
Networks
The OSI Model

The seven OSI layers are

1. Physical
2. Data Link
3. Network
4. Transport
5. Session
6. Presentation
7. Application



Networks
The OSI Model: Physical Layer

The physical layer (PHY) or layer 1 is the hardware layer and
deals with the transmission of bits over a channel

For example:

• what voltages to use or colours of light pulses or radio
wavelengths to use

• what encoding for bits; how long (in time) a bit should be
• how many wires to use in a cable
• what plugs and sockets to use on the cable
• and many more

Generally, anything to do with choices regarding hardware



Networks
The OSI Model: Physical Layer

The physical layer (PHY) or layer 1 is the hardware layer and
deals with the transmission of bits over a channel

For example:

• what voltages to use or colours of light pulses or radio
wavelengths to use

• what encoding for bits; how long (in time) a bit should be
• how many wires to use in a cable
• what plugs and sockets to use on the cable
• and many more

Generally, anything to do with choices regarding hardware



Networks
The OSI Model: Physical Layer

The physical layer (PHY) or layer 1 is the hardware layer and
deals with the transmission of bits over a channel

For example:

• what voltages to use or colours of light pulses or radio
wavelengths to use

• what encoding for bits; how long (in time) a bit should be
• how many wires to use in a cable
• what plugs and sockets to use on the cable
• and many more

Generally, anything to do with choices regarding hardware



Networks
The OSI Model: Physical Layer

The physical layer (PHY) or layer 1 is the hardware layer and
deals with the transmission of bits over a channel

For example:

• what voltages to use or colours of light pulses or radio
wavelengths to use

• what encoding for bits; how long (in time) a bit should be

• how many wires to use in a cable
• what plugs and sockets to use on the cable
• and many more

Generally, anything to do with choices regarding hardware



Networks
The OSI Model: Physical Layer

The physical layer (PHY) or layer 1 is the hardware layer and
deals with the transmission of bits over a channel

For example:

• what voltages to use or colours of light pulses or radio
wavelengths to use

• what encoding for bits; how long (in time) a bit should be
• how many wires to use in a cable

• what plugs and sockets to use on the cable
• and many more

Generally, anything to do with choices regarding hardware



Networks
The OSI Model: Physical Layer

The physical layer (PHY) or layer 1 is the hardware layer and
deals with the transmission of bits over a channel

For example:

• what voltages to use or colours of light pulses or radio
wavelengths to use

• what encoding for bits; how long (in time) a bit should be
• how many wires to use in a cable
• what plugs and sockets to use on the cable

• and many more

Generally, anything to do with choices regarding hardware



Networks
The OSI Model: Physical Layer

The physical layer (PHY) or layer 1 is the hardware layer and
deals with the transmission of bits over a channel

For example:

• what voltages to use or colours of light pulses or radio
wavelengths to use

• what encoding for bits; how long (in time) a bit should be
• how many wires to use in a cable
• what plugs and sockets to use on the cable
• and many more

Generally, anything to do with choices regarding hardware



Networks
The OSI Model: Physical Layer

The physical layer (PHY) or layer 1 is the hardware layer and
deals with the transmission of bits over a channel

For example:

• what voltages to use or colours of light pulses or radio
wavelengths to use

• what encoding for bits; how long (in time) a bit should be
• how many wires to use in a cable
• what plugs and sockets to use on the cable
• and many more

Generally, anything to do with choices regarding hardware



Networks
The OSI Model: Data Link Layer

The data link layer, also called the media access layer (MAC)
or layer 2, takes the physical layer and tries to create a channel
where there are no undetected errors of transmission

Note “undetected”: we know networks are not 100% reliable
(e.g., wireless networks in particular) so we presumably want to
take into account possible errors and deal with them: the ISO
standard recommends you think about that here

A typical MAC layer sends the data as a sequence of frames
(recall the packet nature of the Internet). A frame is a chunk of
bytes, maybe tens or thousands of bytes long



Networks
The OSI Model: Data Link Layer

The data link layer, also called the media access layer (MAC)
or layer 2, takes the physical layer and tries to create a channel
where there are no undetected errors of transmission

Note “undetected”: we know networks are not 100% reliable
(e.g., wireless networks in particular) so we presumably want to
take into account possible errors and deal with them: the ISO
standard recommends you think about that here

A typical MAC layer sends the data as a sequence of frames
(recall the packet nature of the Internet). A frame is a chunk of
bytes, maybe tens or thousands of bytes long



Networks
The OSI Model: Data Link Layer

The data link layer, also called the media access layer (MAC)
or layer 2, takes the physical layer and tries to create a channel
where there are no undetected errors of transmission

Note “undetected”: we know networks are not 100% reliable
(e.g., wireless networks in particular) so we presumably want to
take into account possible errors and deal with them: the ISO
standard recommends you think about that here

A typical MAC layer sends the data as a sequence of frames
(recall the packet nature of the Internet). A frame is a chunk of
bytes, maybe tens or thousands of bytes long



