
Routing

This is simple to implement and run, but such protocols have a
slow convergence problem

This means that if the network changes (e.g., a link is broken,
or a new link is made) it takes many interchanges of information
for the routers to adjust to the new routes

And this can manifest in bad ways



Routing

This is simple to implement and run, but such protocols have a
slow convergence problem

This means that if the network changes (e.g., a link is broken,
or a new link is made) it takes many interchanges of information
for the routers to adjust to the new routes

And this can manifest in bad ways



Routing

This is simple to implement and run, but such protocols have a
slow convergence problem

This means that if the network changes (e.g., a link is broken,
or a new link is made) it takes many interchanges of information
for the routers to adjust to the new routes

And this can manifest in bad ways



Routing
Slow Convergence

123

R2 direct

metric

via

R1 R2 R3 N

R3

Route count 1

R3 knows a route to network N of hop count 1;



Routing
Slow Convergence

R2

3 2 16

R3

metric

via

R1 R2 R3 N

Break in route

After a break in the network R3 finds that route no longer
works;



Routing
Slow Convergence

R2

3 2 16

R3

metric

via

R1 R2 R3 N

No route

So it sends a message to its neighbours (R2) saying “no route
to N”. It uses a count of 16, which is interpreted as infinity;



Routing
Slow Convergence

R2 R1

3 16 16metric

via

R1 R2 R3 N

Update routing table

R2 updates its routing table;



Routing
Slow Convergence

R2 R1

3 4 16metric

via

R1 R2 R3 N

New route for R2?

But R2 also gets a periodic update message from R1 saying
“route of 3 hops”;



Routing
Slow Convergence

R2 R1

3 4 16metric

via

R1 R2 R3 N

R2 update again

So R2 now thinks the best route is via R1, 4 hops;



Routing
Slow Convergence

5

R2 R1

5

R2

4metric

via

R1 R2 R3 N

Another broadcast

And when R2 sends its periodic update message “4” to R1 and
R3, R1 now thinks there is a route via R2 of 5 hops; and R3
thinks there is a route of 5 hops via R2;



Routing
Slow Convergence

5

R2

6

R1

5

R2

metric

via

R1 R2 R3 N

Counts grow slowly

After the next update, R2 thinks there is a route via R3 of 6
hops;



Routing
Slow Convergence

5

R2

6

R1

5

R2

metric

via

R1 R2 R3 N

Counts grow slowly

And so on;



Routing
Slow Convergence

5

R2

6

R1

5

R2

metric

via

R1 R2 R3 N

Counts grow slowly

Eventually the hop count reaches 16, i.e., no route, and so this
route is dropped;



Routing
Slow Convergence

5

R2

6

R1

5

R2

metric

via

R1 R2 R3 N

Counts grow slowly

This is called the count to infinity problem;



Routing
Slow Convergence

5

R2

6

R1

5

R2

metric

via

R1 R2 R3 N

Counts grow slowly

If there was a valid route, it might take a long time to converge
to that route



Routing

Meanwhile real data packets are bouncing forwards and back
between the routers

The local information that distance vector provides is not
enough

RIP uses distance vector and this is a real problem for it

So RIP should only used on small networks that are fairly stable

Link state protocols, e.g., OSPF, converge faster, but need
more complicated graph traversal algorithms to determine best
routes



Routing

Meanwhile real data packets are bouncing forwards and back
between the routers

The local information that distance vector provides is not
enough

RIP uses distance vector and this is a real problem for it

So RIP should only used on small networks that are fairly stable

Link state protocols, e.g., OSPF, converge faster, but need
more complicated graph traversal algorithms to determine best
routes



Routing

Meanwhile real data packets are bouncing forwards and back
between the routers

The local information that distance vector provides is not
enough

RIP uses distance vector and this is a real problem for it

So RIP should only used on small networks that are fairly stable

Link state protocols, e.g., OSPF, converge faster, but need
more complicated graph traversal algorithms to determine best
routes



Routing

Meanwhile real data packets are bouncing forwards and back
between the routers

The local information that distance vector provides is not
enough

RIP uses distance vector and this is a real problem for it

So RIP should only used on small networks that are fairly stable

Link state protocols, e.g., OSPF, converge faster, but need
more complicated graph traversal algorithms to determine best
routes



Routing

Meanwhile real data packets are bouncing forwards and back
between the routers

The local information that distance vector provides is not
enough

RIP uses distance vector and this is a real problem for it

So RIP should only used on small networks that are fairly stable

Link state protocols, e.g., OSPF, converge faster, but need
more complicated graph traversal algorithms to determine best
routes



BGP

BGP is a path vector variation of distance vector: this includes
the path (multiple hops) to the destination, which can be used
to spot the loops that lead to count-to-infinity

