for news.bbc.co.uk
to ns.bbc.co.uk

It gets the IP address 194.130.56.40

Finally, the Bath server can relay this back to the original
requesting host

news.bbc.co.uk
ns.bbc.co.uk
194.130.56.40
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1: news.bbc.co.uk?

2: uk soa?
4: co.uk soa?

6. bbc.co.uk soa?

9: 194.130.56.40

host

server

root

co.uk

ns.bbc.

ns1.
    nic.uk

10: 194.130.56.40

7: ns.bbc.co.uk/132.185.132.21

5: ns1.nic.uk/195.66.240.130

3: ns1.nic.uk/196.66.240.130

8: news.bbc.co.uk?

local

name−

server

DNS lookup
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Of course, all these responses are cached by the local server
so that it doesn’t have to go through a complete lookup every
time

The next request for news.bbc.co.uk can be answered directly
by the local nameserver

Similarly, given a request for www.bbc.co.uk, it can go directly
to ns.bbc.co.uk

news.bbc.co.uk
www.bbc.co.uk
ns.bbc.co.uk
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As name mappings are not permanent, each reply has a time
to live attached to it: this indicates how long the server should
keep the information before asking again

Stable, long lived associations will have a long TTL

Short lived associations will have a short TTL
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The original asking host could do this lookup process itself but
the benefit of using the organisation’s name server is that it
might well have done some or all of the steps already for some
other request and cached them

This means a faster response and a decrease in network traffic

And less work for the host
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Sometimes we want to do the reverse lookup: given an IP
address find a name

There is a part of the tree dedicated to this with TLD arpa

arpa
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.

arpa com edu gov int mil net org us uk... ...

states ac co net

bath bbc

www

ic

yahoochannel4

www

in−addr

138

38

32

14

www.bbc.co.uk.

top level domains

country domainsgeneric domains

ad

Andorra

...

second level domains

www

www.yahoo.com.

14.32.38.138.in−addr.arpa.

tv

Tuvalu

cs

www.cs.bath.ac.uk.dnsdns.cs.bath.ac.uk.

linuxlinux.bath.ac.uk. moodle

The DNS hierarchy
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If we have the IP address 138.38.32.14 we can do a request
for 14.32.38.138.in-addr.arpa

The same kind of recursive lookup as before will lead us to
finding that Bath is responsible for 38.138.in-addr.arpa

And a couple more steps takes us to a pointer (PTR) request
for 14.32.38.138.in-addr.arpa from the Bath server

We get clan.bath.ac.uk

138.38.32.14
14.32.38.138.in-addr.arpa
38.138.in-addr.arpa
14.32.38.138.in-addr.arpa
clan.bath.ac.uk
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DNS does

• A address: name to IP address
• PTR pointer: IP address to name (IPv6 uses the ip6.arpa

branch)
• AAAA address: name to IPv6 address
• SOA start of authority: name to responsible name server
• MX mail server: name to a mail server for that domain.

E.g., bath.ac.uk used to have mail server 138.38.32.14

And many more: about 50 in total, though few are used
frequently

ip6.arpa
bath.ac.uk
138.38.32.14
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DNS is remarkably successful and scales easily to the billions
of hosts on the Internet

When a new organisation plugs into the Internet, it brings along
its own DNS servers, thus increasing the scale of DNS

Lookup usually takes a few milliseconds: caching of all levels in
the local DNS server is a big help here

DNS is actually a many-many relationship of names and
addresses

• One address can have several names
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Both news.bbc.co.uk and newswww.bbc.net.uk resolve to
212.58.226.33

news.bbc.co.uk. 1619 IN CNAME newswww.bbc.net.uk.

newswww.bbc.net.uk. 77 IN A 212.58.226.33

news.bbc.co.uk is an alias for the real canonical name
newswww.bbc.net.uk

This allows us tricks, like moving the Web server to different
hosts, even different ISPs or different countries, but keeping its
public name the same

news.bbc.co.uk
newswww.bbc.net.uk
212.58.226.33
news.bbc.co.uk
newswww.bbc.net.uk
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• One name can have several IP addresses associated. This
allows load sharing, e.g., a Web server can actually be
several machines spread about anywhere in the world
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www.microsoft.com. 68 IN CNAME toggle.www.ms.akadns.net.

toggle.www.ms.akadns.net. 285 IN CNAME g.www.ms.akadns.net.

g.www.ms.akadns.net. 285 IN CNAME lb1.www.ms.akadns.net.

lb1.www.ms.akadns.net. 285 IN A 207.46.19.190

lb1.www.ms.akadns.net. 285 IN A 207.46.19.254

lb1.www.ms.akadns.net. 285 IN A 207.46.192.254

lb1.www.ms.akadns.net. 285 IN A 207.46.193.254

www.microsoft.com is an alias: its canonical name is
toggle.www.ms.akadns.net; But that is an alias for
g.www.ms.akadns.net; And that is an alias for
lb1.www.ms.akadns.net; And that refers to four different
addresses

www.microsoft.com
toggle.www.ms.akadns.net
g.www.ms.akadns.net
lb1.www.ms.akadns.net
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And a DNS server can give out different lookups dependent on
who is asking

A recent lookup for www.microsoft.com returned
104.78.177.250 from one location, and 2.18.85.172 from
another

This allows for load sharing; and also can be used for
geofencing: giving different services to clients in different place,
e.g., videos that are licensed only for certain regions

www.microsoft.com
104.78.177.250
2.18.85.172


DNS

Exercise Redo these lookups to see how they currently turn out

Exercise Compare having DNS give out multiple IP addresses
for a given name against giving out different addresses for
different clients against using anycast addresses
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In C programs, if we need to look up an address (v4 or v6), we
can use a simple function call to getaddrinfo() that hides all
this complexity from us

Other languages will have similar APIs

Exercise Old code using the obsolete v4-specific
gethostbyname() is one of the sticking points in the transition
to IPv6. Read about this

Under Linux the dig tool can be used to do direct lookups
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% dig news.bbc.co.uk

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 15281

;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 2, ADDITIONAL: 2

;; QUESTION SECTION:

;news.bbc.co.uk. IN A

;; ANSWER SECTION:

news.bbc.co.uk. 193 IN CNAME newswww.bbc.net.uk.

newswww.bbc.net.uk. 76 IN A 212.58.226.73

;; AUTHORITY SECTION:

bbc.net.uk. 85129 IN NS ns0.thdo.bbc.co.uk.

bbc.net.uk. 85129 IN NS ns0.rbsov.bbc.co.uk.

;; ADDITIONAL SECTION:

ns0.thdo.bbc.co.uk. 9490 IN A 212.58.224.20

ns0.rbsov.bbc.co.uk. 9490 IN A 212.58.227.47
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Quite often a DNS server will reply with more information than
we requested, e.g., the lookup of the CNAME
newswww.bbc.net.uk in the above

This means we don’t have to do an additional query to get the
actual IP address we were looking for

newswww.bbc.net.uk
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% dig -x 212.58.226.73

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 32413

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 4, ADDITIONAL: 3

;; QUESTION SECTION:

;73.226.58.212.in-addr.arpa. IN PTR

;; ANSWER SECTION:

73.226.58.212.in-addr.arpa. 50081 IN PTR newslb305.telhc.bbc.co.uk.

;; AUTHORITY SECTION:

226.58.212.in-addr.arpa. 50081 IN NS ns1.thdo.bbc.co.uk.

226.58.212.in-addr.arpa. 50081 IN NS ns1.thny.bbc.co.uk.

226.58.212.in-addr.arpa. 50081 IN NS ns1.bbc.co.uk.

226.58.212.in-addr.arpa. 50081 IN NS ns.bbc.co.uk.

;; ADDITIONAL SECTION:

ns1.bbc.co.uk. 311 IN A 132.185.132.21

ns1.thny.bbc.co.uk. 32106 IN A 212.58.227.48

ns1.thdo.bbc.co.uk. 33051 IN A 212.58.224.21
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% dig +trace www.google.com

. 180695 IN NS E.ROOT-SERVERS.NET.

