
Link Layer Protocols

We now turn to some other link layer protocols

Serial Line Internet Protocol (SLIP) is an early protocol used on
modems to encapsulate IP traffic over serial (telephone) lines

It is a point-to-point protocol, meaning it links just two machines
to each other: the normal requirement in early dial-up systems



Link Layer Protocols

We now turn to some other link layer protocols

Serial Line Internet Protocol (SLIP) is an early protocol used on
modems to encapsulate IP traffic over serial (telephone) lines

It is a point-to-point protocol, meaning it links just two machines
to each other: the normal requirement in early dial-up systems



Link Layer Protocols

We now turn to some other link layer protocols

Serial Line Internet Protocol (SLIP) is an early protocol used on
modems to encapsulate IP traffic over serial (telephone) lines

It is a point-to-point protocol, meaning it links just two machines
to each other: the normal requirement in early dial-up systems



SLIP

c0 c0Data

SLIP frame

A very simple frame encapsulation with a terminating byte (hex)
c0; also often a starting c0 byte, too



SLIP

So how to send data that contains the byte c0?

Use byte stuffing

To send c0 actually send two bytes db dc

The pair db dc is reconstructed as c0 at the other end

Stuff db as the pair db dd, which the other end reconstructs as
db

A minor expansion of data, but it enables transparent
transmission of data



SLIP

So how to send data that contains the byte c0?

Use byte stuffing

To send c0 actually send two bytes db dc

The pair db dc is reconstructed as c0 at the other end

Stuff db as the pair db dd, which the other end reconstructs as
db

A minor expansion of data, but it enables transparent
transmission of data



SLIP

So how to send data that contains the byte c0?

Use byte stuffing

To send c0 actually send two bytes db dc

The pair db dc is reconstructed as c0 at the other end

Stuff db as the pair db dd, which the other end reconstructs as
db

A minor expansion of data, but it enables transparent
transmission of data



SLIP

So how to send data that contains the byte c0?

Use byte stuffing

To send c0 actually send two bytes db dc

The pair db dc is reconstructed as c0 at the other end

Stuff db as the pair db dd, which the other end reconstructs as
db

A minor expansion of data, but it enables transparent
transmission of data



SLIP

So how to send data that contains the byte c0?

Use byte stuffing

To send c0 actually send two bytes db dc

The pair db dc is reconstructed as c0 at the other end

Stuff db as the pair db dd, which the other end reconstructs as
db

A minor expansion of data, but it enables transparent
transmission of data



SLIP

So how to send data that contains the byte c0?

Use byte stuffing

To send c0 actually send two bytes db dc

The pair db dc is reconstructed as c0 at the other end

Stuff db as the pair db dd, which the other end reconstructs as
db

A minor expansion of data, but it enables transparent
transmission of data



SLIP

There is no frame size limit, but it was suggested you should
support at least 1006 bytes

296 bytes was common (40 bytes of TCP/IP headers plus 256
bytes of data)

Larger frames have relatively less overhead, but at 9600b/s (a
typical early modem speed) 1006 bytes takes roughly 1 sec to
transmit

If there is a bulk transfer of full-sized frames at the same time
as an interactive session, the interactive session’s frames would
have to wait 0.5 sec on average to get through, much too slow

An interactive response of over 100-200ms is felt to be slow



SLIP

There is no frame size limit, but it was suggested you should
support at least 1006 bytes

296 bytes was common (40 bytes of TCP/IP headers plus 256
bytes of data)

Larger frames have relatively less overhead, but at 9600b/s (a
typical early modem speed) 1006 bytes takes roughly 1 sec to
transmit

If there is a bulk transfer of full-sized frames at the same time
as an interactive session, the interactive session’s frames would
have to wait 0.5 sec on average to get through, much too slow

An interactive response of over 100-200ms is felt to be slow



SLIP

There is no frame size limit, but it was suggested you should
support at least 1006 bytes

296 bytes was common (40 bytes of TCP/IP headers plus 256
bytes of data)

Larger frames have relatively less overhead, but at 9600b/s (a
typical early modem speed) 1006 bytes takes roughly 1 sec to
transmit

If there is a bulk transfer of full-sized frames at the same time
as an interactive session, the interactive session’s frames would
have to wait 0.5 sec on average to get through, much too slow

An interactive response of over 100-200ms is felt to be slow



SLIP

There is no frame size limit, but it was suggested you should
support at least 1006 bytes

296 bytes was common (40 bytes of TCP/IP headers plus 256
bytes of data)

Larger frames have relatively less overhead, but at 9600b/s (a
typical early modem speed) 1006 bytes takes roughly 1 sec to
transmit

If there is a bulk transfer of full-sized frames at the same time
as an interactive session, the interactive session’s frames would
have to wait 0.5 sec on average to get through, much too slow

