Networking
CM30078/CM50123
Russell Bradford
2023/24
1. Link Layer Protocols
We now turn to some other link layer protocols
Serial Line Internet Protocol (SLIP) is an early protocol used on modems to encapsulate IP traffic over serial (telephone) lines
It is a point-to-point protocol, meaning it links just two machines to each other: the normal requirement in early dial-up systems
2. SLIP
[image: Pics/slip.svg]
SLIP frame
A very simple frame encapsulation with a terminating byte (hex) c0; also often a starting c0 byte, too
3. SLIP
So how to send data that contains the byte c0?
Use byte stuffing
To send c0 actually send two bytes db dc
The pair db dc is reconstructed as c0 at the other end
Stuff db as the pair db dd, which the other end reconstructs as db
A minor expansion of data, but it enables transparent transmission of data
4. SLIP
There is no frame size limit, but it was suggested you should support at least 1006 bytes
296 bytes was common (40 bytes of TCP/IP headers plus 256 bytes of data)
Larger frames have relatively less overhead, but at 9600b/s (a typical early modem speed) 1006 bytes takes roughly 1 sec to transmit
If there is a bulk transfer of full-sized frames at the same time as an interactive session, the interactive session’s frames would have to wait 0.5 sec on average to get through, much too slow
An interactive response of over 100-200ms is felt to be slow
5. SLIP
296 is a compromise: not too slow for interactive, not too small for bulk transfer, but not particularly good for either
On more modern modems (56Kb/s) it was increased to 1500 bytes
Exercise Compute the average latency for 296 byte frames on 9600b/s; and 1500 byte frames on 56Kb/s
Exercise And how big a frame could we have on a 10Mb/s Ethernet for the same latency?
6. SLIP
SLIP has several problems
Only IP in the next layer is supported (no type field in frame)
The ends must have pre-agreed IP addresses: no mechanism for agreeing addresses
No checksum: even though telephone lines were noisy and created data corruption
No authentication: no way to check who is connecting
7. PPP
Thus the Point-to-Point Protocol (PPP) was developed
Like SLIP it is a point to point protocol
It has three parts
· A framing layout for packets
· A link control protocol (LCP) for managing and configuring links
· A set of network control protocols (NCP) to manage network layer specific options
8. PPP
[image: Pics/ppp.svg]
PPP frame
· Frame delimiters 7E, start and end
· Address (always ff), Control (always 03)
· Protocol: tells us what the next layer is, e.g., IP is 0021, LCP is C021 and NCPs are 80xy
· Cyclic redundancy check to spot corruption
· But no address fields (Exercise why not?)
9. PPP
· Up to 1500 bytes of data (but can be negotiated)
· Values are escaped (like SLIP) by 7d
· 7e 7d 5e
· 7d 7d 5d
· , where 7d 20, so, e.g., 017d 21
10. PPP
NCPs can negotiate extras, like compression, frame size, etc.
And authentication, e.g., passwords
While it was devised to be used over telephone modems, PPP is still actively used, e.g., in PPP over Ethernet (PPPoE) as it allows authentication of a connection
Current FTTC products use (IP over) PPPoE over VDSL to pass authentication to the ISP
Exercise Read about this
Exercise Look at the configuration of your home ADSL or VDSL modem
11. Link Layers
Several other link layers exist: too many to talk about in any detail
We have already seen the Ethernet frame for a local area network
There are many link layers for carrying data over long distances, at high data rates, both electrical and optical
12. Link Layers
<+(0)-> For example, Asynchronous Transfer Mode (ATM) was popular for a while
Designed by telephone engineers, it was really a connection oriented digital voice network into which you could squeeze data packets
It has fixed-length frames of 53 bytes (48 data plus 5 header) — good for voice, not so good for data
Exercise Read about ATM and PPPoA, that layers (IP over) PPP over ATM, as used in ADSL and DOCSIS
13. Link Layers
Multiprotocol Label Switching (MPLS) was designed post-ATM when the technology decisions that drove the design of ATM were deemed no longer applicable
Designed by network engineers to be a general long-distance network, it is much better suited to modern data networks
Exercise Read about MPLS and how BT uses it in its 21C Network
14. Networks
Ethernet Link Layer
We want to move up to the network layer: but before doing so there is one more remark on the link layer
Recall Ethernet. The data on the wire:
[image: Pics/ether.svg]
Ethernet frame
15. Networks
Ethernet Link Layer
The interesting fields here are the addresses
The addresses allow a frame to identify the intended destination (and source)
This works well enough when the destination is on the local Ethernet network
Which is shared (or switched), so the frame has no problem being seen by the destination host
16. Networks
Ethernet Link Layer
What to do when the destination is non-local?
We can’t simply treat the world as a shared medium and broadcast the packet to everybody
And the network at the destination might not even be an Ethernet and will not have an Ethernet address
So we need hardware independent addresses to identify hosts that work independently of the physical network
In the Internet Protocol, these addresses live in the network layer