. 180695 IN NS J.ROOT-SERVERS.NET.

. 180695 IN NS I.ROOT-SERVERS.NET.

...

com. 172800 IN NS A.GTLD-SERVERS.NET.

com. 172800 IN NS B.GTLD-SERVERS.NET.

com. 172800 IN NS C.GTLD-SERVERS.NET.

...

google.com. 172800 IN NS ns1.google.com.

google.com. 172800 IN NS ns2.google.com.

google.com. 172800 IN NS ns3.google.com.

...

www.google.com. 604800 IN CNAME www.l.google.com.

l.google.com. 86400 IN NS b.l.google.com.

l.google.com. 86400 IN NS d.l.google.com.

...
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DNS labels can be in arbitrary character sets, not just Latin

A non-Latin DNS name

From blog.icann.org

blog.icann.org
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DNS is a very successful protocol: fast and it’s relatively easy
for system administrators to manage the DNS servers

DNS names are a big source of money, so often a source of
contention over who should be in control of what

Exercise Read about the controversies behind the introduction
of new top-level DNS labels like me and search
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Exercise Try looking up

• AAAA for bath.ac.uk
• AAAA for facebook.com
• SOA for bath.ac.uk
• A for moodle.bath.ac.uk
• And so on

facebook.com
bath.ac.uk
moodle.bath.ac.uk
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Exercise And

• MX for bath.ac.uk

What is the Uni’s mail server physical location?

What are the privacy/security/legal aspects?

Then try MX for bath.edu, an address the University uses for
alumni (graduates and past staff)
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Exercise Read about the public DNS servers like 1.1.1.1,
8.8.8.8 and others; why would you want to use them over your
local DNS server?

Exercise What are the privacy/security/legal aspects of using
public servers?

Exercise Find out how to buy a DNS name

1.1.1.1
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DNS requests are normally sent using UDP, and fit in a single
UDP datagram

When the reply fits within 512 bytes, UDP is used for the reply
by the server

To keep datagrams small, if the reply is more than 512 bytes,
the server sends a reply with a “truncated” flag set, and the
client resends the request but using TCP

Now, UDP is fast but unreliable, and 512 byte datagrams won’t
be fragmented (recall: must be able to send 576 bytes IP), so
there is little complication if a DNS datagram is lost: the source
will just send a new request
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UDP is preferred as it is fast with little overhead; while a TCP
connection has a considerable setup cost

So small and fast wherever possible; but slower and reliable if
needed
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DNS is good, but has problems

• There is no security or authentication: if I get a reply saying
that 138.38.32.14 is the address for www.bath.ac.uk can
I trust this?
• Some server on the lookup path might have been

subverted and made to hand out the wrong address; or a
router may have carefully rewritten a DNS reply
• Then I could receive a spoof IP address leading to

someone else’s web page: a problem if, say, I was looking
for the page of a bank or shop
• The spoof page could be made to look identical to the real

bank web page, inviting me to enter my id and password



DNS

Exercise The security company RSA was attacked by DNS
spoofing. Read about this

Exercise April 2018: routes to Amazon DNS servers were
faked so that DNS requests were sent to fake servers. Read
about this

Exercise Your home connection probably uses your ISP as a
DNS server. ISPs have been known to rewrite DNS replies.
They also might block access to other public DNS servers.
Read about this
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A partial solution exists in Secure DNS (DNSSec), which uses
cryptography to authenticate DNS lookups

Not much in use as it was introduced when people still thought
that cryptography was too expensive to use
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And neither DNS nor DNSSec provide any privacy: anyone
listening can see what hosts you are trying to contact by
monitoring your DNS requests

So there has been a move by some people to use DNS over
TLS (see TLS later and RFC7858) that encrypts DNS requests
and replies

This has a fair overhead over plain DNS, but provides both
authentication and privacy
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More surprisingly (at first), there is also DNS over HTTPS
(DoH)

This sounds silly as HTTPS is a heavyweight protocol designed
to move large Web pages, not lightweight DNS requests

But:

• The overhead can be managed fairly well (see HTTP
Keep-Alive and TLS reconnections)
• While an uncooperative ISP could block the DNS over TLS

assigned port (853) the HTTPS port (443) cannot be
blocked without a lot of collateral damage to normal
browsing
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Exercise CIDR makes PTR lookups harder as netmasks, and
therefore the delegations, are no longer on a byte boundary.
Read RFC2317 on how CNAMES are used to solve this
problem

Exercise Read about how (or if) DoH is supported in your
browser

Exercise Read about DNS over Twitter and DNS over SMS
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If I gave you the four bytes
1010000 1101100 1100001 1101110

(which are 80, 108, 97, 110 in decimal), what did I mean?

Is this the encoding of an integer?

If so, signed, unsigned, 2s complement?

Least significant byte first or most significant byte first?
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Or is it floating point number?

Or is it a string of four characters?

In ASCII? Or some other encoding like EBCDIC, or UTF-8?
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From another point of view:

I want to send "Plan" to you. What do I send?

If we both use ASCII to encode characters, I might send four
bytes 80, 108, 97, 110

If we both use EBCDIC to encode characters, I might send four
bytes 215, 147, 129, 149

If we use some other encoding, it might need more than four
bytes
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What do I do if we use different encodings? Perhaps my
machine uses ASCII while yours uses EBCDIC

What do I do if I don’t know what encoding you use?
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This is the problem of presentation

Bits are just bits unless they have some agreed-on meaning

And the agreeing is the difficult part

Particularly as some people forget that not everyone uses the
same representations for everything



Presentation

The job of the presentation layer is to ensure that the data at
one end of a connection is interpreted in the same way when it
reaches the other end of the connection

It is about preservation of meaning

So if I send you the number 3.14, you get the number 3.14

Even if we use different representations of floating point
numbers
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If I send you the string "cat", you get the string "cat"

Even if we use different ways of encoding characters

Even if we are using different programming languages that
encode strings in different ways



Presentation

If I send you a picture containing a particular blue, you get a
picture with the same blue

Even if we are using different representations of pictures

Even if we are using different picture viewers

Photographers get very wound up about this particular problem!

Exercise Create a plain text (txt) file on MacOS or Linux, and
view that file on Windows using Notepad. What is happening?

Addendum May 2018: Microsoft has finally fixed this problem,
after only 30 years

txt
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We have many ways of encoding data

For example, how do we encode the letter ’A’? One popular
way is to use a 7 bit number, namely 65

The American Standard Code for Information Interchange
(ASCII) is one standard for encoding letters, digits and various
punctuation marks

However, it is not the only standard and that is precisely the
problem
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When the Internet began IBM’s Extended Binary-Coded
Decimal Interchange Code (EBCDIC) was still widely used

The purpose of EBCDIC is the same as ASCII: encoding
characters as numbers

The problem is that a file containing the (decimal) byte values

80,108,97,110

would be interpreted as “Plan” on an ASCII system, but
“&%/ >” on an EBCDIC system

In ASCII, the value 108 means the character ’l’

In EBCDIC, the value 108 means the character ’%’



Presentation
Philosophy

The presentation problem is to ensure that we have the same
meaning on any system

We can easily copy bits from system to system, but our
interpretation of those bits changes from system to system

So to make our interpretation consistent we might have to
change the bits

But not only how to change them, but when
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Philosophy

If the file 80, 108, 97, 110 is a text file, we must change the
values to ensure consistent interpretation

If this is a list of the IQs of four people, we must not change the
values

Everything depends on the final interpretation of the data: this
is a subtle point and is why presentation issues are often
ignored or incorrectly implemented
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Note that IP does not address presentation, and leaves it to the
application

This means that presentation must be addressed by the
programmer in their all their applications

In the early Internet all the machine were the same, so
presentation was not realised to be a problem

Today, things are very different

And programmers are still forgetting this is an issue



Presentation

These days most people have more-or-less settled on ASCII as
the encoding to use for simple Latin/Roman letters and digits

So presentation issues are minimal for these kinds of text data

On the other hand, other character sets (Chinese, Russian,
Klingon, etc.) are in the ascendant, with the Universal Coded
Character Set (UCS) plus Unicode being the chosen
representation
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UCS/Unicode