An interactive response of over 100-200ms is felt to be slow



SLIP

There is no frame size limit, but it was suggested you should
support at least 1006 bytes

296 bytes was common (40 bytes of TCP/IP headers plus 256
bytes of data)

Larger frames have relatively less overhead, but at 9600b/s (a
typical early modem speed) 1006 bytes takes roughly 1 sec to
transmit

If there is a bulk transfer of full-sized frames at the same time
as an interactive session, the interactive session’s frames would
have to wait 0.5 sec on average to get through, much too slow

An interactive response of over 100-200ms is felt to be slow



SLIP

296 is a compromise: not too slow for interactive, not too small
for bulk transfer, but not particularly good for either

On more modern modems (56Kb/s) it was increased to 1500
bytes

Exercise Compute the average latency for 296 byte frames on
9600b/s; and 1500 byte frames on 56Kb/s

Exercise And how big a frame could we have on a 10Mb/s
Ethernet for the same latency?



SLIP

296 is a compromise: not too slow for interactive, not too small
for bulk transfer, but not particularly good for either

On more modern modems (56Kb/s) it was increased to 1500
bytes

Exercise Compute the average latency for 296 byte frames on
9600b/s; and 1500 byte frames on 56Kb/s

Exercise And how big a frame could we have on a 10Mb/s
Ethernet for the same latency?



SLIP

296 is a compromise: not too slow for interactive, not too small
for bulk transfer, but not particularly good for either

On more modern modems (56Kb/s) it was increased to 1500
bytes

Exercise Compute the average latency for 296 byte frames on
9600b/s; and 1500 byte frames on 56Kb/s

Exercise And how big a frame could we have on a 10Mb/s
Ethernet for the same latency?



SLIP

SLIP has several problems

Only IP in the next layer is supported (no type field in frame)

The ends must have pre-agreed IP addresses: no mechanism
for agreeing addresses

No checksum: even though telephone lines were noisy and
created data corruption

No authentication: no way to check who is connecting



SLIP

SLIP has several problems

Only IP in the next layer is supported (no type field in frame)

The ends must have pre-agreed IP addresses: no mechanism
for agreeing addresses

No checksum: even though telephone lines were noisy and
created data corruption

No authentication: no way to check who is connecting



SLIP

SLIP has several problems

Only IP in the next layer is supported (no type field in frame)

The ends must have pre-agreed IP addresses: no mechanism
for agreeing addresses

No checksum: even though telephone lines were noisy and
created data corruption

No authentication: no way to check who is connecting



SLIP

SLIP has several problems

Only IP in the next layer is supported (no type field in frame)

The ends must have pre-agreed IP addresses: no mechanism
for agreeing addresses

No checksum: even though telephone lines were noisy and
created data corruption

No authentication: no way to check who is connecting



SLIP

SLIP has several problems

Only IP in the next layer is supported (no type field in frame)

The ends must have pre-agreed IP addresses: no mechanism
for agreeing addresses

No checksum: even though telephone lines were noisy and
created data corruption

No authentication: no way to check who is connecting



PPP

Thus the Point-to-Point Protocol (PPP) was developed

Like SLIP it is a point to point protocol

It has three parts

• A framing layout for packets
• A link control protocol (LCP) for managing and configuring

links
• A set of network control protocols (NCP) to manage

network layer specific options



PPP

Thus the Point-to-Point Protocol (PPP) was developed

Like SLIP it is a point to point protocol

It has three parts

• A framing layout for packets
• A link control protocol (LCP) for managing and configuring

links
• A set of network control protocols (NCP) to manage

network layer specific options



PPP

Thus the Point-to-Point Protocol (PPP) was developed

Like SLIP it is a point to point protocol

It has three parts

• A framing layout for packets
• A link control protocol (LCP) for managing and configuring

links
• A set of network control protocols (NCP) to manage

network layer specific options



PPP

7E FF 03 Data CRC 7E

1 1 1 2 up to 1500 2 1

flagaddress
controlflag

proto-

col

PPP frame

• Frame delimiters 7E, start and end
• Address (always ff), Control (always 03)
• Protocol: tells us what the next layer is, e.g., IP is 0021,

LCP is C021 and NCPs are 80xy

• Cyclic redundancy check to spot corruption
• But no address fields (Exercise why not?)



PPP

7E FF 03 Data CRC 7E

1 1 1 2 up to 1500 2 1

flagaddress
controlflag

proto-

col

PPP frame

• Frame delimiters 7E, start and end

• Address (always ff), Control (always 03)
• Protocol: tells us what the next layer is, e.g., IP is 0021,

LCP is C021 and NCPs are 80xy

• Cyclic redundancy check to spot corruption
• But no address fields (Exercise why not?)



