

There are lots of routes of more than 9 hops, so using ping to discover a route is limited; besides many routers ignore or discard this option

There are lots of routes of more than 9 hops, so using ping to discover a route is limited; besides many routers ignore or discard this option

The traceroute program is a clever way to find routes by deliberately generating errors and looking at the ICMP messages that result

There are lots of routes of more than 9 hops, so using ping to discover a route is limited; besides many routers ignore or discard this option

The traceroute program is a clever way to find routes by deliberately generating errors and looking at the ICMP messages that result

It sends a packet to the intended destination, but with an artificially small time-to-live

When the TTL drops to zero on a hop, the packet is dropped and an ICMP "TTL exceeded" is returned by the router that dropped it

When the TTL drops to zero on a hop, the packet is dropped and an ICMP "TTL exceeded" is returned by the router that dropped it

As the source address on this ICMP error is the router's, this tells us where the packet had got to

When the TTL drops to zero on a hop, the packet is dropped and an ICMP "TTL exceeded" is returned by the router that dropped it

As the source address on this ICMP error is the router's, this tells us where the packet had got to

Repeat for increasing values of TTL to get the entire route

% traceroute mary.bath.ac.uk

traceroute to mary.bath.ac.uk (138.38.32.14), 30 hops max, 46 byte packets
1 136.159.7.1 (136.159.7.1) 0.779 ms 1.131 ms 0.642 ms
2 136.159.28.1 (136.159.28.1) 1.369 ms 0.910 ms 1.489 ms
3 136.159.30.1 (136.159.30.1) 2.339 ms 1.937 ms 0.988 ms
4 136.159.251.2 (136.159.251.2) 1.458 ms 1.071 ms 1.831 ms
5 192.168.47.1 (192.168.47.1) 1.434 ms 1.554 ms 1.008 ms
6 192.168.3.25 (192.168.3.25) 29.192 ms 30.094 ms 25.374 ms
7 REGIONAL2.tac.net (205.233.111.67) 25.413 ms 33.002 ms 32.677 ms
8 * * *

* 117.ATM3-0.XR2.CHI6.ALTER.NET (146.188.209.182) 82.403 ms 58.747 ms 9 10 190. ATM11-0-0. GW4. CHI6. ALTER. NET (146.188.209.149) 56.376 ms 67.898 ms 7 11 if-4-0-1-1.bb1.Chicago2.Teleglobe.net (207.45.193.9) 66.853 ms 46.089 ms 12 if-0-0.core1.Chicago3.Teleglobe.net (207.45.222.213) 48.817 ms * 75.093 m if-8-1.core1.NewYork.Teleglobe.net (207.45.222.209) 106.198 ms 94.249 ms 13 14 ix-5-3.core1.NewYork.Teleglobe.net (207.45.202.30) 75.286 ms 89.873 ms 9 15 us-gw.ja.net (193.62.157.13) 143.686 ms 159.212 ms 166.020 ms 16 external-gw.ja.net (193.63.94.40) 172.803 ms 189.216 ms 191.260 ms 17 external-gw.bristol-core.ja.net (146.97.252.58) 206.403 ms 185.438 ms 19 bristol.bweman.site.ja.net (146.97.252.102) 196.685 ms 206.221 ms 183.76 18 19 man-gw-2.bwe.net.uk (194.82.125.210) 197.968 ms * 174.809 ms 20 bath-gw-1.bwe.net.uk (194.82.125.198) 209.307 ms 221.512 ms 199.168 ms 21 * * *

22 mary.bath.ac.uk (138.38.32.14) 250.670 ms * 186.400 ms

The traceroute command sends *three* probes for each stage so we can see time variations

The traceroute command sends *three* probes for each stage so we can see time variations

Hop 8: no error packet was received for this TTL. There are many possible reasons, e.g., on a long route it is possible the router is setting an initial TTL on the reply that is too small to reach us

The traceroute command sends *three* probes for each stage so we can see time variations

Hop 8: no error packet was received for this TTL. There are many possible reasons, e.g., on a long route it is possible the router is setting an initial TTL on the reply that is too small to reach us

An increasingly common possibility is that the router refuses to send ICMP errors for TTL exceeded in a weak attempt at security

Sometimes the same line is repeated: this is because some routers forward packets with TTL 0. This is a bug

Sometimes the same line is repeated: this is because some routers forward packets with TTL 0. This is a bug

There are many bugs out there in the real world!