Networks
The OSI Model: Data Link Layer

If a frame is corrupted, maybe the MAC layer can resend it; or
send a message to the next layer indicating a problem

A popular choice in real standards is to do nothing at all: let a
higher layer figure out what’s gone wrong and choose a remedy

Again: it is up to the standard we are designing as to what
actually happens. The layering model just says it is a good idea
to consider this kind of thing here

In real implementations, this layer is often strongly intertwined
with the physical layer and we tend to talk about both of them
together



Networks
The OSI Model: Data Link Layer

If a frame is corrupted, maybe the MAC layer can resend it; or
send a message to the next layer indicating a problem

A popular choice in real standards is to do nothing at all: let a
higher layer figure out what’s gone wrong and choose a remedy

Again: it is up to the standard we are designing as to what
actually happens. The layering model just says it is a good idea
to consider this kind of thing here

In real implementations, this layer is often strongly intertwined
with the physical layer and we tend to talk about both of them
together



Networks
The OSI Model: Data Link Layer

If a frame is corrupted, maybe the MAC layer can resend it; or
send a message to the next layer indicating a problem

A popular choice in real standards is to do nothing at all: let a
higher layer figure out what’s gone wrong and choose a remedy

Again: it is up to the standard we are designing as to what
actually happens. The layering model just says it is a good idea
to consider this kind of thing here

In real implementations, this layer is often strongly intertwined
with the physical layer and we tend to talk about both of them
together



Networks
The OSI Model: Data Link Layer

If a frame is corrupted, maybe the MAC layer can resend it; or
send a message to the next layer indicating a problem

A popular choice in real standards is to do nothing at all: let a
higher layer figure out what’s gone wrong and choose a remedy

Again: it is up to the standard we are designing as to what
actually happens. The layering model just says it is a good idea
to consider this kind of thing here

In real implementations, this layer is often strongly intertwined
with the physical layer and we tend to talk about both of them
together



Networks
The OSI Model: Network Layer

The network layer, layer 3, controls the operation of the
network, particularly the issue of routing data from source to
destination

Also, it can deal with congestion: where there is too much data
for a particular link it might route some data via another link, or
use flow control to slow down the rate of transmission

Or speed up the rate if things are going well

Accounting might be managed in this layer: counting the
number of bits so we can bill the user

And quality of service: e.g., ensuring there is always enough
bandwidth to stream a video



Networks
The OSI Model: Network Layer

The network layer, layer 3, controls the operation of the
network, particularly the issue of routing data from source to
destination

Also, it can deal with congestion: where there is too much data
for a particular link it might route some data via another link, or
use flow control to slow down the rate of transmission

Or speed up the rate if things are going well

Accounting might be managed in this layer: counting the
number of bits so we can bill the user

And quality of service: e.g., ensuring there is always enough
bandwidth to stream a video



Networks
The OSI Model: Network Layer

The network layer, layer 3, controls the operation of the
network, particularly the issue of routing data from source to
destination

Also, it can deal with congestion: where there is too much data
for a particular link it might route some data via another link, or
use flow control to slow down the rate of transmission

Or speed up the rate if things are going well

Accounting might be managed in this layer: counting the
number of bits so we can bill the user

And quality of service: e.g., ensuring there is always enough
bandwidth to stream a video



Networks
The OSI Model: Network Layer

The network layer, layer 3, controls the operation of the
network, particularly the issue of routing data from source to
destination

Also, it can deal with congestion: where there is too much data
for a particular link it might route some data via another link, or
use flow control to slow down the rate of transmission

Or speed up the rate if things are going well

Accounting might be managed in this layer: counting the
number of bits so we can bill the user

And quality of service: e.g., ensuring there is always enough
bandwidth to stream a video



Networks
The OSI Model: Network Layer

The network layer, layer 3, controls the operation of the
network, particularly the issue of routing data from source to
destination

Also, it can deal with congestion: where there is too much data
for a particular link it might route some data via another link, or
use flow control to slow down the rate of transmission

Or speed up the rate if things are going well

Accounting might be managed in this layer: counting the
number of bits so we can bill the user

And quality of service: e.g., ensuring there is always enough
bandwidth to stream a video



Networks
The OSI Model: Transport Layer

The transport layer, layer 4, accepts data from the session layer
(layer 5) and arranges it into packets suitable for the network
layer: packetisation

Similarly, it takes packets from the network layer (layer 3) and
reassembles them into the original data stream:
depacketisation. This might need to deal with packets arriving
out of order

You might want to think about reliability in this layer: ensuring
the data received is the same as the data sent. No corruption
or loss in the data

Curiously, reliability is not always a requirement of a network!