PPP

7E FF 03 Data CRC 7E

1 1 1 2 up to 1500 2 1

flagaddress
controlflag

proto-

col

PPP frame

• Frame delimiters 7E, start and end
• Address (always ff), Control (always 03)

• Protocol: tells us what the next layer is, e.g., IP is 0021,
LCP is C021 and NCPs are 80xy

• Cyclic redundancy check to spot corruption
• But no address fields (Exercise why not?)



PPP

7E FF 03 Data CRC 7E

1 1 1 2 up to 1500 2 1

flagaddress
controlflag

proto-

col

PPP frame

• Frame delimiters 7E, start and end
• Address (always ff), Control (always 03)
• Protocol: tells us what the next layer is, e.g., IP is 0021,

LCP is C021 and NCPs are 80xy

• Cyclic redundancy check to spot corruption
• But no address fields (Exercise why not?)



PPP

7E FF 03 Data CRC 7E

1 1 1 2 up to 1500 2 1

flagaddress
controlflag

proto-

col

PPP frame

• Frame delimiters 7E, start and end
• Address (always ff), Control (always 03)
• Protocol: tells us what the next layer is, e.g., IP is 0021,

LCP is C021 and NCPs are 80xy

• Cyclic redundancy check to spot corruption

• But no address fields (Exercise why not?)



PPP

7E FF 03 Data CRC 7E

1 1 1 2 up to 1500 2 1

flagaddress
controlflag

proto-

col

PPP frame

• Frame delimiters 7E, start and end
• Address (always ff), Control (always 03)
• Protocol: tells us what the next layer is, e.g., IP is 0021,

LCP is C021 and NCPs are 80xy

• Cyclic redundancy check to spot corruption
• But no address fields (Exercise why not?)



PPP

• Up to 1500 bytes of data (but can be negotiated)

• Values are escaped (like SLIP) by 7d

• 7e→ 7d 5e

• 7d→ 7d 5d

• x , where x < 2016 →7d [x+20], so, e.g., 01→7d 21



PPP

• Up to 1500 bytes of data (but can be negotiated)
• Values are escaped (like SLIP) by 7d

• 7e→ 7d 5e

• 7d→ 7d 5d

• x , where x < 2016 →7d [x+20], so, e.g., 01→7d 21



PPP

• Up to 1500 bytes of data (but can be negotiated)
• Values are escaped (like SLIP) by 7d

• 7e→ 7d 5e

• 7d→ 7d 5d

• x , where x < 2016 →7d [x+20], so, e.g., 01→7d 21



PPP

• Up to 1500 bytes of data (but can be negotiated)
• Values are escaped (like SLIP) by 7d

• 7e→ 7d 5e

• 7d→ 7d 5d

• x , where x < 2016 →7d [x+20], so, e.g., 01→7d 21



PPP

• Up to 1500 bytes of data (but can be negotiated)
• Values are escaped (like SLIP) by 7d

• 7e→ 7d 5e

• 7d→ 7d 5d

• x , where x < 2016 →7d [x+20], so, e.g., 01→7d 21



PPP

NCPs can negotiate extras, like compression, frame size, etc.

And authentication, e.g., passwords

While it was devised to be used over telephone modems, PPP
is still actively used, e.g., in PPP over Ethernet (PPPoE) as it
allows authentication of a connection

Current FTTC products use (IP over) PPPoE over VDSL to
pass authentication to the ISP

Exercise Read about this

Exercise Look at the configuration of your home ADSL or
VDSL modem



PPP

NCPs can negotiate extras, like compression, frame size, etc.

And authentication, e.g., passwords

While it was devised to be used over telephone modems, PPP
is still actively used, e.g., in PPP over Ethernet (PPPoE) as it
allows authentication of a connection

Current FTTC products use (IP over) PPPoE over VDSL to
pass authentication to the ISP

Exercise Read about this

Exercise Look at the configuration of your home ADSL or
VDSL modem



PPP

NCPs can negotiate extras, like compression, frame size, etc.

And authentication, e.g., passwords

While it was devised to be used over telephone modems, PPP
is still actively used, e.g., in PPP over Ethernet (PPPoE) as it
allows authentication of a connection

Current FTTC products use (IP over) PPPoE over VDSL to
pass authentication to the ISP

Exercise Read about this

Exercise Look at the configuration of your home ADSL or
VDSL modem



PPP

NCPs can negotiate extras, like compression, frame size, etc.

And authentication, e.g., passwords

While it was devised to be used over telephone modems, PPP
is still actively used, e.g., in PPP over Ethernet (PPPoE) as it
allows authentication of a connection

Current FTTC products use (IP over) PPPoE over VDSL to
pass authentication to the ISP

Exercise Read about this

Exercise Look at the configuration of your home ADSL or
VDSL modem



PPP

NCPs can negotiate extras, like compression, frame size, etc.