UCS (ISO 10646) is a character encoding that uses 31 bits
instead of just 7

This gives ample room for all the characters in all the written
languages in the world

It is a big table that says “this value represents this character”

Unicode takes UCS and adds details like direction of writing
(left-to-right or right-to-left or bidirectional), defining alphabetic
orders, which are capital letters, and so on
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UCS/Unicode

Unicode only uses UCS values from 0 to 10FFFF

A maximum of 17× 216 = 1,114,112 code points

A code point can denote a character or a character modifier,
e.g., a variant or a combining character like an accent

For example, é is a single character, while é is two code points:
e followed by a combining character ’

2,048 code points are excluded (the surrogate values
D800–DFFF for backwards compatability with UTF-16, below),
so the number of representable characters (more properly:
graphemes) is just 1,112,064
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UCS/Unicode

And then there is the glyph, the visible rendering of the
grapheme in some font: é and é

Code points can be written as “U+hex”, e.g., U+C2A3 for the
index of code point ’£’)
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UCS/Unicode

But using 4 bytes per character would not be appreciated by
many programmers since it would

• break the “one character is one byte” assumption many
programs make
• make data files four times as large when the original data

were encoded in ASCII, and
• the zero byte is often conventionally used to mean “end of

string” so a value such as (hex) 12 34 00 78 is open to
misinterpretation
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UCS/Unicode

So some encoding systems are defined: they implement UCS
but use differing numbers of bytes to encode the index into its
big table of characters

Some systems are backwardly compatible with ASCII in the
sense that values 00 to 7f are the same as their ASCII
equivalents

The simplest method, Unicode Transformation Format 32
(UTF-32, also called UCS-4), simply uses four bytes per
character and embeds ASCII in UCS by merely adding three 0
bytes before every ASCII byte
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UCS/Unicode

tiger in ASCII is five bytes: 116 106 103 101 114

tiger in UTF-32 is 20 bytes: 0 0 0 116 0 0 0 106 0 0 0 103 0 0
0 101 0 0 0 114

is 0 0 128 1 0 0 134 78

This has the expansion and zero problems

But is convenient if we are working with individual characters
(rather than strings) as 32 bit values

For example, indexing into an array of characters is very easy:
exactly like indexing into an array of 32-bit integers
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UCS/Unicode

Less inflationary is UCS-2, that uses two bytes per character
and prepends a single 0 byte before each ASCII character

This only doubles the size of an ASCII file

Still has the zero problem
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UCS/Unicode

UCS-2 was devised for an earlier 16 bit coding (now called the
Basic Multilingual Plane, or BMP), that was soon found to be
too small (not enough characters)

UCS-2 can’t represent all possible UCS values. Not even all
Unicode values

Thus the need for UTF-16 which uses pairs of UCS-2 values to
extend the encoding range

UTF-16 can represent all Unicode values, but at the cost of
some complexity
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UCS/Unicode

It uses pairs of 16 bit values in the range D800 to DFFF
(surrogate pairs) to encode the extended values

Given a pair of surrogate values x in the range D800-DBFF and
y in the range DC00-DFFF

• Get 10 high bits from x − D800
• Get 10 low bits from y − DC00
• Concatenate these bits to get a 20 bit value
• Add hex 10000 to get the UCS value

Exercise Compare this to byte stuffing
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UCS/Unicode

The surrogate values (and which is high and low) can easily be
identified in a byte stream: important if you are dipping into the
middle of a string

It does punch a hole in Unicode from D800 to DFFF that can’t
be used as characters

The Unicode consortium guarantees never to allocate
characters in that range

UTF-16 is quite popular in use, e.g., Java, C# and various
versions of the Windows OS use it for their internal
representations of strings
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UCS/Unicode

The most important representation, UTF-8, represents all
ASCII (7 bit) values as themselves while still being able to
represent the full UCS range

UCS values 00000000 to 0000007F are encoded as single
bytes 00 to 7f. Thus an ASCII file is a valid UTF-8 file

So, for example, the byte 3F in UTF-8-encoded a file encodes
for UCS index 0000003F

UCS values 00000080 to 000007FF become two bytes
110xxxxx 10xxxxxx. The last 11 bits from the UCS values are
copied across
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So ’£’, UCS 000000A3, binary

00000000 00000000 00000000 10100011

becomes 11000010 10100011 (C2A3), since

00010/100011→ 110/0010 10/100011

And thus the two bytes C2A3 in a file encode the UCS index
000000A3
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Generally we can encode:

UCS range (hex) Encoding (binary)

00000000-0000007F 0xxxxxxx
00000080-000007FF 110xxxxx 10xxxxxx
00000800-0000FFFF 1110xxxx 10xxxxxx 10xxxxxx
00010000-001FFFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
00200000-03FFFFFF 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
04000000-7FFFFFFF 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
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This table is more than UTF-8 requires

The UTF-8 encoding is only defined for values up 10FFFF, for
compatibility with Unicode and UTF-16

So only the first four rows of the table
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Unicode range (hex) Encoding (binary)

00000000-0000007F 0xxxxxxx
00000080-000007FF 110xxxxx 10xxxxxx
00000800-0000FFFF 1110xxxx 10xxxxxx 10xxxxxx
00010000-0010FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
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A full 31-bit range would require up to 6 bytes to encode

Unicode will need at most four (and so will fit in a 32 bit int)

Most common characters only require three or fewer; a majority
in use need two or fewer

And ASCII values only require one byte

An ASCII file is already a UTF-8 file and there is no expansion
of data when regarding it as UCS
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• ASCII values represent themselves
• No ASCII character appears as a sub-part of any other

character
• The convention of using 0 as end of string still works
• The length of each non-ASCII character is given by the

number of leading 1 bits
• When dipping at random into a UTF-8 encoded file it is

easy to find the start of the next character: just search until
you find a byte starting with bits 0 or 11
• In the same way, if a byte is lost (e.g., discarded as

corrupt) it is easy to re-synchronise
• All UCS values can be encoded
• The comparison order of UCS is preserved
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• UTF-16 does not preserve UCS comparison order
• both UTF-8 and UTF-16 need up to four bytes to represent

Unicode values
• UTF-8 is byte order independent
• UTF-16 comes in big (UTF-16BE) and little endian

(UTF-16LE) variants as well as plain UTF-16, when files
can employ a special byte order mark (BOM, U+FEFF) at
their start to establish order
• UTF-32 is big endian
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• UTF-8 is more efficient on Western character sets; UTF-16
is more efficient on Asian character sets (note that most
computer code is written in ASCII)
• As they are variable length encodings, neither UTF-8 nor

UTF-16 allow indexing directly into a string

The advantages of UTF-8 are such that UTF-16 should be
retired, but this may take some time
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Exercise Have a look at how (or if) your favourite programming
language supports UCS or Unicode. E.g., C programmers have
wchar t

Exercise A typical programming language has variables syntax
that “start with a letter, then letters and digits”. How would this
work in Unicode?

Exercise Read about the Punycode encoding

Exercise Unicode is split into 17 planes. Read about this
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Presentation for characters seems like a solved problem, but
it’s not: at the very least we need to get people to actually use
the standard

Many programmers and programming languages still assume
everything is ASCII

And there’s a huge amount of legacy code and data out there
that assumes ASCII

Exercise Other encodings are available. Find out the
encodings used on various web pages from across the world
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Another presentation problem is the byte order used for
representing numbers

An integer is typically represented using four bytes: but how
those bytes are used varies

Some machines use big endian format: this stores the most
significant byte of an integer (the big end) at the lowest
machine address, less significant bytes at increasing addresses

Others use little endian format: the least significant byte (little
end) is stored at the lowest machine address, more significant
bytes at increasing addresses
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If a machine receives four bytes 00 00 00 2A, does that mean
the integer 42 (hex 0000002A) or the integer 704643072 (hex
2A000000)?