Networks
The OSI Model: Transport Layer

The transport layer, layer 4, accepts data from the session layer
(layer 5) and arranges it into packets suitable for the network
layer: packetisation

Similarly, it takes packets from the network layer (layer 3) and
reassembles them into the original data stream:
depacketisation. This might need to deal with packets arriving
out of order

You might want to think about reliability in this layer: ensuring
the data received is the same as the data sent. No corruption
or loss in the data

Curiously, reliability is not always a requirement of a network!



Networks
The OSI Model: Transport Layer

The transport layer, layer 4, accepts data from the session layer
(layer 5) and arranges it into packets suitable for the network
layer: packetisation

Similarly, it takes packets from the network layer (layer 3) and
reassembles them into the original data stream:
depacketisation. This might need to deal with packets arriving
out of order

You might want to think about reliability in this layer: ensuring
the data received is the same as the data sent. No corruption
or loss in the data

Curiously, reliability is not always a requirement of a network!



Networks
The OSI Model: Transport Layer

The transport layer, layer 4, accepts data from the session layer
(layer 5) and arranges it into packets suitable for the network
layer: packetisation

Similarly, it takes packets from the network layer (layer 3) and
reassembles them into the original data stream:
depacketisation. This might need to deal with packets arriving
out of order

You might want to think about reliability in this layer: ensuring
the data received is the same as the data sent. No corruption
or loss in the data

Curiously, reliability is not always a requirement of a network!



Networks
The OSI Model: Session Layer

The session layer, layer 5, manages sessions between source
and destination.

• Establishing and terminating connections; e.g., a remote
login session

• Restarting interrupted connections

Sessions can be quite short, e.g., just long enough for an email
or Web page to be transmitted; or arbitrarily long

In general, a session is just some logically connected set of
exchanges that have some unified identity



Networks
The OSI Model: Session Layer

The session layer, layer 5, manages sessions between source
and destination.

• Establishing and terminating connections; e.g., a remote
login session

• Restarting interrupted connections

Sessions can be quite short, e.g., just long enough for an email
or Web page to be transmitted; or arbitrarily long

In general, a session is just some logically connected set of
exchanges that have some unified identity



Networks
The OSI Model: Session Layer

The session layer, layer 5, manages sessions between source
and destination.

• Establishing and terminating connections; e.g., a remote
login session

• Restarting interrupted connections

Sessions can be quite short, e.g., just long enough for an email
or Web page to be transmitted; or arbitrarily long

In general, a session is just some logically connected set of
exchanges that have some unified identity



Networks
The OSI Model: Session Layer

The session layer, layer 5, manages sessions between source
and destination.

• Establishing and terminating connections; e.g., a remote
login session

• Restarting interrupted connections

Sessions can be quite short, e.g., just long enough for an email
or Web page to be transmitted; or arbitrarily long

In general, a session is just some logically connected set of
exchanges that have some unified identity



Networks
The OSI Model: Session Layer

The session layer, layer 5, manages sessions between source
and destination.

• Establishing and terminating connections; e.g., a remote
login session

• Restarting interrupted connections

Sessions can be quite short, e.g., just long enough for an email
or Web page to be transmitted; or arbitrarily long

In general, a session is just some logically connected set of
exchanges that have some unified identity



Networks
The OSI Model: Session Layer

For example, if the network crashes and reboots halfway
through a big data transfer, the session can be picked up from
where it left off, rather than starting again

You may already know that protocols like HTTP don’t
automatically pick up from where they left off

This tells us there is possibly a gap or omission somewhere in
the relevant protocols: something they didn’t address in the
design

This may have been through deliberate choice; but it’s equally
likely they just didn’t think about it



Networks
The OSI Model: Session Layer

For example, if the network crashes and reboots halfway
through a big data transfer, the session can be picked up from
where it left off, rather than starting again

You may already know that protocols like HTTP don’t
automatically pick up from where they left off

This tells us there is possibly a gap or omission somewhere in
the relevant protocols: something they didn’t address in the
design

This may have been through deliberate choice; but it’s equally
likely they just didn’t think about it



Networks
The OSI Model: Session Layer

For example, if the network crashes and reboots halfway
through a big data transfer, the session can be picked up from
where it left off, rather than starting again

You may already know that protocols like HTTP don’t
automatically pick up from where they left off

This tells us there is possibly a gap or omission somewhere in
the relevant protocols: something they didn’t address in the
design

This may have been through deliberate choice; but it’s equally
likely they just didn’t think about it



Networks
The OSI Model: Session Layer

For example, if the network crashes and reboots halfway
through a big data transfer, the session can be picked up from
where it left off, rather than starting again

You may already know that protocols like HTTP don’t
automatically pick up from where they left off

This tells us there is possibly a gap or omission somewhere in
the relevant protocols: something they didn’t address in the
design

This may have been through deliberate choice; but it’s equally
likely they just didn’t think about it



Networks
The OSI Model: Presentation Layer

The presentation layer, layer 6 provides some things to help us
retain the meaning of data

In particular, it decides on representations of data, such as
characters, integers and floating point values, colours, sounds
and so on so that the source and destination can agree on the
data communicated