ASs do not change very much so slow convergence is not such
a big problem anyway

Exercise Read about path vector systems



BGP

BGP is a path vector variation of distance vector: this includes
the path (multiple hops) to the destination, which can be used
to spot the loops that lead to count-to-infinity

ASs do not change very much so slow convergence is not such
a big problem anyway

Exercise Read about path vector systems



BGP

BGP is a path vector variation of distance vector: this includes
the path (multiple hops) to the destination, which can be used
to spot the loops that lead to count-to-infinity

ASs do not change very much so slow convergence is not such
a big problem anyway

Exercise Read about path vector systems



BGP

BGP does have other problems, particularly authentication

Through accident or malice it is easy to trick BGP

For example, it would be relatively easy to get BGP to transit
data through an evil third party

Also, see the problem with the route to Youtube, earlier



BGP

BGP does have other problems, particularly authentication

Through accident or malice it is easy to trick BGP

For example, it would be relatively easy to get BGP to transit
data through an evil third party

Also, see the problem with the route to Youtube, earlier



BGP

BGP does have other problems, particularly authentication

Through accident or malice it is easy to trick BGP

For example, it would be relatively easy to get BGP to transit
data through an evil third party

Also, see the problem with the route to Youtube, earlier



BGP

BGP does have other problems, particularly authentication

Through accident or malice it is easy to trick BGP

For example, it would be relatively easy to get BGP to transit
data through an evil third party

Also, see the problem with the route to Youtube, earlier



BGP

Exercise Read about the 2018 hack on the cryptocurrency
website MyEtherWallet.com that started by subverting BGP to
send DNS traffic to a rogue server

Exercise Read about the BGP problem of April 2021, where
Vodafone Idea (AS55410) published bad routes

Exercise Read about the proposed Resource Public Key
Infrastructure (RPKI), RFC6810

Exercise Read about the Mutually Agreed Norms for Routing
Security (MANRS) initiative for ISPs and routing exchange
operators

MyEtherWallet.com


BGP

Exercise Read about RIP

Exercise Read about Dijkstra’s algorithm for finding shortest
paths in a graph; and OSPF which uses this algorithm



Transport Layer

We now move up a layer: the Transport Layer

The Internet Protocol has three main protocols that run on top
of IP: two are for data, one for control

The data protocols are complementary

• one is fast, unreliable, connectionless: UDP
• the other is more sophisticated, reliable and

connection-oriented: TCP

The control protocol, ICMP, we have already seen and is
usually considered as part of the network layer

Other data protocols exist in this layer, but TCP and UDP are
currently the important ones



Transport Layer

We now move up a layer: the Transport Layer

The Internet Protocol has three main protocols that run on top
of IP: two are for data, one for control

The data protocols are complementary

• one is fast, unreliable, connectionless: UDP
• the other is more sophisticated, reliable and

connection-oriented: TCP

The control protocol, ICMP, we have already seen and is
usually considered as part of the network layer

Other data protocols exist in this layer, but TCP and UDP are
currently the important ones



Transport Layer

We now move up a layer: the Transport Layer

The Internet Protocol has three main protocols that run on top
of IP: two are for data, one for control

The data protocols are complementary

• one is fast, unreliable, connectionless: UDP
• the other is more sophisticated, reliable and

connection-oriented: TCP

The control protocol, ICMP, we have already seen and is
usually considered as part of the network layer

Other data protocols exist in this layer, but TCP and UDP are
currently the important ones



Transport Layer

We now move up a layer: the Transport Layer

The Internet Protocol has three main protocols that run on top
of IP: two are for data, one for control

The data protocols are complementary

• one is fast, unreliable, connectionless: UDP
• the other is more sophisticated, reliable and

connection-oriented: TCP

The control protocol, ICMP, we have already seen and is
usually considered as part of the network layer

Other data protocols exist in this layer, but TCP and UDP are
currently the important ones



Transport Layer

We now move up a layer: the Transport Layer

The Internet Protocol has three main protocols that run on top
of IP: two are for data, one for control

The data protocols are complementary

• one is fast, unreliable, connectionless: UDP
• the other is more sophisticated, reliable and

connection-oriented: TCP

The control protocol, ICMP, we have already seen and is
usually considered as part of the network layer

Other data protocols exist in this layer, but TCP and UDP are
currently the important ones



Transport Layer
Ports

Both UDP and TCP use the concept of ports

On a single server machine there can be many programs
running, web, email, and so on: how does a client indicate
which service it wants from the server?

And when a reply packet arrives back at a client, how does the
OS know which of the many processes running on the client
that packet should be delivered to?