And authentication, e.g., passwords

While it was devised to be used over telephone modems, PPP
is still actively used, e.g., in PPP over Ethernet (PPPoE) as it
allows authentication of a connection

Current FTTC products use (IP over) PPPoE over VDSL to
pass authentication to the ISP

Exercise Read about this

Exercise Look at the configuration of your home ADSL or
VDSL modem



PPP

NCPs can negotiate extras, like compression, frame size, etc.

And authentication, e.g., passwords

While it was devised to be used over telephone modems, PPP
is still actively used, e.g., in PPP over Ethernet (PPPoE) as it
allows authentication of a connection

Current FTTC products use (IP over) PPPoE over VDSL to
pass authentication to the ISP

Exercise Read about this

Exercise Look at the configuration of your home ADSL or
VDSL modem



Link Layers

Several other link layers exist: too many to talk about in any
detail

We have already seen the Ethernet frame for a local area
network

There are many link layers for carrying data over long
distances, at high data rates, both electrical and optical



Link Layers

Several other link layers exist: too many to talk about in any
detail

We have already seen the Ethernet frame for a local area
network

There are many link layers for carrying data over long
distances, at high data rates, both electrical and optical



Link Layers

Several other link layers exist: too many to talk about in any
detail

We have already seen the Ethernet frame for a local area
network

There are many link layers for carrying data over long
distances, at high data rates, both electrical and optical



Link Layers

For example, Asynchronous Transfer Mode (ATM) was popular
for a while

Designed by telephone engineers, it was really a connection
oriented digital voice network into which you could squeeze
data packets

It has fixed-length frames of 53 bytes (48 data plus 5 header)
— good for voice, not so good for data

Exercise Read about ATM and PPPoA, that layers (IP over)
PPP over ATM, as used in ADSL and DOCSIS



Link Layers

For example, Asynchronous Transfer Mode (ATM) was popular
for a while

Designed by telephone engineers, it was really a connection
oriented digital voice network into which you could squeeze
data packets

It has fixed-length frames of 53 bytes (48 data plus 5 header)
— good for voice, not so good for data

Exercise Read about ATM and PPPoA, that layers (IP over)
PPP over ATM, as used in ADSL and DOCSIS



Link Layers

For example, Asynchronous Transfer Mode (ATM) was popular
for a while

Designed by telephone engineers, it was really a connection
oriented digital voice network into which you could squeeze
data packets

It has fixed-length frames of 53 bytes (48 data plus 5 header)
— good for voice, not so good for data

Exercise Read about ATM and PPPoA, that layers (IP over)
PPP over ATM, as used in ADSL and DOCSIS



Link Layers

For example, Asynchronous Transfer Mode (ATM) was popular
for a while

Designed by telephone engineers, it was really a connection
oriented digital voice network into which you could squeeze
data packets

It has fixed-length frames of 53 bytes (48 data plus 5 header)
— good for voice, not so good for data

Exercise Read about ATM and PPPoA, that layers (IP over)
PPP over ATM, as used in ADSL and DOCSIS



Link Layers

Multiprotocol Label Switching (MPLS) was designed post-ATM
when the technology decisions that drove the design of ATM
were deemed no longer applicable

Designed by network engineers to be a general long-distance
network, it is much better suited to modern data networks

Exercise Read about MPLS and how BT uses it in its 21C
Network



Link Layers

Multiprotocol Label Switching (MPLS) was designed post-ATM
when the technology decisions that drove the design of ATM
were deemed no longer applicable

Designed by network engineers to be a general long-distance
network, it is much better suited to modern data networks

Exercise Read about MPLS and how BT uses it in its 21C
Network



Link Layers

Multiprotocol Label Switching (MPLS) was designed post-ATM
when the technology decisions that drove the design of ATM
were deemed no longer applicable

Designed by network engineers to be a general long-distance
network, it is much better suited to modern data networks

Exercise Read about MPLS and how BT uses it in its 21C
Network



Networks
Ethernet Link Layer

We want to move up to the network layer: but before doing so
there is one more remark on the link layer

Recall Ethernet. The data on the wire:

Destination

address

Source

address Data

C
R

C

ty
p

e

6 6 2 46-1500 4

Ethernet frame



Networks
Ethernet Link Layer

We want to move up to the network layer: but before doing so
there is one more remark on the link layer

Recall Ethernet. The data on the wire:

Destination

address

Source

address Data

C
R

C

ty
p

e

6 6 2 46-1500 4

Ethernet frame



Networks
Ethernet Link Layer

The interesting fields here are the addresses

The addresses allow a frame to identify the intended
destination (and source)