Networks
The OSI Model: Presentation Layer

The presentation layer, layer 6 provides some things to help us
retain the meaning of data

In particular, it decides on representations of data, such as
characters, integers and floating point values, colours, sounds
and so on so that the source and destination can agree on the
data communicated



Networks
The OSI Model: Presentation Layer

So if the source wants to send the number 42, the presentation
layer deals with encoding this in a suitable way as (say) some
bits, which are then transmitted (passed to layer 5)

And the destination presentation layer can determine that this
particular sequence of bits it has just received (from layer 4)
represents the number 42

They can agree on “42” regardless of how each host chooses
to represent integers internally



Networks
The OSI Model: Presentation Layer

So if the source wants to send the number 42, the presentation
layer deals with encoding this in a suitable way as (say) some
bits, which are then transmitted (passed to layer 5)

And the destination presentation layer can determine that this
particular sequence of bits it has just received (from layer 4)
represents the number 42

They can agree on “42” regardless of how each host chooses
to represent integers internally



Networks
The OSI Model: Presentation Layer

So if the source wants to send the number 42, the presentation
layer deals with encoding this in a suitable way as (say) some
bits, which are then transmitted (passed to layer 5)

And the destination presentation layer can determine that this
particular sequence of bits it has just received (from layer 4)
represents the number 42

They can agree on “42” regardless of how each host chooses
to represent integers internally



Networks
The OSI Model: Application Layer

The application layer, layer 7, is the layer application
programmers use: ideally programmers would not have to
worry about lower layers in their application

It contains protocols like HTTP for the Web, SMTP for email,
and so on

Built on top of these protocols are the applications that the
users see, e.g., Firefox or Chrome for the Web, Outlook or
Thunderbird for email



Networks
The OSI Model: Application Layer

The application layer, layer 7, is the layer application
programmers use: ideally programmers would not have to
worry about lower layers in their application

It contains protocols like HTTP for the Web, SMTP for email,
and so on

Built on top of these protocols are the applications that the
users see, e.g., Firefox or Chrome for the Web, Outlook or
Thunderbird for email



Networks
The OSI Model: Application Layer

The application layer, layer 7, is the layer application
programmers use: ideally programmers would not have to
worry about lower layers in their application

It contains protocols like HTTP for the Web, SMTP for email,
and so on

Built on top of these protocols are the applications that the
users see, e.g., Firefox or Chrome for the Web, Outlook or
Thunderbird for email



Networks
Layering Models

Conceptually, data from an application is passed down through
the layers until it reaches the hardware: i.e., through a
sequence of pieces of software that perform the functions of
each layer

As it passes from later to layer it is encapsulated : a
transformation of the data in such a way that the layer below
can cope with it transparently

And in a way that it can be untransformed back again



Networks
Layering Models

Conceptually, data from an application is passed down through
the layers until it reaches the hardware: i.e., through a
sequence of pieces of software that perform the functions of
each layer

As it passes from later to layer it is encapsulated : a
transformation of the data in such a way that the layer below
can cope with it transparently

And in a way that it can be untransformed back again



Networks
Layering Models

Conceptually, data from an application is passed down through
the layers until it reaches the hardware: i.e., through a
sequence of pieces of software that perform the functions of
each layer

As it passes from later to layer it is encapsulated : a
transformation of the data in such a way that the layer below
can cope with it transparently

And in a way that it can be untransformed back again



Networks
Layering Models

At each layer, the transformation might

• add an identifying header or trailer or both that is needed
for the functionality of the layer

• encode any bit patterns that might be misinterpreted or
mis-transmitted by the next layer

• put items in a standard form, e.g., integers into a
well-known format

• do some arbitrarily complicated manipulation
• do nothing at all!



Networks
Layering Models

At each layer, the transformation might

• add an identifying header or trailer or both that is needed
for the functionality of the layer

• encode any bit patterns that might be misinterpreted or
mis-transmitted by the next layer

• put items in a standard form, e.g., integers into a
well-known format

• do some arbitrarily complicated manipulation
• do nothing at all!



Networks
Layering Models

At each layer, the transformation might

• add an identifying header or trailer or both that is needed
for the functionality of the layer

• encode any bit patterns that might be misinterpreted or
mis-transmitted by the next layer

• put items in a standard form, e.g., integers into a
well-known format

• do some arbitrarily complicated manipulation
• do nothing at all!



Networks
Layering Models

At each layer, the transformation might

• add an identifying header or trailer or both that is needed
for the functionality of the layer

• encode any bit patterns that might be misinterpreted or
mis-transmitted by the next layer

• put items in a standard form, e.g., integers into a
well-known format

• do some arbitrarily complicated manipulation
• do nothing at all!



Networks
Layering Models

At each layer, the transformation might

• add an identifying header or trailer or both that is needed
for the functionality of the layer

• encode any bit patterns that might be misinterpreted or
mis-transmitted by the next layer

• put items in a standard form, e.g., integers into a
well-known format

• do some arbitrarily complicated manipulation

• do nothing at all!