Other arrangements are possible, too

A typical solution so that everyone agrees on order is to pick a
single order (the network byte order ) and always transmit bytes
in that order
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When a machine wants to send a value, it converts it to network
byte order

When a machine receives a value it converts it to its native
order

The de facto order used on most networks is big endian
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A big endian machine has nothing to do when sending or
receiving

A little endian machine must reverse the order of the bytes as it
sends or receives

A little endian machine always converts, even when connected
to another little endian machine

This is simpler than having a protocol to negotiate endianness
and having separate chunks of code for each combination
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Then there is the problem for other types of numerical data,
e.g., floating point

Here there is not only the byte order problem, but which and
how many bits are used for exponents and mantissas and so on

Fortunately, most have plumped for the IEEE standard floating
point representations

This fixes which bits are used for what, but leaves open the
endian question

The floating point endian is usually the same as the integer
endian, but doesn’t have to be!
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It would be easy to think that presentation is easy and is
irrelevant or has been solved: not so

For example: how to represent the end of a line in a text file?

• Unix-derived systems use a linefeed (LF, character 10 in
ASCII)
• Windows systems use a carriage return (CR, ASCII 13)

followed by a LF
• Pre-MacOS X used a single CR
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So to copy a file from one system to another you must know
whether

• it is a text file and so you must do the translations, or
• it is not a text file, so you should not translate

If we are still fumbling an issue as simple as this, just think on
the general case!
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Exercise Read about XDR as an encoding system

Exercise Read about the Multipurpose Internet Mail Extension
(MIME)
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Next we should talk about the Application layer — but time is
too short to talk about things that should be reasonably familiar
to you, such as the Web and email

There are very many applications that run over the IP from the
well-known things like the Web and email, to the near-invisible
(but very important) applications that do everyday things like
serving files or controlling industrial devices
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We could easily spend weeks covering application layer
protocols, e.g., HTML, the protocol that fetches Web pages; or
SMTP, the protocol that delivers email

But Instead we will move to a subject that doesn’t have a
specific layer, namely security

Exercise Read up on your favourite applications and how they
employ IP
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IP (both the protocol and implementations) was originally
developed in a “safe” academic environment

So little thought was given to security or authentication

And early code left a lot to be desired in programming habits,
giving us some fragile implementations

But fast development led to IP’s early acceptance and success
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And this also meant experimental and poorly debugged code
was rapidly incorporated into a large number of systems

So there are generic bugs that tend to appear in many products

Some are fairly benign, such as TTL being used as a hop count
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Other are less so and can be exploited, perhaps to

• crash the machine
• tie up the machine with so much bogus data that real traffic

can’t get through: called denial of service
• gain control over the machine, which can then be used

attack a more important target or send spam
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Uses for a hacked PC
From: krebsonsecurity.com

krebsonsecurity.com
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If someone says “The innocent have nothing to hide”, ask them
for their credit card number and date of birth

The point is that we all have things to hide from people who
would use information to harm us, financially or otherwise

Remember not all those looking at your traffic have your benefit
in mind
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Today, the Internet is not a safe place

People are trying to use it for monetary, political or other gain

Or simply wanting to be a nuisance

Thus we must protect ourselves against these issues
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Technology plays a large part in this

But psychology of the users is just as important

Why bother attacking a machine when you can attack the
human element?

Such as phoning a support engineer or administrator and
pretending to be a user who has forgotten their password

Or sending someone an email and getting them to click a link or
run some code

Or simply putting fake news in a Facebook post

We shall return to this kind of attack, but shall start with some
attacks on the technology
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Flooding Attacks

SYN floods. A denial of service attack

A TCP connection starts with a SYN. The server sends a
SYN+ACK, which the client ACKs

The server must save a chunk of information about the initial
SYN so it can recognise the client ACK as part of the new
connection; and the options, like SACK, MSS
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A SYN flood is where an attacker sends very many active open
SYN segments and never completes the handshake

The SYN segments might come from a single source, but more
likely from very many hacked computers in a distributed denial
of service attack

The hacked machines comprise a botnet, controlled by the
hacker(s)

The individual hosts are sometimes called zombies
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Each SYN received consumes resources on the server that are
not released until a suitable timeout period has passed

Thus the server can run out of resources and not be able to
respond to real connection requests
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So the overload reduces the level of service for genuine users,
often to zero

This has been used many times, particularly in extortion attacks
against commercial (e.g., betting) sites to get them to pay a
ransom

These days also used to exert political pressure against
companies, people, or governments

A DDOS attack might be several GB/s of SYNs: attacks of TB/s
are becoming more common
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Since the start of the [ransom DDoS] campaign, show-
of-force attacks have grown from 200+ Gbps in August
to 500+ Gbps by mid-September, then ballooned to
800+ Gbps by February 2021

Akamai
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Note: the return addresses on the bogus SYNs will be forged to
implicate some other machine(s) in the attack

And the server’s handshake ACKs would go to it, instead

Thus flooding a secondary target or targets
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Remedies include the server more aggressively dropping
half-open connections when resources are low

Say oldest first, or at random

Real connections might get dropped, but since most of the
SYNs are bogus, the probabilities are that attack connections
are dropped
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Alternatively, use syncookies

Store no information for a new connection on the server, but
encode it in the server’s initial sequence number (ISN) for this
connection

So the ISN is not random, but now encodes some information:
it is called a syncookie

When (or if!) the client ACK gets back, we can decode the
returned sequence number to retrieve the information

Now resources can safely be allocated to this presumably valid
connection

This is good as it consumes no resources in the server until
they are definitely needed
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But it is tricky to encode enough information in the 32 bits of the
ISN

And it must be encrypted to prevent spoofing

Also it is not big enough to include any negotiated options, such
as “SACK available”

So syncookies are only used when the load gets high

Optional features, like SACK, are not used under SYN attack

The loss of SACK is no big deal when we have to cope with a
SYN flood
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UDP can be used, too

In a UDP Flood attack, the attacker(s) simply send very many
UDP packets to the victim

The victim OS is then overwhelmed by the need to read and
process the packets and respond to them by returning an ICMP
Destination Unreachable

A mitigation is to have a limit on the rate of ICMP error returns

Exercise Read about the Low Orbit Ion Cannon (LOIC)
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Recent botnets have used the Internet of Things (IoT), which is
connected devices like security cameras, thermostats,
doorbells, child monitors and so on

They are often poorly secured, are still using default
passwords, or are running old, vulnerable software

The Mirai botnet has been implicated in a DDOS attack of over
1TB/s

This was DNS amplification attack: the subverted devices make
DNS lookup requests to servers with a reply address forged to
that of the victim
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The DNS replies, which are much larger than the requests, are
sent to the victim, causing a DOS

And because the packets are coming from DNS servers, it is
again hard to tell who initiated the attack

This is another flooding attack using UDP

There are similar flooding attacks using other public services
(such as time servers (NTP) and directory servers (LDAP)) exist
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“The ’S’ in IoT stands for security”

Anon
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Implementation attacks

These exploit bugs in IP implementations

Some hosts were vulnerable to oversized ping packets: the
Ping of Death

These were sent as forged fragments that, when reassembled,
were much larger than expected and overflowed OS buffers in
the receiving host

The usual result is a crash: another denial of service
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To mitigate, we should just ignore ICMP packets that claim to
be larger than the MTU: such packets are never generated
naturally

Or fix the reassembly code

Modern implementations check sizes are sensible before trying
to reassemble fragments
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October 2020: Microsoft report a newly-discovered Ping of
Death vulnerability in their IPv6 networking code

Actually not a “ping” but an ICMP Router Advertisement, but it
is easy to invoke and can crash (blue screen) any unpatched
Windows

You might ask how there are still bugs like this in modern
operating systems?
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Fragment bombs are like SYN floods in effect

Too many fragments for packets that are never completed and
so can’t be reassembled

This overflows fragment buffer space (where fragments are
kept pending reassembly) and likely causes a denial of service,
even a crash

Again, implementations need to timeout and drop old fragments
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Many other exploits of implementation exist

Usually from the implementers making invalid assumptions
about IP and assuming packets are all well-formed and correct

• Jolt (aka sPING): fragmented ICMP packets
• Land attack. The source addresses on TCP SYNs are the

same as the destination. The server tries to respond to
itself
• Teardrop. Overlapping fragments cause problems on

reassembly
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• New Teardrop (aka Bonk, Boink, Teardrop2). Overlapping
fragments on a UDP packet reassemble to form a packet
with an invalid header
• Zero length fragments. In some implementations these

were stored but never used. Thus storage was exhausted
• And so on

Making a robust implementation is very hard!