This works well enough when the destination is on the local
Ethernet network

Which is shared (or switched), so the frame has no problem
being seen by the destination host



Networks
Ethernet Link Layer

The interesting fields here are the addresses

The addresses allow a frame to identify the intended
destination (and source)

This works well enough when the destination is on the local
Ethernet network

Which is shared (or switched), so the frame has no problem
being seen by the destination host



Networks
Ethernet Link Layer

The interesting fields here are the addresses

The addresses allow a frame to identify the intended
destination (and source)

This works well enough when the destination is on the local
Ethernet network

Which is shared (or switched), so the frame has no problem
being seen by the destination host



Networks
Ethernet Link Layer

The interesting fields here are the addresses

The addresses allow a frame to identify the intended
destination (and source)

This works well enough when the destination is on the local
Ethernet network

Which is shared (or switched), so the frame has no problem
being seen by the destination host



Networks
Ethernet Link Layer

What to do when the destination is non-local?

We can’t simply treat the world as a shared medium and
broadcast the packet to everybody

And the network at the destination might not even be an
Ethernet and will not have an Ethernet address

So we need hardware independent addresses to identify hosts
that work independently of the physical network

In the Internet Protocol, these addresses live in the network
layer



Networks
Ethernet Link Layer

What to do when the destination is non-local?

We can’t simply treat the world as a shared medium and
broadcast the packet to everybody

And the network at the destination might not even be an
Ethernet and will not have an Ethernet address

So we need hardware independent addresses to identify hosts
that work independently of the physical network

In the Internet Protocol, these addresses live in the network
layer



Networks
Ethernet Link Layer

What to do when the destination is non-local?

We can’t simply treat the world as a shared medium and
broadcast the packet to everybody

And the network at the destination might not even be an
Ethernet and will not have an Ethernet address

So we need hardware independent addresses to identify hosts
that work independently of the physical network

In the Internet Protocol, these addresses live in the network
layer



Networks
Ethernet Link Layer

What to do when the destination is non-local?

We can’t simply treat the world as a shared medium and
broadcast the packet to everybody

And the network at the destination might not even be an
Ethernet and will not have an Ethernet address

So we need hardware independent addresses to identify hosts
that work independently of the physical network

In the Internet Protocol, these addresses live in the network
layer



Networks
Ethernet Link Layer

What to do when the destination is non-local?

We can’t simply treat the world as a shared medium and
broadcast the packet to everybody

And the network at the destination might not even be an
Ethernet and will not have an Ethernet address

So we need hardware independent addresses to identify hosts
that work independently of the physical network

In the Internet Protocol, these addresses live in the network
layer



Networks Link Layer
IP

The network layer used in the Internet Protocol is called the
Internet Protocol (IP)

It has the major function of dealing with routing, determining
where a packet should go

Amongst a lot of other stuff, the IP header has network layer
addresses

These are hardware independent, and in the same format
across the entire Internet



Networks Link Layer
IP

The network layer used in the Internet Protocol is called the
Internet Protocol (IP)

It has the major function of dealing with routing, determining
where a packet should go

Amongst a lot of other stuff, the IP header has network layer
addresses

These are hardware independent, and in the same format
across the entire Internet



Networks Link Layer
IP

The network layer used in the Internet Protocol is called the
Internet Protocol (IP)

It has the major function of dealing with routing, determining
where a packet should go

Amongst a lot of other stuff, the IP header has network layer
addresses

These are hardware independent, and in the same format
across the entire Internet



Networks Link Layer
IP

The network layer used in the Internet Protocol is called the
Internet Protocol (IP)

It has the major function of dealing with routing, determining
where a packet should go

Amongst a lot of other stuff, the IP header has network layer
addresses

These are hardware independent, and in the same format
across the entire Internet



Networks
IP

Each host on the Internet has an IP address that identifies it
uniquely over the entire Internet

At least, that was the original intention

This is certainly no longer true, for reasons we shall explore
later

But, for now, assume this is true



Networks
IP

Each host on the Internet has an IP address that identifies it
uniquely over the entire Internet

At least, that was the original intention

This is certainly no longer true, for reasons we shall explore
later

But, for now, assume this is true



Networks
IP

Each host on the Internet has an IP address that identifies it
uniquely over the entire Internet

At least, that was the original intention

This is certainly no longer true, for reasons we shall explore
later

But, for now, assume this is true



Networks
IP

Each host on the Internet has an IP address that identifies it
uniquely over the entire Internet