Networks
Layering Models

At each layer, the transformation might

• add an identifying header or trailer or both that is needed
for the functionality of the layer

• encode any bit patterns that might be misinterpreted or
mis-transmitted by the next layer

• put items in a standard form, e.g., integers into a
well-known format

• do some arbitrarily complicated manipulation
• do nothing at all!



Networks
Layering Models

Data

Data

AH

PH

SH

TH

NH

DH DT

Bits

Data

Data

Data

Data

Data

user data

application

presentation

session

transport

network

data link

physical

A possible (but unlikely) OSI encapsulation



Networks
Layering Models

Data

Data

AH

PH

SH

TH

NH

DH DT

Bits

Data

Data

Data

Data

Data

Data

Data

AH

PH

SH

TH

NH

DH DT

Bits

Data

Data

Data

Data

Data

physical network

source destination

Data is encoded and decoded



Networks
Encapsulation

An example. Some early modems treated byte values less than
32 as commands to the modem, not data to be transmitted

E.g., value 4 might mean “end of transmission” and the modem
should drop the connection

What do you do if your data happens to contain the value 4?

You can’t just send it, as the modem would interpret the data as
a command and end the connection



Networks
Encapsulation

An example. Some early modems treated byte values less than
32 as commands to the modem, not data to be transmitted

E.g., value 4 might mean “end of transmission” and the modem
should drop the connection

What do you do if your data happens to contain the value 4?

You can’t just send it, as the modem would interpret the data as
a command and end the connection



Networks
Encapsulation

An example. Some early modems treated byte values less than
32 as commands to the modem, not data to be transmitted

E.g., value 4 might mean “end of transmission” and the modem
should drop the connection

What do you do if your data happens to contain the value 4?

You can’t just send it, as the modem would interpret the data as
a command and end the connection



Networks
Encapsulation

An example. Some early modems treated byte values less than
32 as commands to the modem, not data to be transmitted

E.g., value 4 might mean “end of transmission” and the modem
should drop the connection

What do you do if your data happens to contain the value 4?

You can’t just send it, as the modem would interpret the data as
a command and end the connection



Networks
Encapsulation

So you need to transform the data somehow so that “4” is never
seen by the modem in the datastream

And the transformation must be reversible, so the other end can
reconstruct the 4

This is why encapsulation is necessary: so data can be
transmitted accurately, even if you are using weird hardware



Networks
Encapsulation

So you need to transform the data somehow so that “4” is never
seen by the modem in the datastream

And the transformation must be reversible, so the other end can
reconstruct the 4

This is why encapsulation is necessary: so data can be
transmitted accurately, even if you are using weird hardware



Networks
Encapsulation

So you need to transform the data somehow so that “4” is never
seen by the modem in the datastream

And the transformation must be reversible, so the other end can
reconstruct the 4

This is why encapsulation is necessary: so data can be
transmitted accurately, even if you are using weird hardware



Networks
Byte Stuffing

In this case, the transformation often used was byte stuffing:
the link layer could replace byte value “04” by, say, a pair of
bytes “DB D4” (hexadecimal)

Both bytes will be transmitted unmolested by the modem

The link layer at the other end could recognise this pair and
replace it by the single byte “04”

The “DB” is called an escape character, and its presence in the
datastream means the next character is encoded, so special
action must be taken



Networks
Byte Stuffing

In this case, the transformation often used was byte stuffing:
the link layer could replace byte value “04” by, say, a pair of
bytes “DB D4” (hexadecimal)

Both bytes will be transmitted unmolested by the modem

The link layer at the other end could recognise this pair and
replace it by the single byte “04”

The “DB” is called an escape character, and its presence in the
datastream means the next character is encoded, so special
action must be taken



Networks
Byte Stuffing

In this case, the transformation often used was byte stuffing:
the link layer could replace byte value “04” by, say, a pair of
bytes “DB D4” (hexadecimal)

Both bytes will be transmitted unmolested by the modem

The link layer at the other end could recognise this pair and
replace it by the single byte “04”

The “DB” is called an escape character, and its presence in the
datastream means the next character is encoded, so special
action must be taken



Networks
Byte Stuffing

In this case, the transformation often used was byte stuffing:
the link layer could replace byte value “04” by, say, a pair of
bytes “DB D4” (hexadecimal)

Both bytes will be transmitted unmolested by the modem

The link layer at the other end could recognise this pair and
replace it by the single byte “04”

The “DB” is called an escape character, and its presence in the
datastream means the next character is encoded, so special
action must be taken



Networks
Byte Stuffing

Take a while to think of the issues this raises: what happens if
our original data contained the pair of values “DB D4”?