Social Engineering Attacks

These are a pre-computer attack, formerly known as
confidence tricks

If the machine is too hard to attack, attack the user instead

Often this is much easier than a machine attack
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It could be as simple as phoning up a systems administrator
and persuading them to give you a password to their machine

• Pretend to be a supervisor and threaten to sack them if
they do not comply
• Pretend to be a distraught user who has lost their password
• Anything else to unbalance them or get their sympathy

This is much easier than trying to crack a password by brute
force
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Another attack is phishing

This is a form of impersonation to try and convince the user to
hand over valuable information, such as credit card numbers
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A typical phishing attack is:

• the victim receives an email purporting to be from their
bank asking them to update their personal details. The
email provides a convenient WWW link
• The page looks plausibly like the bank’s
• The victim enters their details and sends them off
• The email and Web page are fakes, so now the details are

in the hands of criminals
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Similarly for many other attacks, such as The 419 or Nigerian
fraud named after the South African police code used to
identify this approach

Exercise Read about these
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One way to reduce the impact of an attack is to prevent bad
packets reaching the host in the first place

A firewall is a router/gateway that sits between a private
network and the wider Internet and tries to protect the private
network from attacks

It might be an ordinary router running firewall software, but
specialised firewall hardware also exists
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Firewall monitoring packets

The firewall inspects each packet as it enters and decides what
to do with it. It might: Pass the packet through unchanged;
Pass the packet through, but modified in some way, e.g., with
the TOS bits changed or addresses changed with NAT; Drop
the packet and send an ICMP back, e.g., “port unreachable”;
Silently drop the packet; Or many other possibilities
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Dropping silently is a good defence against probes from
malicious sources looking for vulnerable services

The normal response to a packet sent to a closed UDP port is
ICMP “port unreachable”; while TCP should send a RST

But this has the side effect of telling the sender that this
machine is up and running and worth probing further

Silence can make the attacker believe there is no machine at
that address at all

Exercise Learn about scanning tools like nmap
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Firewalling can be applied at any layer

The most common and useful are

• packet filters work in the data link, network and transport
layers at the individual packet level, making decisions
based on protocol (TCP or UDP, etc.), source and
destination addresses, port numbers, TOS bits and so on
• application layer firewalls work in the application layer and

can use information that the applications use, e.g., HTTP
filters can make decisions at the Web page level
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There are also

• application proxies which also work in the application layer
and act as an intermediate between the application and
the server. They can also make use of application layer
information

A Web proxy for an institution might receive all HTTP requests
from host within the organisation and choose to relay them
onwards, or not, based the details of the HTTP request
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Packet filters are fast, efficient and transparent to the
application but do not have the discrimination available to
application proxies

Application layer filters are slower but more flexible

And proxies require some configuration in the application, e.g.,
setting up a Web browser to use a proxy

Of course, you can combine things: have a packet filter
transparently rewrite packets to the Web to go via a proxy
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Firewalls can protect services from attack from outside

E.g., not forwarding inward TCP packets that have destination
port 21 will disallow external use of FTP into the private network

This relieves some of the pressure of making all the FTP
servers on the private network secure, but does not help
against attacks from inside the firewall

A safe default installation is to not forward anything inwards to
effect maximum protection of the private network

This same protection is also a side-effect of NAT

Of course, NAT works nicely alongside firewalling
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There can also be outward or egress filtering

E.g., we can force the use of a HTTP proxy by internal hosts by
blocking port 80

More subtly, we could use NAT to rewrite connections to port 80
to the server running the proxy

The proxy can then implement an application layer policy, e.g.,
disallowing access to certain web pages

Another, harsher, way of doing this is for the firewall to drop the
packet and return a RST

Public wireless networks often block outward port 25 (SMTP) to
prevent users sending spam
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However, configuring a firewall is difficult and not to be taken
lightly

Capturing the many and varied requirements of a network is
subtle and easy to get wrong
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Exercise Some attacks get through the firewall by using a
phishing attack to get a user to download and run some code.
This code can then reach outwards through the firewall. Read
about this

Exercise Some firewalls are configured to let in some traffic.
For example, allowing an external connection to a security
camera, so that you can remotely view your home. But if you
can connect, so can others. Read about this

Exercise Some appliances, e.g., security cameras, connect
outward to servers so that you can remotely view via the server.
But if you can connect, so can others. Read about this
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The IP was not designed with security in mind

By default, the content of emails and web pages are readable
as they travel to their destination

It is easy to write programs that trawl through millions of emails
as they pass through a router

As a lot of sensitive and valuable data travels over the Internet
these days we need to fix this

We need both security (encryption) and authentication
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We can apply these at any layer, e.g., in the IP model:

• Application. The application or the user can encrypt the
data. For example, you might use PGP to encrypt an email
before sending it. Or the application might have in-built
encryption
• Transport. SSL/TLS is described shortly. If trusting the

user/application is too problematic we can get the transport
layer to encrypt for us
• Network. At this layer we have IPSec, also described

shortly
• Data link. We can have encryption even in the data link

layer. E.g., WPA is used to obscure wireless
communications
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Encryption is just a small part in making a system secure as
there are many other factors

Human factors are very important: we mustn’t forget social
engineering attacks

Also, there is no point in having a military-grade encryption
system if you have an easily-guessable password
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There are actually two problems to address:

• Secrecy
• Authentication

Secrecy is familiar, but authentication is more fundamental
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Secrecy is

make sure that this data is not readable by anyone
other than the recipient

Authentication is

make sure the recipient is who I think they are
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There is no point sending a strongly encrypted message only to
find you sent it to the wrong person

Perhaps you are buying over the Web and you want to send
your credit card details to Acme Widget Company

So you negotiate a military-grade encryption key with them and
send the details, happy in the knowledge that no-one else can
read them

Later you discover the Web page was a fake and your details
are now in the hands of criminals

You must have some way of determining if someone is who
they say they are: this is authentication
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In the real world we use documents like passports and driving
licences to identify people

In the Internet world we do the same, except now the
documents are chunks of mathematical data

For details go to a crypto course!



Aside

If we were doing things properly, we should also talk about
authorisation at this point

After authentication there is the question of whether this entity
is allowed access to some resource

For example, in WPA-PSK, a correct password is usually taken
as authorisation; in WPA-Enterprise the server will have a list of
allowed users+passwords
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We have already considered a link layer security: WPA

We now look at a few others, including IPSec (network layer),
PPTP and L2TP (link layer), SSL/TLS (transport layer)

In the normal way of blurring layers when thinking about
functionality, PPTP and L2TP are regarded as link layer, even
though they layer over IP
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IPSec

IPSec can be used to set up secure point-to-point links (see
VPNs, later), but can also be used to secure and authenticate
individual connections when the other end supports it:
opportunistic encryption

IPSec consists of several protocols and defines several IP
optional header fields
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IPSec

Secrecy is implemented by Encapsulating Security Payload
(ESP)

Authentication by Authentication Header (AH)

Keys are managed by Internet Key Exchange (IKE) which itself
uses the Internet Security Association and Key Management
Protocol (ISAKMP)
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IPSec

IPSec authenticates connections, not users

You do not use it to login, but to ensure the remote host really is
Acme Widgets before you send data (money) to them

Both ESP and AH require a secret shared key to work
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IPSec

This key can be

• pre-agreed (manual keying)
• negotiated by IKE

IKE can itself use a pre-agreed key to deliver the ESP/AH key,
or use a public-key certificate mechanism
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IPSec

Normally there is one IKE process per host and it manages all
exchanges for that host

When a new IPSec/IP connection is started an IKE exchange
will take place before the IPSec can continue

This may take some time: even enough to cause a TCP timeout
on slow machines
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IPSec