Sometimes the same line is repeated: this is because some routers forward packets with TTL 0. This is a bug

There are many bugs out there in the real world!

Exercise Traceroute usually sends out UDP packets as probes, while some implementations use ICMP pings, while others use TCP SYNs. Find out why

This is so the OS in the source machine can match up the ICMP packet with the original packet and relay the error message back to the appropriate original application

This is so the OS in the source machine can match up the ICMP packet with the original packet and relay the error message back to the appropriate original application

There may be several applications running, sending packets, and getting ICMPs back

This is so the OS in the source machine can match up the ICMP packet with the original packet and relay the error message back to the appropriate original application

There may be several applications running, sending packets, and getting ICMPs back

Eight bytes contains the interesting parts of the next layer headers (in particular the ports of UDP and TCP) and this will be enough to identify which outgoing packet this is a reply to

For example, the ICMPv6 *Neighbour Discovery Protocol* also does the job of ARP

For example, the ICMPv6 *Neighbour Discovery Protocol* also does the job of ARP

With a *Neighbour Solicitation* request and *Neighbour Advertisement* reply

For example, the ICMPv6 *Neighbour Discovery Protocol* also does the job of ARP

With a *Neighbour Solicitation* request and *Neighbour Advertisement* reply

Exercise Read about this and compare with ARP

We now look at one of the fundamental aspects of IP: routing

We now look at one of the fundamental aspects of IP: routing A packet does not know how to get to its destination

We now look at one of the fundamental aspects of IP: routing A packet does not know how to get to its destination It must rely on the routers to send it in the right direction

We now look at one of the fundamental aspects of IP: routing A packet does not know how to get to its destination It must rely on the routers to send it in the right direction So how do the routers do that?

A router can't possibly know where everything in the world is: it is only connected to a handful of neighbour routers

A router can't possibly know where everything in the world is: it is only connected to a handful of neighbour routers

How can a router in England know that to send a packet to Australia it might have to forward it to America first?

A router can't possibly know where everything in the world is: it is only connected to a handful of neighbour routers

How can a router in England know that to send a packet to Australia it might have to forward it to America first?

If there is more than one path, which should be chosen?

A router can't possibly know where everything in the world is: it is only connected to a handful of neighbour routers

How can a router in England know that to send a packet to Australia it might have to forward it to America first?

If there is more than one path, which should be chosen?

A router can't possibly know where everything in the world is: it is only connected to a handful of neighbour routers

How can a router in England know that to send a packet to Australia it might have to forward it to America first?

If there is more than one path, which should be chosen?

There are many relevant criteria:

• The smallest number of hops

A router can't possibly know where everything in the world is: it is only connected to a handful of neighbour routers

How can a router in England know that to send a packet to Australia it might have to forward it to America first?

If there is more than one path, which should be chosen?

- The smallest number of hops
- The fastest: some links might be faster than others, e.g., undersea cable vs. satellite

A router can't possibly know where everything in the world is: it is only connected to a handful of neighbour routers

How can a router in England know that to send a packet to Australia it might have to forward it to America first?

If there is more than one path, which should be chosen?

- The smallest number of hops
- The fastest: some links might be faster than others, e.g., undersea cable vs. satellite
- The cheapest: transit is not free!

A router can't possibly know where everything in the world is: it is only connected to a handful of neighbour routers

How can a router in England know that to send a packet to Australia it might have to forward it to America first?

If there is more than one path, which should be chosen?