We can’t just send “DB D4” as the other end will replace them
by “04”

Not only do the bytes under 32 need to be stuffed, so does the
escape character

For example, “DB” in the original data could be stuffed as “DB
FF”

The datastream “DB D4” becomes “DB FF D4”

With byte stuffing, we exchange some expansion of the data for
the correct transmission of that data



Networks
Byte Stuffing

Take a while to think of the issues this raises: what happens if
our original data contained the pair of values “DB D4”?

We can’t just send “DB D4” as the other end will replace them
by “04”

Not only do the bytes under 32 need to be stuffed, so does the
escape character

For example, “DB” in the original data could be stuffed as “DB
FF”

The datastream “DB D4” becomes “DB FF D4”

With byte stuffing, we exchange some expansion of the data for
the correct transmission of that data



Networks
Byte Stuffing

Take a while to think of the issues this raises: what happens if
our original data contained the pair of values “DB D4”?

We can’t just send “DB D4” as the other end will replace them
by “04”

Not only do the bytes under 32 need to be stuffed, so does the
escape character

For example, “DB” in the original data could be stuffed as “DB
FF”

The datastream “DB D4” becomes “DB FF D4”

With byte stuffing, we exchange some expansion of the data for
the correct transmission of that data



Networks
Byte Stuffing

Take a while to think of the issues this raises: what happens if
our original data contained the pair of values “DB D4”?

We can’t just send “DB D4” as the other end will replace them
by “04”

Not only do the bytes under 32 need to be stuffed, so does the
escape character

For example, “DB” in the original data could be stuffed as “DB
FF”

The datastream “DB D4” becomes “DB FF D4”

With byte stuffing, we exchange some expansion of the data for
the correct transmission of that data



Networks
Byte Stuffing

Take a while to think of the issues this raises: what happens if
our original data contained the pair of values “DB D4”?

We can’t just send “DB D4” as the other end will replace them
by “04”

Not only do the bytes under 32 need to be stuffed, so does the
escape character

For example, “DB” in the original data could be stuffed as “DB
FF”

The datastream “DB D4” becomes “DB FF D4”

With byte stuffing, we exchange some expansion of the data for
the correct transmission of that data



Networks
Byte Stuffing

Take a while to think of the issues this raises: what happens if
our original data contained the pair of values “DB D4”?

We can’t just send “DB D4” as the other end will replace them
by “04”

Not only do the bytes under 32 need to be stuffed, so does the
escape character

For example, “DB” in the original data could be stuffed as “DB
FF”

The datastream “DB D4” becomes “DB FF D4”

With byte stuffing, we exchange some expansion of the data for
the correct transmission of that data



Networks

This kind of situation is why encapsulation exists

Of course, modern hardware doesn’t act like early modems, but
the principle remains



Networks

This kind of situation is why encapsulation exists

Of course, modern hardware doesn’t act like early modems, but
the principle remains



Networks
Layering Models

Say you want to send an email. In a strict implementation
adhering to the layers the following might happen

• The email application might add a standard email header
(From, To, etc.)

• This is passed to the presentation layer. As far as this layer
is concerned it gets a chunk of text from the application
layer

• It doesn’t (or shouldn’t) know that the first few characters
are an email header

• It may transform the characters in some way, e.g.,
converting video into a transmissible format; it might
prepend its own header to indicate what it has done



Networks
Layering Models

Say you want to send an email. In a strict implementation
adhering to the layers the following might happen

• The email application might add a standard email header
(From, To, etc.)

• This is passed to the presentation layer. As far as this layer
is concerned it gets a chunk of text from the application
layer

• It doesn’t (or shouldn’t) know that the first few characters
are an email header

• It may transform the characters in some way, e.g.,
converting video into a transmissible format; it might
prepend its own header to indicate what it has done



Networks
Layering Models

Say you want to send an email. In a strict implementation
adhering to the layers the following might happen

• The email application might add a standard email header
(From, To, etc.)

• This is passed to the presentation layer. As far as this layer
is concerned it gets a chunk of text from the application
layer

• It doesn’t (or shouldn’t) know that the first few characters
are an email header

• It may transform the characters in some way, e.g.,
converting video into a transmissible format; it might
prepend its own header to indicate what it has done



Networks
Layering Models

Say you want to send an email. In a strict implementation
adhering to the layers the following might happen

• The email application might add a standard email header
(From, To, etc.)

• This is passed to the presentation layer. As far as this layer
is concerned it gets a chunk of text from the application
layer

• It doesn’t (or shouldn’t) know that the first few characters
are an email header

• It may transform the characters in some way, e.g.,
converting video into a transmissible format; it might
prepend its own header to indicate what it has done



Networks
Layering Models

Say you want to send an email. In a strict implementation
adhering to the layers the following might happen

• The email application might add a standard email header
(From, To, etc.)