IPSec

• is directly inside the IP layer (optional headers), so UDP
and TCP are easily layered transparently on top
• clearly only applies to IP
• AH does authentication, while ESP does secrecy and

authentication. Pure authentication is OK if you do not
need secrecy, but pure secrecy is open to impersonation
attacks without some authentication
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IPSec

• ESP has a trailer as well as a header: this can contain
padding to hide the length of the original packet
• ESP only authenticates the payload, while AH

authenticates all the packet, excepting the mutable fields
(TTL etc.) that change en route
• applies to both IPv4 and IPv6
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IPSec

Problems:

• initial connection overhead is high
• IPSec is tricky to set up and manage
• It works at the OS host level, and so needs a competent

administrator
• and also does not have the flexibility that (say) SSL/TLS

has, allowing each application to be managed
independently
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The general view of IPSec is that it is slow: though this view
was formed some years ago when computers were much
slower than now

In fact, after the connection setup, IPSec is not that bad in
terms of speed

But the configuration question remains

Exercise The University uses IPsec: investigate
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IPSec

A new alternative to IPSec that is growing in popularity is
WireGuard

It is (primarily) a point-to-point connection that is high
performance, using modern design and algorithms in a small,
auditable, codebase (about 1% the size of the IPSec code)

It layers over UDP to provide an encrypted, authenticated
network layer

It is very easy to set up

Exercise Read about WireGuard
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VPNs

Some systems are based around creating a Virtual Private
Networks (VPN)

A VPN allows a machine to appear to be on another network by
means of tunnelling

Recall tunnelling: where one protocol is layered over another so
the lower protocol can transport the upper protocol
transparently over a network that might not normally carry the
upper protocol

VPNs are private as they add encryption of the data in the
tunnel to provide security
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VPNs

Traffic from the host travels through the tunnel to the network,
where it can be routed as if it had originated there

This allows the host to use the services on the network as if it
were local to that network

This is good for teleworkers

For example, IPSec and WireGuard are VPNs
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VPNs

In overview a VPN:

• is software that creates a new virtual network interface
• when packets need to use the VPN they are routed out on

that interface
• the packets are encrypted (in the kernel or in user level

software)
• this data is now sent out over a real interface, e.g., using

UDP
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VPNs

At the receiving end:

• data arrives in (UDP probably) packets on a real interface
• it is decrypted and presented as packets on the virtual

VPN interface
• which are read by the server application

As far as the client and server are concerned, they are
operating as normal, sending and receiving packing on a
normal interface



Security and Authentication in IP
VPNs

There are two common setups for VPNs that treat data from the
client in different ways

• where all client traffic goes out through the VPN, and the
server end of the VPN routes it onwards as appropriate
• where only traffic destined for the server’s network goes

through the VPN. Other traffic from the source goes
directly to its destination in the normal way. This is
sometimes called a split tunnel
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VPNs

Destination Gateway Genmask Flags Metric Ref Use Iface

...

default home.gateway.ho 0.0.0.0 UG 0 0 0 wlan0

cs.bath.ac.uk 172.16.0.1 255.255.255.240 UG 2 0 0 tun0

fire.cs.bath.ac home.gateway.ho 255.255.255.255 UGH 0 0 0 wlan0

...

A packet destined for the CS network goes through (virtual)
interface tun0, which actually sends packets to the VPN
software on the local machine; This is encrypted and
encapsulated in a packet with destination fire on the CS
network; And port number that of the VPN software on the
remote server; This packet then goes through the host (H) route
to CS through the real interface wlan0; The routes are checked
longest mask first, to prevent an infinite loop! The VPN software
on the remote server gets the packet and deencapsulates it; It
rewrites the source address on the packet to its own address so
that replies come back to it (c.f., NAT); The remote host
forwards the packet to the destination which is on its local
network; Symmetrically, it will encrypt, encapsulate and return
any replies back through the tunnel; Locally, all other (default)
traffic goes out through the normal interface, not the VPN
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VPNs

Destination Gateway Genmask Flags Metric Ref Use Iface

...

default 172.16.0.1 0.0.0.0 UG 0 0 0 tun0

cs.bath.ac.uk 172.16.0.1 255.255.255.240 UG 2 0 0 tun0

fire.cs.bath.ac home.gateway.ho 255.255.255.255 UGH 0 0 0 wlan0

...

In comparison, the other setup; Here all default traffic goes
through interface tun0; This is encapsulated in the same way;
And routed through the tunnel via the real interface; The VPN
software on the remote network gets the packet,
deencapsulates it, rewrites its source address and forwards it to
the destination which now might be anywhere, not just on its
local network; Returning packets are sent back through the
VPN as before
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In the first setup you get secure access to the work network,
but to the rest of the world you are at home (and not secure)

The second makes you to appear to everyone to be at work as
all your packets have a work IP address on them
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Exercise Find out how to use the University’s VPN from your
home

Exercise The www.newscientist.com website reserves some
content for subscribers. It uses the requesting IP address to
check for access rights. The University is a subscriber. Use a
VPN to get at this content from your home

Exercise Find out how (or if) your favourite VPN can be
configured as a split tunnel

www.newscientist.com
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The Point-to-Point Tunneling Protocol (PPTP) was devised by
Microsoft to support VPNs

It

• tunnels IP over PPP over the Generic Routing
Encapsulation protocol (GRE) over IP and sends
connection control messages over a separate TCP
connection
• layers only over IP



Security and Authentication in IP
VPNs

It

• can encapsulate other protocols such as IPX (Internetwork
Packet Exchange, Novell) and NetBIOS/NetBEUI (Network
BIOS, NetBIOS Extended User Interface, Microsoft)
• uses PPP for authentication
• can use Microsoft Point-to-Point Encryption (MPPE) for

privacy, combined with Challenge-Handshake
Authentication Protocol (MS-CHAP) for authentication
• is simple to set up
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On the other hand, PPTP is regarded as insecure as the
authentication mechanism (MS-CHAP) can be broken

A later version (MS-CHAPv2) fixes some, but not all of the holes
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The Layer 2 Tunneling Protocol (L2TP) combines features of
PPTP and Layer 2 Forwarding (L2F) developed by Cisco
Systems Inc
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It

• tunnels IP over PPP over L2TP over UDP
• is intended to be used over ATM, Frame Relay and X.25

networks
• has no native encryption and must rely on, say, IPSec for

secrecy
• mainly uses PPP for authentication, but can also use ESP

from IPSec
• is believed to be more secure than PPTP
• is simple to set up
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While L2TP and PPTP were popularised by Microsoft, other
operating systems prefer other solutions

We shall talk about OpenVPN, later
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Tunnelling TCP

Note that all these tunnels layer over UDP, not TCP

This is because tunnelling TCP over TCP is usually a bad idea

TCP has a large overhead to gain reliability: there’s no point in
paying this cost twice

Plus, each TCP has its own idea of timeouts and retransmits
and they can start to fight each other: the retransmit of one
TCP will be viewed as a duplicate by the other TCP

Thus most VPNs tunnel over UDP
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Tunnelling TCP

Exercise Read about the Secure Socket Tunneling Protocol
(SSTP) and the TCP meltdown problem
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VPNs

Generic problems of VPNs include

• there is encryption and authentication header overhead in
every packet: this may cause extra packets or extra
fragmentation
• there is overhead in the time taken to encrypt or

authenticate the packets
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• some routers or ISPs make decisions based on the type of
traffic (e.g., video or HTTP): encryption hides this and
makes efficient routing harder
• some ISPs like to charge more for, or manage certain

kinds of traffic (e.g., bittorrent and video) and this hides the
kind of traffic. So some ISPs have blanket bans on VPNs
• in VPNs speed is secondary to security, but people will not

use them if they are too slow
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And, as previously mentioned, any kind of security is viewed
with suspicion by law enforcement agencies

Note that a VPN can make you appear to be in a different
country

Good for evading country-locked content (geofencing), but bad
for law enforcement and people who want to track what you are
doing
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For example, the Investigatory Powers Act 2016, and its
update, The Data Retention and Acquisition Regulations 2018,
a law that can require your ISP to log every website you visit
and every recipient of emails and phone calls (your Internet
Connection Records)
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Some core information is accessible, without warrant, by
certain people:

• account reference
• a source and port address, a destination IP and port

address
• a time/date + duration
• partial URLs (only part containing server name, no content)

So, the metadata and not the data

An interception warrant is needed for more, e.g., content



Security and Authentication in IP

The law also gives the security services new powers to hack
computers and, e.g., pressure service providers not to support
end-to-end encryption

This is a very contentious law, not only because it may be in
contravention of EU privacy laws, and that might mean the UK
cannot legally process data from the EU

Exercise Read the list of 50 or so authorities that can access
your web history, without warrant
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Many other VPN implementations exist

• Crypto IP Encapsulation (CIPE). A lightweight
point-to-point protocol that layers over UDP
• ssh. This remote login protocol also has a VPN mode, but

it layers over TCP
• OpenVPN (discussed later) tunnels over the transport layer

SSL/TLS
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The cryptographic quality of these varies widely: CIPE is
generally judged to be not much better than PPTP

In real life, PPTP and OpenVPN are common; Wireguard is
growing in popularity; the others are rarely seen

Exercise Read about the vulnerabilities in PPTP
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Transport Layer

Transport Layer security is used much more than Network
Layer security

The Secure Socket Layer (SSL) and its update Transport Layer
Security (TLS) implement a security layer over the transport
layer (usually TCP)

And you use this new layer instead of TCP

Note that SSL is no longer recommended as it has flaws in the
protocols

You should only use TLS, preferably versions 1.2 or later
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This security layer is above TCP, so it must be in the application
layer

It provides security of the data and authentication of the remote
host

After a TCP connection has been made a TLS handshake in
the application authenticates the connection and negotiates a
secret key

The key is then used to encrypt subsequent data sent over the
TCP connection
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TLS provides a new transport layer that can be used very much
like TCP (reliable, connection oriented, etc.)

Sometimes called a shim layer as it sits between two other
layers

Application

Transport

Network

Datalink

Transport

Network

Datalink

Application
TLS

TLS Shim
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The client can authenticate the server through the use of
public-key certificates

During the handshake the client application receives a
certificate from the server that it can authenticate in a variety of
ways

For example, Web browsers often contain a selection of master
certificates from certification authorities that it can use to check
the certificate from the server

Exercise Examine your browser to see which certification
authorities it uses
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Similarly, if it wishes, the server can request a certificate from
the client to authenticate the client a similar way

It would be possible to use this instead of the usual “login and
password” mechanism that servers often use to authenticate
the client

Unfortunately, the requirements of administration of the
certificates is much beyond the skill of the average user

Which is why login and password is still widely used to
authenticate clients to the server



Security and Authentication in IP
TLS

Transport layer security is very flexible, but requires the
application programmer to understand and use the function
calls to set up certificate checking and the handshake

That is, the programmer must invoke this layer in their
application: and correct use of TLS is not trivial

Their program can then read and write via the secure
connection they get from this instead of reading and writing
directly from the TCP socket
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s = socket(PF_INET, SOCK_STREAM, 0); // TCP socket

...

// Initiate TCP connection to server

connect(s, (struct sockaddr *)&addr, ... );

...

read(s, buf, 1024); // read data

...
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s = socket(PF_INET, SOCK_STREAM, 0); // TCP socket

...

connect(s, (struct sockaddr *)&caddr, ... );

...

ssl = SSL_new(ctx); // context contains info about ciphers

SSL_set_fd(ssl, s); // associate socket with ssl struct

...

SSL_connect(ssl); // do the SSL handshake

...

if SSL_get_verify_result(ssl) != X509_V_OK { // authenticate

... bad certificate ...

}

...

SSL_read(ssl, buf, 1024); // read data

...
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Many protocols can layer over TLS (instead of TCP) to give a
secure version:

• HTTPS is HTTP (the protocol to fetch Web pages) layered
over TLS
• SMTPS for SMTP (the protocol used to send email)
• IMAPS for IMAP (the protocol used to read email)
• Etc.

This is a relatively easy way of making secure protocols from
insecure ones: just find the parts of code that read and write
from IP sockets and change them to use TLS
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A few people regard TLS as a presentation layer between the
application and the transport layer

An interesting point of view, as TLS does rearrange your data

But not a strong point of view, as TLS does not solve the other
problems a presentation layer is supposed to address, e.g.,
character sets

Most people regard TLS as a transport layer
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Exercise Read about STARTTLS, a protocol to negotiate a TLS
connection, as used by SMTP and IMAP

Exercise Contrast HTTPS with SHTTP, which is an extension
of HTTP to include security

Exercise Read about HTTP/2, the latest version of HTTP, that
encourages the use of TLS
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We should also mention QUIC (again) at this point

QUIC is a transport layer that replaces TCP + TLS
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The opening handshake of QUIC does both the reliability setup
and the security setup

Thus making QUIC faster to set up

In the future, QUIC will the transport layer of the Web (HTTP/3),
and possibly other applications, too (e.g., DNS)
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HTTPS hides the requested URL and the content of a Web
page returned: this is in the encrypted data of the HTTP
request; but it cannot hide the IP address of the server

So an eavesdropper cannot tell if you are reading
www.example.com/good.html or www.example.com/bad.html

They can tell you are looking at something on the host with the
IP address of www.example.com

Traffic analysis of communications is a powerful tool that has
been used for decades

www.example.com/good.html
www.example.com/bad.html
www.example.com
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Some Websites (e.g., Tumblr) have multiple sub-sites hosted
on the same IP address: called virtual hosting

For example, good.tumblr.com/home.html and
bad.tumblr.com/home.html with both good.tumblr.com and
bad.tumblr.com having the same IP address

The server name is included in the HTTP request and the
server uses this to determine which sub-site the client wants

good.tumblr.com/home.html
bad.tumblr.com/home.html
good.tumblr.com
bad.tumblr.com
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GET /home.html HTTP/1.1

Host: bad.tumblr.com

User-Agent: curl/7.60.0

Accept: */*

HTTP request for home.html on (virtual) server
bad.tumblr.com

HTTPS runs over TLS so this is hidden from an eavesdropper

home.html
bad.tumblr.com
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But the TLS handshake (before the HTTP request) requires an
authentication certificate from the server that is based on the
server name

Server Name Indication (SNI; RFC6066) is part of the HTTPS
handshake that asks for a cerfificate for the server name (e.g.,
bad.tumblr.com) in the clear

As we don’t yet have a shared secret key, this can’t be
encrypted

bad.tumblr.com
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So accesses to such sub-sites are trackable:

• in the DNS lookup of the sub-site name
• in the HTTPS SNI handshake that contains the name of

the sub-site

Although the content of the Web pages is always hidden, which
sites are being accessed can be tracked
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People are working on filling these gaps

We have already mentioned DNS over HTTPS (DoH;
RFC8484) that hides the DNS lookup

Exercise Read about Encrypted SNI (eSNI) that hides the
handshake

Exercise Read about Oblivious DNS over HTTPS (ODoH) that
hides the DNS request from the DNS server(!)