17. Networks Link Layer
IP
The network layer used in the Internet Protocol is called the Internet Protocol (IP)
It has the major function of dealing with routing, determining where a packet should go
Amongst a lot of other stuff, the IP header has network layer addresses
These are hardware independent, and in the same format across the entire Internet
18. Networks
IP
Each host on the Internet has an IP address that identifies it uniquely over the entire Internet
At least, that was the original intention
This is certainly no longer true, for reasons we shall explore later
But, for now, assume this is true
19. Networks
IP Header
[image: Pics/iphdr0.svg]
IP header
A bit hard to read, so conventionally we stack the header vertically
20. Networks
IP Header
[image: Pics/iphdr.svg]
IP header (usual layout)
21. Networks
IP
The source and destination addresses are both four bytes long: we shall come back to the other fields shortly
10001010001001100010000000001110 is an example IP address, a 32-bit value
This is 2317754382 in decimal: not terribly easy to work with
So for convenience we write this as 138.38.32.14, decimal representations of four 8-bit values. The dots are purely to make the number visually easier to read
But, importantly, there is structure in an IP address which helps with routing
22. Networks
IP
In this example, 138.38.32.14. the first half 1000101000100110 (138.38) is a 16-bit network address, which identifies the University of Bath
And 32.14 is a 16-bit host address, which identifies a single machine on the University’s network
Note that we write 138.38, but this should really be thought of as 1000101000100110, a bunch of 16 bits
Always remember that the dotted decimal notation is just a convenient way of writing a chunk of bits: there are no decimal numbers in the header!
23. Networks
IP
This division into network and host parts helps immensely in routing, as all packets destined for the University of Bath can be routed in the same manner
Only when a packet reaches the University is some local knowledge of the network needed
Indeed, the host part of this address splits further into subnet addresses that help local routing within the University
But the main point for now is that this IP address is independent of Ethernet and so can be used regardless of the hardware used
24. Networks
IP
So we have hardware independent addresses: but, now, there is an new problem
Suppose I want to send a packet to 138.38.3.40 on the local network. My data is (ultimately) encapsulated in an IP packet, with my IP address as source and 138.38.3.40 as the destination
(The question of how do we know the destination IP address must be answered later)
Now the IP packet must be further encapsulated in a hardware frame, Ethernet in this example. The OS can’t send the packet on the physical medium until it knows the Ethernet address of the destination
25. Networks
IP
Ethernet does not know about IP addresses: it can carry any kind of data
IP does not know about Ethernet addresses: it can run on many kinds of hardware
And this separation of layers, as we know, is desirable
26. Networks
IP
We need some kind of address discovery, so given the IP address we can find the corresponding Ethernet address
This is done by the Address Resolution Protocol (ARP)
ARP is a very simple link-layer protocol that essentially broadcasts a special frame on the local medium to the effect of “who has IP address 138.38.3.40?”
All hosts on the local network hear this broadcast and the host with that address replies “Me: and I have Ethernet address 08:00:20:9a:34:dd”
(There are questions of security here…)
27. Networks
IP
The OS gets the ARP reply and can now use this information to write the correct address in the Ethernet frame
Only now can the original packet be sent
28. Networks
IP
We don’t want to use ARP for every packet we send, so there is an ARP cache kept by the OS kernel that records the relation 138.38.3.40 08:00:20:9a:34:dd
Entries in the cache time out and are removed after, say, 20 minutes
This is in case the host using 138.38.3.40 goes away and is replaced by a different host that uses the same IP address, but has a different Ethernet address: recall IP addresses are not associated with the hardware
Once expired, the next packet to 138.38.3.40 will need a fresh ARP
rId21.svg

 c0

 c0

 Data

rId24.png

rId31.svg

 7E

 FF

 03

 Data

 CRC

 7E

 1

 1

 1

 2

 up to 1500

 2

 1

 flag

 address

 control

 flag

 proto-

 col

rId34.png
flag = control

s

Do e o 1500 2

rId41.svg

 Destination

 address

 Source

 address

 Data

 CRC

 type

 6

 6

 2

 46-1500

 4

rId44.png
Desunaton

i

)

rId55.svg

 16 bit total length

 8 bit type

 of service

 4 bit

 version

 length

 header

 4 bit

 16 bit identification

 RF

 DF

 MF

 13 bit fragment offset

 16 bit checksum

 8 bit protocol

 8 bit time

 to live

 32 bit source address

 32 bit destination address

 Header options

 Data

	

	

	

rId58.png

rId61.svg

	

	

	

	

 Data

 Header options

 32 bits

 RF

 DF

 MF

 32 bit destination address

 32 bit source address

 16 bit checksum

 8 bit protocol

 8 bit time

 to live

 16 bit identification

 13 bit fragment offset

 16 bit total length

 8 bit type

 of service

 4 bit

 version

 length

 header

 4 bit

 20 bytes

 20 bytes

rId64.png
—_—