• This is passed to the presentation layer. As far as this layer
is concerned it gets a chunk of text from the application
layer

• It doesn’t (or shouldn’t) know that the first few characters
are an email header

• It may transform the characters in some way, e.g.,
converting video into a transmissible format; it might
prepend its own header to indicate what it has done



Networks
Layering Models

• This is passed to the session layer. As far as this layer is
concerned it gets a bunch of bits from the previous layer

• It doesn’t (or shouldn’t) know that the first few bits are a
layer header

• It may transform the bits in some way; it might prepend a
header to help it manage sessions

• And so on down through the layers

Eventually, the physical layer transmits some bits



Networks
Layering Models

• This is passed to the session layer. As far as this layer is
concerned it gets a bunch of bits from the previous layer

• It doesn’t (or shouldn’t) know that the first few bits are a
layer header

• It may transform the bits in some way; it might prepend a
header to help it manage sessions

• And so on down through the layers

Eventually, the physical layer transmits some bits



Networks
Layering Models

• This is passed to the session layer. As far as this layer is
concerned it gets a bunch of bits from the previous layer

• It doesn’t (or shouldn’t) know that the first few bits are a
layer header

• It may transform the bits in some way; it might prepend a
header to help it manage sessions

• And so on down through the layers

Eventually, the physical layer transmits some bits



Networks
Layering Models

• This is passed to the session layer. As far as this layer is
concerned it gets a bunch of bits from the previous layer

• It doesn’t (or shouldn’t) know that the first few bits are a
layer header

• It may transform the bits in some way; it might prepend a
header to help it manage sessions

• And so on down through the layers

Eventually, the physical layer transmits some bits



Networks
Layering Models

• This is passed to the session layer. As far as this layer is
concerned it gets a bunch of bits from the previous layer

• It doesn’t (or shouldn’t) know that the first few bits are a
layer header

• It may transform the bits in some way; it might prepend a
header to help it manage sessions

• And so on down through the layers

Eventually, the physical layer transmits some bits



Networks
Layering Models

At the destination a bunch of bits is received by the hardware

We now proceed up the layers, unwrapping and untransforming
as we go

And, eventually, we get the original data arriving at the
application (we hope)

So why do this as it seems so wasteful?



Networks
Layering Models

At the destination a bunch of bits is received by the hardware

We now proceed up the layers, unwrapping and untransforming
as we go

And, eventually, we get the original data arriving at the
application (we hope)

So why do this as it seems so wasteful?



Networks
Layering Models

At the destination a bunch of bits is received by the hardware

We now proceed up the layers, unwrapping and untransforming
as we go

And, eventually, we get the original data arriving at the
application (we hope)

So why do this as it seems so wasteful?



Networks
Layering Models

At the destination a bunch of bits is received by the hardware

We now proceed up the layers, unwrapping and untransforming
as we go

And, eventually, we get the original data arriving at the
application (we hope)

So why do this as it seems so wasteful?



Networks
Layering Models

If the original data are small the data transmitted on the wire
can be mostly headers from the various layers

Data

Data

AH

PH

SH

TH

NH

DH DT

Bits

Data

Data

Data

Data

Data

user data

application

presentation

session

transport

network

data link

physical

Encapsulation overhead



Networks
Layering Models

If the original data are small the data transmitted on the wire
can be mostly headers from the various layers

Data

Data

AH

PH

SH

TH

NH

DH DT

Bits

Data

Data

Data

Data

Data

user data

application

presentation

session

transport

network

data link

physical

Encapsulation overhead



Networks
Layering Models

Surely it is easier just to put the original data on the wire?

• Encapsulation adds complexity to the implementation
• It adds overhead (both space and time)
• thereby reducing effective throughput

But it turns out layering and encapsulation actually reduces
overall complexity, just like breaking a large program into
functions/objects/whatever does for programming

It also gives flexiblity



Networks
Layering Models

Surely it is easier just to put the original data on the wire?

• Encapsulation adds complexity to the implementation

• It adds overhead (both space and time)
• thereby reducing effective throughput

But it turns out layering and encapsulation actually reduces
overall complexity, just like breaking a large program into
functions/objects/whatever does for programming

It also gives flexiblity



Networks
Layering Models

Surely it is easier just to put the original data on the wire?

• Encapsulation adds complexity to the implementation
• It adds overhead (both space and time)

• thereby reducing effective throughput

But it turns out layering and encapsulation actually reduces
overall complexity, just like breaking a large program into
functions/objects/whatever does for programming

It also gives flexiblity



Networks
Layering Models

Surely it is easier just to put the original data on the wire?

• Encapsulation adds complexity to the implementation
• It adds overhead (both space and time)
• thereby reducing effective throughput

But it turns out layering and encapsulation actually reduces
overall complexity, just like breaking a large program into
functions/objects/whatever does for programming

It also gives flexiblity



Networks
Layering Models

Surely it is easier just to put the original data on the wire?

• Encapsulation adds complexity to the implementation
• It adds overhead (both space and time)
• thereby reducing effective throughput

But it turns out layering and encapsulation actually reduces
overall complexity, just like breaking a large program into
functions/objects/whatever does for programming

It also gives flexiblity



Networks
Layering Models

Surely it is easier just to put the original data on the wire?