- The smallest number of hops
- The fastest: some links might be faster than others, e.g., undersea cable vs. satellite
- The cheapest: transit is not free!
- The most reliable

A router can't possibly know where everything in the world is: it is only connected to a handful of neighbour routers

How can a router in England know that to send a packet to Australia it might have to forward it to America first?

If there is more than one path, which should be chosen?

- The smallest number of hops
- The fastest: some links might be faster than others, e.g., undersea cable vs. satellite
- The cheapest: transit is not free!
- The most reliable
- And so on (c.f., the TOS field in IP)

There is also *policy based routing*, where non-technical issues must be taken into account

There is also *policy based routing*, where non-technical issues must be taken into account

You may wish to restrict where your traffic passes through

There is also *policy based routing*, where non-technical issues must be taken into account

You may wish to restrict where your traffic passes through

At one point, there was a law in Canada that said all traffic that starts and ends in Canada must never leave Canada. Even if it would be cheaper and faster to go via the USA, say

We normally think of two classes of routing:

We normally think of two classes of routing:

- Local routing within an organisation, requiring an *interior* gateway protocol (IGP)
- Non-local routing between organisations, requiring an *exterior gateway protocol* (EGP)

We normally think of two classes of routing:

- Local routing within an organisation, requiring an *interior* gateway protocol (IGP)
- Non-local routing between organisations, requiring an exterior gateway protocol (EGP)

Very different requirements, with exterior protocols mostly driven by politics and economics

We should revisit small routing tables:

Destination	Gateway	Genmask	Flags	Metric	Ref	Use Iface
213.121.147.69	*	255.255.255.255	UH	0	0	0 ppp0
172.18.0.0	*	255.255.0.0	U	0	0	0 eth0
172.17.0.0	*	255.255.0.0	U	0	0	0 eth1
127.0.0.0	*	255.0.0.0	U	0	0	0 lo
default	213.121.147.69	0.0.0.0	UG	0	0	0 ppp0

We should revisit small routing tables:

Destination	Gateway	Genmask	Flags	Metric	Ref	Use Ifac	е
213.121.147.69	*	255.255.255.255	UH	0	0	0 ppp0	
172.18.0.0	*	255.255.0.0	U	0	0	0 eth0	1
172.17.0.0	*	255.255.0.0	U	0	0	0 eth1	
127.0.0.0	*	255.0.0.0	U	0	0	0 lo	
default	213.121.147.69	0.0.0.0	UG	0	0	0 ppp0	1

The destination address on a packet is ANDed with each netmask (Genmask) in turn: if the result is equal to the Destination, route via the given interface

We should revisit small routing tables:

Destination	Gateway	Genmask	Flags	Metric	Ref	Use	Iface
213.121.147.69	*	255.255.255.255	UH	0	0	0	ppp0
172.18.0.0	*	255.255.0.0	U	0	0	0	eth0
172.17.0.0	*	255.255.0.0	U	0	0	0	eth1
127.0.0.0	*	255.0.0.0	U	0	0	0	lo
default	213.121.147.69	0.0.0.0	UG	0	0	0	ppp0

The destination address on a packet is ANDed with each netmask (Genmask) in turn: if the result is equal to the Destination, route via the given interface

Use the first match moving from the longest mask to the shortest: top to bottom in this table

Flags:

• U: the interface is up (i.e., working)

- U: the interface is up (i.e., working)
- G: the route is to a gateway/router. Otherwise the destination is on the local network

- U: the interface is up (i.e., working)
- G: the route is to a gateway/router. Otherwise the destination is on the local network
- H: the route is to a host. The destination address is a single host, not a network

- U: the interface is up (i.e., working)
- G: the route is to a gateway/router. Otherwise the destination is on the local network
- H: the route is to a host. The destination address is a single host, not a network
- D: this entry was created by an ICMP redirect