At least, that was the original intention

This is certainly no longer true, for reasons we shall explore
later

But, for now, assume this is true



Networks
IP Header

16 bit total length
8 bit type
of service

4 bit
version length

header
4 bit

16 bit identification

R
F

D
F

M
F 13 bit fragment offset

16 bit checksum8 bit protocol
8 bit time

to live 32 bit source address

32 bit destination address Header options

Data

IP header

A bit hard to read, so conventionally we stack the header
vertically



Networks
IP Header

16 bit total length
8 bit type
of service

4 bit
version length

header
4 bit

16 bit identification

R
F

D
F

M
F 13 bit fragment offset

16 bit checksum8 bit protocol
8 bit time

to live 32 bit source address

32 bit destination address Header options

Data

IP header

A bit hard to read, so conventionally we stack the header
vertically



Networks
IP Header

Data

Header options

32 bits

R
F

D
F

M
F

32 bit destination address

32 bit source address

16 bit checksum8 bit protocol
8 bit time

to live

16 bit identification 13 bit fragment offset

16 bit total length
8 bit type
of service

4 bit
version length

header
4 bit

20 bytes20 bytes

IP header (usual layout)



Networks
IP

The source and destination addresses are both four bytes long:
we shall come back to the other fields shortly

10001010001001100010000000001110 is an example IP
address, a 32-bit value

This is 2317754382 in decimal: not terribly easy to work with

So for convenience we write this as 138.38.32.14, decimal
representations of four 8-bit values. The dots are purely to
make the number visually easier to read

But, importantly, there is structure in an IP address which helps
with routing



Networks
IP

The source and destination addresses are both four bytes long:
we shall come back to the other fields shortly

10001010001001100010000000001110 is an example IP
address, a 32-bit value

This is 2317754382 in decimal: not terribly easy to work with

So for convenience we write this as 138.38.32.14, decimal
representations of four 8-bit values. The dots are purely to
make the number visually easier to read

But, importantly, there is structure in an IP address which helps
with routing



Networks
IP

The source and destination addresses are both four bytes long:
we shall come back to the other fields shortly

10001010001001100010000000001110 is an example IP
address, a 32-bit value

This is 2317754382 in decimal: not terribly easy to work with

So for convenience we write this as 138.38.32.14, decimal
representations of four 8-bit values. The dots are purely to
make the number visually easier to read

But, importantly, there is structure in an IP address which helps
with routing



Networks
IP

The source and destination addresses are both four bytes long:
we shall come back to the other fields shortly

10001010001001100010000000001110 is an example IP
address, a 32-bit value

This is 2317754382 in decimal: not terribly easy to work with

So for convenience we write this as 138.38.32.14, decimal
representations of four 8-bit values. The dots are purely to
make the number visually easier to read

But, importantly, there is structure in an IP address which helps
with routing



Networks
IP

The source and destination addresses are both four bytes long:
we shall come back to the other fields shortly

10001010001001100010000000001110 is an example IP
address, a 32-bit value

This is 2317754382 in decimal: not terribly easy to work with

So for convenience we write this as 138.38.32.14, decimal
representations of four 8-bit values. The dots are purely to
make the number visually easier to read

But, importantly, there is structure in an IP address which helps
with routing



Networks
IP

In this example, 138.38.32.14. the first half 1000101000100110
(138.38) is a 16-bit network address, which identifies the
University of Bath

And 32.14 is a 16-bit host address, which identifies a single
machine on the University’s network

Note that we write 138.38, but this should really be thought of
as 1000101000100110, a bunch of 16 bits

Always remember that the dotted decimal notation is just a
convenient way of writing a chunk of bits: there are no decimal
numbers in the header!



Networks
IP

In this example, 138.38.32.14. the first half 1000101000100110
(138.38) is a 16-bit network address, which identifies the
University of Bath

And 32.14 is a 16-bit host address, which identifies a single
machine on the University’s network

Note that we write 138.38, but this should really be thought of
as 1000101000100110, a bunch of 16 bits

Always remember that the dotted decimal notation is just a
convenient way of writing a chunk of bits: there are no decimal
numbers in the header!



Networks
IP

In this example, 138.38.32.14. the first half 1000101000100110
(138.38) is a 16-bit network address, which identifies the
University of Bath

And 32.14 is a 16-bit host address, which identifies a single
machine on the University’s network

Note that we write 138.38, but this should really be thought of
as 1000101000100110, a bunch of 16 bits

Always remember that the dotted decimal notation is just a
convenient way of writing a chunk of bits: there are no decimal
numbers in the header!



Networks
IP

In this example, 138.38.32.14. the first half 1000101000100110
(138.38) is a 16-bit network address, which identifies the
University of Bath

And 32.14 is a 16-bit host address, which identifies a single
machine on the University’s network

Note that we write 138.38, but this should really be thought of
as 1000101000100110, a bunch of 16 bits

Always remember that the dotted decimal notation is just a
convenient way of writing a chunk of bits: there are no decimal
numbers in the header!