• Encapsulation adds complexity to the implementation
• It adds overhead (both space and time)
• thereby reducing effective throughput

But it turns out layering and encapsulation actually reduces
overall complexity, just like breaking a large program into
functions/objects/whatever does for programming

It also gives flexiblity



Networks
Layering Models

Suppose we have a 1Gb network card in our machine and
someone comes along with a 10Gb card

Because the physical layer is (mostly) separate from the data
link layer we can just write a new standard for the 10Gb
physical layer and slot it in where the old 1Gb standard was

The upper layers needn’t know anything has changed

And we can slot in the implementation for the new hardware in
exactly the same way

We don’t have to rewrite our email application (and Web
browser, and all our other applications) because of the upgrade



Networks
Layering Models

Suppose we have a 1Gb network card in our machine and
someone comes along with a 10Gb card

Because the physical layer is (mostly) separate from the data
link layer we can just write a new standard for the 10Gb
physical layer and slot it in where the old 1Gb standard was

The upper layers needn’t know anything has changed

And we can slot in the implementation for the new hardware in
exactly the same way

We don’t have to rewrite our email application (and Web
browser, and all our other applications) because of the upgrade



Networks
Layering Models

Suppose we have a 1Gb network card in our machine and
someone comes along with a 10Gb card

Because the physical layer is (mostly) separate from the data
link layer we can just write a new standard for the 10Gb
physical layer and slot it in where the old 1Gb standard was

The upper layers needn’t know anything has changed

And we can slot in the implementation for the new hardware in
exactly the same way

We don’t have to rewrite our email application (and Web
browser, and all our other applications) because of the upgrade



Networks
Layering Models

Suppose we have a 1Gb network card in our machine and
someone comes along with a 10Gb card

Because the physical layer is (mostly) separate from the data
link layer we can just write a new standard for the 10Gb
physical layer and slot it in where the old 1Gb standard was

The upper layers needn’t know anything has changed

And we can slot in the implementation for the new hardware in
exactly the same way

We don’t have to rewrite our email application (and Web
browser, and all our other applications) because of the upgrade



Networks
Layering Models

Suppose we have a 1Gb network card in our machine and
someone comes along with a 10Gb card

Because the physical layer is (mostly) separate from the data
link layer we can just write a new standard for the 10Gb
physical layer and slot it in where the old 1Gb standard was

The upper layers needn’t know anything has changed

And we can slot in the implementation for the new hardware in
exactly the same way

We don’t have to rewrite our email application (and Web
browser, and all our other applications) because of the upgrade



Networks
Layering Models

Similarly for all the other layers: we can replace specifications
in a layer and implementations of those specifications without
affecting the rest of the stack

In principle, you could use carrier pigeons as the physical layer
and your browser should work unchanged

Apart, perhaps, from speed

Someone really did this once!

Exercise Read RFC1149



Networks
Layering Models

Similarly for all the other layers: we can replace specifications
in a layer and implementations of those specifications without
affecting the rest of the stack

In principle, you could use carrier pigeons as the physical layer
and your browser should work unchanged

Apart, perhaps, from speed

Someone really did this once!

Exercise Read RFC1149



Networks
Layering Models

Similarly for all the other layers: we can replace specifications
in a layer and implementations of those specifications without
affecting the rest of the stack

In principle, you could use carrier pigeons as the physical layer
and your browser should work unchanged

Apart, perhaps, from speed

Someone really did this once!

Exercise Read RFC1149



Networks
Layering Models

Similarly for all the other layers: we can replace specifications
in a layer and implementations of those specifications without
affecting the rest of the stack

In principle, you could use carrier pigeons as the physical layer
and your browser should work unchanged

Apart, perhaps, from speed

Someone really did this once!

Exercise Read RFC1149



Networks
Layering Models

Similarly for all the other layers: we can replace specifications
in a layer and implementations of those specifications without
affecting the rest of the stack

In principle, you could use carrier pigeons as the physical layer
and your browser should work unchanged

Apart, perhaps, from speed

Someone really did this once!

Exercise Read RFC1149



Networks
Layering Models

And as each layer simply hands over to the next, it doesn’t
actually matter what the next layer “really” does

As long as it has the right behaviour, it doesn’t matter how it is
actually implemented

This enables useful tricks like tunnelling, which we shall look at
later



Networks
Layering Models

And as each layer simply hands over to the next, it doesn’t
actually matter what the next layer “really” does

As long as it has the right behaviour, it doesn’t matter how it is
actually implemented

This enables useful tricks like tunnelling, which we shall look at
later



Networks
Layering Models

And as each layer simply hands over to the next, it doesn’t
actually matter what the next layer “really” does

As long as it has the right behaviour, it doesn’t matter how it is
actually implemented

This enables useful tricks like tunnelling, which we shall look at
later