- U: the interface is up (i.e., working)
- G: the route is to a gateway/router. Otherwise the destination is on the local network
- H: the route is to a host. The destination address is a single host, not a network
- D: this entry was created by an ICMP redirect
- M: this entry was modified by an ICMP redirect

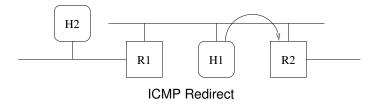
A static route is one added by hand, e.g., the <code>ip route add</code> command in Linux

A *static route* is one added by hand, e.g., the ip route add command in Linux

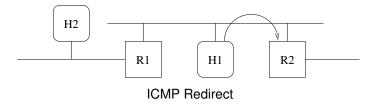
Routing tables on most non-routers are trivial and set up "manually" by the operating system at boot time, often with the use of DHCP

A *static route* is one added by hand, e.g., the ip route add command in Linux

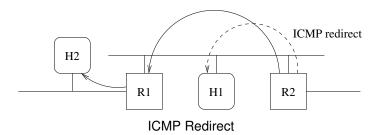
Routing tables on most non-routers are trivial and set up "manually" by the operating system at boot time, often with the use of DHCP


In this context, DHCP is regarded as "setting by hand"

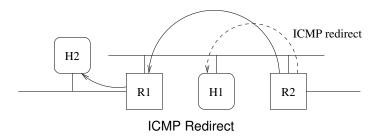
A *static route* is one added by hand, e.g., the ip route add command in Linux


Routing tables on most non-routers are trivial and set up "manually" by the operating system at boot time, often with the use of DHCP

In this context, DHCP is regarded as "setting by hand"


However, sometimes routing tables are not perfectly set up


H1 wants to send to H2 but H1's routing table tells it to route via R2;


When the packet reaches R2, R2 sees it should be routed out on the interface it came in on: so R2 knows H1's table needs improving;

R2 forwards the packet to R1 and sends an ICMP *redirect* to H1;

H1 gets the redirect and uses it to update its routing table. The route will be marked D or M;

Next time H1 will be able to route directly to R1

ICMP can modify routing tables in a small way, but is not the main way routes are set up in big routers

ICMP can modify routing tables in a small way, but is not the main way routes are set up in big routers

We could get administrators to set up the tables

ICMP can modify routing tables in a small way, but is not the main way routes are set up in big routers

We could get administrators to set up the tables

But better is to get the routers to do it themselves

ICMP can modify routing tables in a small way, but is not the main way routes are set up in big routers

We could get administrators to set up the tables

But better is to get the routers to do it themselves

Dynamic routing is the passing of routing information between routers

There are many dynamic routing protocols:

- Routing Information Protocol (RIP)
- Open Shortest Path First (OSPF)
- Border Gateway Protocol (BGP)
- Exterior Gateway Protocol (EGP)
- And so on

There are many dynamic routing protocols:

- Routing Information Protocol (RIP)
- Open Shortest Path First (OSPF)
- Border Gateway Protocol (BGP)
- Exterior Gateway Protocol (EGP)
- And so on

Each protocol is suited to a certain purpose, no single protocol fits all

We start at routing the top level, namely the Internet. Local networks have different requirements

We start at routing the top level, namely the Internet. Local networks have different requirements

The Internet is managed as a collection of *Autonomous Systems* (AS), each administered by a single entity, e.g., a University or company

We start at routing the top level, namely the Internet. Local networks have different requirements

The Internet is managed as a collection of *Autonomous Systems* (AS), each administered by a single entity, e.g., a University or company

Between ASs run *exterior gateway protocols* (EGP), currently BGP and formerly EGP (now obsolete)

We start at routing the top level, namely the Internet. Local networks have different requirements

The Internet is managed as a collection of *Autonomous Systems* (AS), each administered by a single entity, e.g., a University or company

Between ASs run *exterior gateway protocols* (EGP), currently BGP and formerly EGP (now obsolete)

Each AS chooses a suitable routing protocol to direct packets *within* itself: these might be interior gateway protocols, e.g., RIP and OSPF. Large institutions might even run BGP internally and have their own internal ASs