Networks
IP

This division into network and host parts helps immensely in
routing, as all packets destined for the University of Bath can be
routed in the same manner

Only when a packet reaches the University is some local
knowledge of the network needed

Indeed, the host part of this address splits further into subnet
addresses that help local routing within the University

But the main point for now is that this IP address is independent
of Ethernet and so can be used regardless of the hardware
used



Networks
IP

This division into network and host parts helps immensely in
routing, as all packets destined for the University of Bath can be
routed in the same manner

Only when a packet reaches the University is some local
knowledge of the network needed

Indeed, the host part of this address splits further into subnet
addresses that help local routing within the University

But the main point for now is that this IP address is independent
of Ethernet and so can be used regardless of the hardware
used



Networks
IP

This division into network and host parts helps immensely in
routing, as all packets destined for the University of Bath can be
routed in the same manner

Only when a packet reaches the University is some local
knowledge of the network needed

Indeed, the host part of this address splits further into subnet
addresses that help local routing within the University

But the main point for now is that this IP address is independent
of Ethernet and so can be used regardless of the hardware
used



Networks
IP

This division into network and host parts helps immensely in
routing, as all packets destined for the University of Bath can be
routed in the same manner

Only when a packet reaches the University is some local
knowledge of the network needed

Indeed, the host part of this address splits further into subnet
addresses that help local routing within the University

But the main point for now is that this IP address is independent
of Ethernet and so can be used regardless of the hardware
used



Networks
IP

So we have hardware independent addresses: but, now, there
is an new problem

Suppose I want to send a packet to 138.38.3.40 on the local
network. My data is (ultimately) encapsulated in an IP packet,
with my IP address as source and 138.38.3.40 as the
destination

(The question of how do we know the destination IP address
must be answered later)

Now the IP packet must be further encapsulated in a hardware
frame, Ethernet in this example. The OS can’t send the packet
on the physical medium until it knows the Ethernet address of
the destination

138.38.3.40
138.38.3.40


Networks
IP

So we have hardware independent addresses: but, now, there
is an new problem

Suppose I want to send a packet to 138.38.3.40 on the local
network. My data is (ultimately) encapsulated in an IP packet,
with my IP address as source and 138.38.3.40 as the
destination

(The question of how do we know the destination IP address
must be answered later)

Now the IP packet must be further encapsulated in a hardware
frame, Ethernet in this example. The OS can’t send the packet
on the physical medium until it knows the Ethernet address of
the destination

138.38.3.40
138.38.3.40


Networks
IP

So we have hardware independent addresses: but, now, there
is an new problem

Suppose I want to send a packet to 138.38.3.40 on the local
network. My data is (ultimately) encapsulated in an IP packet,
with my IP address as source and 138.38.3.40 as the
destination

(The question of how do we know the destination IP address
must be answered later)

Now the IP packet must be further encapsulated in a hardware
frame, Ethernet in this example. The OS can’t send the packet
on the physical medium until it knows the Ethernet address of
the destination

138.38.3.40
138.38.3.40


Networks
IP

So we have hardware independent addresses: but, now, there
is an new problem

Suppose I want to send a packet to 138.38.3.40 on the local
network. My data is (ultimately) encapsulated in an IP packet,
with my IP address as source and 138.38.3.40 as the
destination

(The question of how do we know the destination IP address
must be answered later)

Now the IP packet must be further encapsulated in a hardware
frame, Ethernet in this example. The OS can’t send the packet
on the physical medium until it knows the Ethernet address of
the destination

138.38.3.40
138.38.3.40


Networks
IP

Ethernet does not know about IP addresses: it can carry any
kind of data

IP does not know about Ethernet addresses: it can run on
many kinds of hardware

And this separation of layers, as we know, is desirable



Networks
IP

Ethernet does not know about IP addresses: it can carry any
kind of data

IP does not know about Ethernet addresses: it can run on
many kinds of hardware

And this separation of layers, as we know, is desirable



Networks
IP

Ethernet does not know about IP addresses: it can carry any
kind of data

IP does not know about Ethernet addresses: it can run on
many kinds of hardware

And this separation of layers, as we know, is desirable



Networks
IP

We need some kind of address discovery, so given the IP
address we can find the corresponding Ethernet address

This is done by the Address Resolution Protocol (ARP)

ARP is a very simple link-layer protocol that essentially
broadcasts a special frame on the local medium to the effect of
“who has IP address 138.38.3.40?”