Exercise Why are sites like Reddit that also have many
sub-sites not affected by this?
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Think about the ways your Internet use can be tracked (by ISPs
or others, for the Investigatory Powers Act; or just general
snooping by bad actors) or manipulated (by bad actors,
including some ISPs)

These include:

• Reading/manipulating your Web traffic or emails (unless
you use HTTPS or an appropriate secure transport)
• Reading/manipulating your DNS requests (unless you use

DoH or similar)
• Reading/manipulating your Server Name Indication traffic

on TLS authentication certificates (unless you use eSNI)
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There are overheads in using TLS

• A one-off overhead of (re)writing the application code to
use TLS
• A per-connection overhead of TLS setup messages and

the associated computation for checking certificates
• A per-packet overhead of data expansion in the encryption

(this effectively reduces the MTU)
• A per-packet overhead in the computation required to

encrypt or decrypt the data

These costs are not huge, but you must make the choice of
whether they are worthwhile
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Big providers have mostly moved their services to TLS by
default, usually HTTPS

For example, Google now uses it to protect all of Gmail and
Web searches

For such a large enterprise there is a significant cost in doing
so, but the security gained makes it worth doing

And customers are starting to be more security conscious and
are now demanding it be done

Exercise Compare using transport layer security against
network layer security
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The usefulness of TLS does not stop there

OpenVPN uses TLS as a datalink layer

That is, it layers IP over TLS to build its private network

It creates a virtual network interface that the OS can pass IP
packets to

The OpenVPN code then encrypts, authenticates and does
whatever it needs (using TLS) before handing the result on to a
“real” transport layer, usually UDP (as this is a VPN)
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TLS
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The encapsulated data then goes down through the normal
transport and network layers and is transmitted over the real
physical layer

At the receiving end, the real transport layer hands the data to
OpenVPN which decrypts and passes the resulting IP packets
to the OS to pass up the rest of the stack

Of course, it is layering that allows all this to work!

There is a cost of about 10% overhead in practice

Exercise Compare these costs with using a Network Layer
approach to VPNs, such as IPSec or WireGuard
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And now we have the usual benefits of a VPN: user
applications can be unsecured (but remember your data is only
secure while inside the VPN, not if the final destination is
somewhere in the wider Internet)

And the usual costs (For the geeks: the TLS code runs in user
mode, so the data in each packet has to go between user mode
and kernel mode several times)

Exercise Compare using an insecure login over a secure
network against a secure login over an insecure network

Exercise And what about using a secure login on a secure
network?
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A web browser looking at a page secured by HTTPS on a VPN
on a home network might be layering

Web page in HTML/CSS over HTTP over TLS over
TCP over IP over TLS over UDP over IP over PPP over
Ethernet over Cat6a



Networks
Ethernet

What are the physical encodings of bits on a 10Mb/s Ethernet?

A simple way would be 0V for 0 and 1V for 1, running at 10MHz

But this has a number of problems
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1. An empty network and a stream of 0s looks the same

And so you could not do carrier sense

2. Bits need to be synchronised to prevent drifting out of step
(was that 1000 or 999 0s?)

3. A long stream of 1s is a steady 1V: this is electrically a bad
design, an average 0V is best

To connect devices easily you need an AC signal, not a DC one
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So 10Mb/s Ethernet uses a Manchester Encoding

• Split the time interval for a bit into two parts
• Low then high voltage is a 0
• High then low voltage is a 1

So the average is 0V

-0.85V for low, +0.85V for high

This voltage is a compromise: a bigger voltage gives a more
robust signal that will travel further, but it uses more power
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Easy to synchronise: the transit through 0V is the middle of a bit

This does double the frequency of the signal to 20Mhz

We can use Cat 4 (or better) cable for this

Manchester encoding solves the above problems neatly and
actually simplifies the hardware needed

It is described as self clocking, as the reading end does not
need a clock to determine where the bits are
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What of 100Mb/s Ethernet?

We can’t use even Cat 5e cables with Manchester as it is only
specified to 100MHz, and we would need 200MHz
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Instead we start by encoding 4 data bits as 5 physical bits in a
4B/5B encoding; e.g., 0000 become 11110

Input 4B/5B Input 4B/5B
0000 11110 1000 10010
0001 01001 1001 10011
0010 10100 1010 10110
0011 10101 1011 10111
0100 01010 1100 11010
0101 01011 1101 11011
0110 01110 1110 11100
0111 01111 1111 11101

With some control patterns, e.g., IDLE 11111.
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Hasn’t 4B/5B made things worse: 5 bits where there were 4?

But now we use a three level physical encoding MLT-3

This has +, 0, and - levels (±0.85V), again using transitions to
encode bits
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Transitions are cyclical

- to 0
0 to +
+ to 0
0 to -

A transition marks a 1, no transition marks a 0

The 4B/5B translation ensures that every chunk of 5 symbols
has at least two transitions, so average voltage is roughly 0

E.g., input 0000, with no transitions becomes 11110 with four
transitions
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An example. Hex value 0E = 0000 1110

1 1 1 1 0 1 1 1 0 0

+

0

-

0 0 0 0 1 1 1 0

0 E

4B

5B

hex

MLT encoding
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Some words:

A physical representation is called a symbol

Symbols need not be binary

And need not represent a whole number of bits

The baud rate is the number of symbols per second
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100Mb/s Ethernet runs at up to 31.25MHz for a symbol rate of
125MBaud: all 1s output (IDLE) is four transitions (- to 0, 0 to +,
+ to 0, 0 to -) per cycle
(4 symbols/cycle× 31.25MHz = 125MBaud)

This has a symbol rate of 125MBaud for a data rate of
100Mb/s: 80% efficient or 1 physical symbol is 4/5 = 0.8 bits
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For Gigabit Ethernet 1000Base-T: 8 bits become 4× 3 physical
bits in a continuously changing encoding (not a table lookup)

Each 3 bit chunk is encoded using transitions between 5 levels
(PAM-5)

Over all four pairs in the cable simultaneously, in both directions
on all pairs

10Gb Ethernet uses a PAM-16 over a very complicated coding
(Tomlinson-Harashima Precoding)

(SATA and USB 3.0 use 8B/10B; USB 3.1 uses 128B/132B;
etc.)
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And then there is Ethernet over optical fibre. . .

Exercise Read about the physical encodings that are used in
fibre



Bridging

Some time ago we talked about bridges joining networks

ARP bridging is fine for joining a pair of small networks, but less
so for larger collections of networks

The IEEE 802.1d Ethernet Bridging standard addresses this,
dealing with the cases of multiple routes between hosts
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And a common variety is 802.1q virtual bridging

More commonly called Virtual LANs (VLANs)

This is a kind of reverse of the ARP bridge: it allows more than
one network to run on a single physical network
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LAN BLAN B

switch switch

tagged 802.1q

traffic

Site 1 Site 2

LAN A LAN A

Virtual bridge

A company has two separate sites 1 and 2 with a single
dedicated link between them; They want to run two separate
LANs, A and B, but not to buy a second link between the sites;
They can use 802.1q tagging; A packet from LAN A in Site 1,
say, arrives at the switch; The switch knows to route the packet
over the remote link: it places a 802.1q tag on the frame; A tag
is an extra four byte header containing a Virtual LAN Identifier
(VID), a 12 bit integer; The frame type in the physical layer
(typically Ethernet) is changed from 0800 to 8100 to indicate a
tagged packet; The switch in Site 2 receives the packet, sees
the tag, reads and removes it and forwards the packet to its
part of LAN A
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8000 IP packet

IP packet8000

switch

header
Ether

trailer

header
Ether

8100 IP packet
L

A
N

 A

header
Ether

tag
1q

switch Site 1

Site 2

Tagging packets in a VLAN
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This generalises well to many virtual LANs and allows many
networks to share infrastructure, thus saving on cost

Note: this is quite different from Virtual Private Networks
(VPNs), which we shall talk about later

Exercise Look up the structure of a VLAN tag

Exercise The University uses VLANs extensively. Find out
about this

Exercise How does tagging interact with maximum frame
sizes, e.g., in Ethernet?



The End

We started with layering models that suggested what a
networking standard needs to consider, and where

How does reality match with these suggestions?
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Action ISO Reality
Error detection datalink datalink (Wi-Fi ACK);

network (IP checksum)
transport (UDP/TCP checksum);
application possibly

Error recovery datalink datalink (Wi-Fi ACK);
transport (TCP only);
application possibly

Routing network network (IP)
Congestion network network (possibly IP routing);

transport (TCP)
Flow control network transport (TCP)
Accounting network ?
Quality of Service network network (IP Diffserv)
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Action ISO Reality
De/packetisation transport transport (UDP/TCP)
Reliability transport transport (TCP only);

application, if needed
Session session network (IPv6 flow label);

transport (TCP sequence
numbers);
application, if needed

Presentation presentation application
Application application application



The End

Exercise Read about “Layer 8”



The End

End of Lectures

Future sessions will be problems classes, and going through
past papers