An AS is denoted by a 32 bit integer

An AS is denoted by a 32 bit integer

There are currently (2023) over 115000 ASs

An AS is denoted by a 32 bit integer

There are currently (2023) over 115000 ASs

Top-level routers will need an entry in their tables for each AS

The University of Bath is within AS786, JANET

The University of Bath is within AS786, JANET

All of JANET is one big AS: routing within JANET is an internal issue

The University of Bath is within AS786, JANET

All of JANET is one big AS: routing within JANET is an internal issue

In fact JANET runs BGP internally. Bath has internal AS64857 within JANET

BGP allows policy based routing: it's not just the shortest or fastest path that it chooses

BGP allows policy based routing: it's not just the shortest or fastest path that it chooses

It is a distance-vector protocol

There are two main ways of finding routes:

- distance-vector protocols
- link-state protocols

There are two main ways of finding routes:

- distance-vector protocols
 - distance-vector
 - path-vector
- link-state protocols

And distance-vector is usually sub-divided into distance-vector and path-vector

Distance-vector gathers collections (vectors) of hop counts (distances) from its neighbouring routers to selected destinations. From this it computes its own vector of distances

Distance-vector gathers collections (vectors) of hop counts (distances) from its neighbouring routers to selected destinations. From this it computes its own vector of distances

RIP is an example of a distance-vector protocol, occasionally used in smaller networks

Distance-vector gathers collections (vectors) of hop counts (distances) from its neighbouring routers to selected destinations. From this it computes its own vector of distances

RIP is an example of a distance-vector protocol, occasionally used in smaller networks

In contrast, *link-state* gathers graphs of connectivity from all the routers (or some subset) and uses this to compute its own map. OSPF is an example

Distance-vector gathers collections (vectors) of hop counts (distances) from its neighbouring routers to selected destinations. From this it computes its own vector of distances

RIP is an example of a distance-vector protocol, occasionally used in smaller networks

In contrast, *link-state* gathers graphs of connectivity from all the routers (or some subset) and uses this to compute its own map. OSPF is an example

Distance-vector is simple, but has problems

Distance-vector gathers collections (vectors) of hop counts (distances) from its neighbouring routers to selected destinations. From this it computes its own vector of distances

RIP is an example of a distance-vector protocol, occasionally used in smaller networks

In contrast, *link-state* gathers graphs of connectivity from all the routers (or some subset) and uses this to compute its own map. OSPF is an example

Distance-vector is simple, but has problems

Link-state is more complex, but has advantages

In either case routers periodically send all or parts of their view of the world to their neighbours

In either case routers periodically send all or parts of their view of the world to their neighbours

Some protocols use broadcast, some multicast

In either case routers periodically send all or parts of their view of the world to their neighbours

Some protocols use broadcast, some multicast

A message would be "My view of the network is this..." in the case of link-state

In either case routers periodically send all or parts of their view of the world to their neighbours

Some protocols use broadcast, some multicast

A message would be "My view of the network is this..." in the case of link-state

Or "I know a route to this destination using this number of hops" in the case of distance vector

The routers can then update their tables in light of this

The routers can then update their tables in light of this

For example, in distance vector:

The routers can then update their tables in light of this

For example, in distance vector:

• suppose a router knows a route (i.e., the next hop router) for a given destination of a given number *n* of hops

The routers can then update their tables in light of this

For example, in distance vector:

- suppose a router knows a route (i.e., the next hop router) for a given destination of a given number *n* of hops
- it receives a message from another neighbour that includes a route of *m* hops to that destination

The routers can then update their tables in light of this

For example, in distance vector:

- suppose a router knows a route (i.e., the next hop router) for a given destination of a given number n of hops
- it receives a message from another neighbour that includes a route of *m* hops to that destination
- if m + 1 < n it can update its route to now go through that neighbour, as that is a shorter (fewer hops) route