All hosts on the local network hear this broadcast and the host
with that address replies “Me: and I have Ethernet address
08:00:20:9a:34:dd”

(There are questions of security here. . . )

138.38.3.40
08:00:20:9a:34:dd


Networks
IP

We need some kind of address discovery, so given the IP
address we can find the corresponding Ethernet address

This is done by the Address Resolution Protocol (ARP)

ARP is a very simple link-layer protocol that essentially
broadcasts a special frame on the local medium to the effect of
“who has IP address 138.38.3.40?”

All hosts on the local network hear this broadcast and the host
with that address replies “Me: and I have Ethernet address
08:00:20:9a:34:dd”

(There are questions of security here. . . )

138.38.3.40
08:00:20:9a:34:dd


Networks
IP

We need some kind of address discovery, so given the IP
address we can find the corresponding Ethernet address

This is done by the Address Resolution Protocol (ARP)

ARP is a very simple link-layer protocol that essentially
broadcasts a special frame on the local medium to the effect of
“who has IP address 138.38.3.40?”

All hosts on the local network hear this broadcast and the host
with that address replies “Me: and I have Ethernet address
08:00:20:9a:34:dd”

(There are questions of security here. . . )

138.38.3.40
08:00:20:9a:34:dd


Networks
IP

We need some kind of address discovery, so given the IP
address we can find the corresponding Ethernet address

This is done by the Address Resolution Protocol (ARP)

ARP is a very simple link-layer protocol that essentially
broadcasts a special frame on the local medium to the effect of
“who has IP address 138.38.3.40?”

All hosts on the local network hear this broadcast and the host
with that address replies “Me: and I have Ethernet address
08:00:20:9a:34:dd”

(There are questions of security here. . . )

138.38.3.40
08:00:20:9a:34:dd


Networks
IP

We need some kind of address discovery, so given the IP
address we can find the corresponding Ethernet address

This is done by the Address Resolution Protocol (ARP)

ARP is a very simple link-layer protocol that essentially
broadcasts a special frame on the local medium to the effect of
“who has IP address 138.38.3.40?”

All hosts on the local network hear this broadcast and the host
with that address replies “Me: and I have Ethernet address
08:00:20:9a:34:dd”

(There are questions of security here. . . )

138.38.3.40
08:00:20:9a:34:dd


Networks
IP

The OS gets the ARP reply and can now use this information to
write the correct address in the Ethernet frame

Only now can the original packet be sent



Networks
IP

The OS gets the ARP reply and can now use this information to
write the correct address in the Ethernet frame

Only now can the original packet be sent



Networks
IP

We don’t want to use ARP for every packet we send, so there is
an ARP cache kept by the OS kernel that records the relation
138.38.3.40↔ 08:00:20:9a:34:dd

Entries in the cache time out and are removed after, say, 20
minutes

This is in case the host using 138.38.3.40 goes away and is
replaced by a different host that uses the same IP address, but
has a different Ethernet address: recall IP addresses are not
associated with the hardware

Once expired, the next packet to 138.38.3.40 will need a fresh
ARP

138.38.3.40
08:00:20:9a:34:dd
138.38.3.40
138.38.3.40


Networks
IP

We don’t want to use ARP for every packet we send, so there is
an ARP cache kept by the OS kernel that records the relation
138.38.3.40↔ 08:00:20:9a:34:dd

Entries in the cache time out and are removed after, say, 20
minutes

This is in case the host using 138.38.3.40 goes away and is
replaced by a different host that uses the same IP address, but
has a different Ethernet address: recall IP addresses are not
associated with the hardware

Once expired, the next packet to 138.38.3.40 will need a fresh
ARP

138.38.3.40
08:00:20:9a:34:dd
138.38.3.40
138.38.3.40


Networks
IP

We don’t want to use ARP for every packet we send, so there is
an ARP cache kept by the OS kernel that records the relation
138.38.3.40↔ 08:00:20:9a:34:dd

Entries in the cache time out and are removed after, say, 20
minutes

This is in case the host using 138.38.3.40 goes away and is
replaced by a different host that uses the same IP address, but
has a different Ethernet address: recall IP addresses are not
associated with the hardware

Once expired, the next packet to 138.38.3.40 will need a fresh
ARP

138.38.3.40
08:00:20:9a:34:dd
138.38.3.40
138.38.3.40


Networks
IP

We don’t want to use ARP for every packet we send, so there is
an ARP cache kept by the OS kernel that records the relation
138.38.3.40↔ 08:00:20:9a:34:dd

Entries in the cache time out and are removed after, say, 20
minutes

This is in case the host using 138.38.3.40 goes away and is
replaced by a different host that uses the same IP address, but
has a different Ethernet address: recall IP addresses are not
associated with the hardware

Once expired, the next packet to 138.38.3.40 will need a fresh
ARP

138.38.3.40
08:00:20:9a:34:dd
138.38.3.40
138.38.3.40