This is done by ports

A port is just a 16 bit integer: 1-65535



Transport Layer
Ports

Both UDP and TCP use the concept of ports

On a single server machine there can be many programs
running, web, email, and so on: how does a client indicate
which service it wants from the server?

And when a reply packet arrives back at a client, how does the
OS know which of the many processes running on the client
that packet should be delivered to?

This is done by ports

A port is just a 16 bit integer: 1-65535



Transport Layer
Ports

Both UDP and TCP use the concept of ports

On a single server machine there can be many programs
running, web, email, and so on: how does a client indicate
which service it wants from the server?

And when a reply packet arrives back at a client, how does the
OS know which of the many processes running on the client
that packet should be delivered to?

This is done by ports

A port is just a 16 bit integer: 1-65535



Transport Layer
Ports

Both UDP and TCP use the concept of ports

On a single server machine there can be many programs
running, web, email, and so on: how does a client indicate
which service it wants from the server?

And when a reply packet arrives back at a client, how does the
OS know which of the many processes running on the client
that packet should be delivered to?

This is done by ports

A port is just a 16 bit integer: 1-65535



Transport Layer
Ports

Both UDP and TCP use the concept of ports

On a single server machine there can be many programs
running, web, email, and so on: how does a client indicate
which service it wants from the server?

And when a reply packet arrives back at a client, how does the
OS know which of the many processes running on the client
that packet should be delivered to?

This is done by ports

A port is just a 16 bit integer: 1-65535



Transport Layer
Ports

Every TCP and UDP connection has a source port and a
destination port

When a service starts
— i.e., a program that will deal with the service starts —
it listens on a port
— i.e., it informs the operating system that it wishes to receive
data from packets directed to that port number

E.g., an email server may indicate it wants packets addressed
to TCP port 25; a browser would listen on port 80 (and 443)



Transport Layer
Ports

Every TCP and UDP connection has a source port and a
destination port

When a service starts
— i.e., a program that will deal with the service starts —
it listens on a port
— i.e., it informs the operating system that it wishes to receive
data from packets directed to that port number

E.g., an email server may indicate it wants packets addressed
to TCP port 25; a browser would listen on port 80 (and 443)



Transport Layer
Ports

Every TCP and UDP connection has a source port and a
destination port

When a service starts
— i.e., a program that will deal with the service starts —
it listens on a port
— i.e., it informs the operating system that it wishes to receive
data from packets directed to that port number

E.g., an email server may indicate it wants packets addressed
to TCP port 25; a browser would listen on port 80 (and 443)



Transport Layer
Ports

The OS checks that port is not already being used by another
program, and subsequently ensures packets with that
destination port are sent to that service program

So when a TCP packet with destination port 25 arrives its data
will be given to the email program

An analogy: a host as a block of flats. To address a letter to a
specific person you need both a building address (IP address)
and a flat number (port)



Transport Layer
Ports

The OS checks that port is not already being used by another
program, and subsequently ensures packets with that
destination port are sent to that service program

So when a TCP packet with destination port 25 arrives its data
will be given to the email program

An analogy: a host as a block of flats. To address a letter to a
specific person you need both a building address (IP address)
and a flat number (port)



Transport Layer
Ports

The OS checks that port is not already being used by another
program, and subsequently ensures packets with that
destination port are sent to that service program

So when a TCP packet with destination port 25 arrives its data
will be given to the email program

An analogy: a host as a block of flats. To address a letter to a
specific person you need both a building address (IP address)
and a flat number (port)



Transport Layer
Ports

TCP and UDP ports are entirely separate: one service can be
listening for a TCP connection on a port and another service for
UDP on the same port number

The OS can distinguish the two as they are port within different
protocols

TCP and UDP are completely separate and do not interact at
all (at the transport level)



Transport Layer
Ports

TCP and UDP ports are entirely separate: one service can be
listening for a TCP connection on a port and another service for
UDP on the same port number

The OS can distinguish the two as they are port within different
protocols

TCP and UDP are completely separate and do not interact at
all (at the transport level)



Transport Layer
Ports

TCP and UDP ports are entirely separate: one service can be
listening for a TCP connection on a port and another service for
UDP on the same port number

The OS can distinguish the two as they are port within different
protocols

TCP and UDP are completely separate and do not interact at
all (at the transport level)



Transport Layer
Ports

Certain well-known ports are associated certain services

• web server on port 80 (or 443 for a secure version)
• email server on port 25
• FTP on port 21
• Microsoft SQL server on 1433
• hundreds of others. See /etc/services and RFC6335

A range of ports are reserved for privileged (root/administrator)
programs; most are available to any program that wants to use
them

Typically, port numbers under 1024 are reserved for privileged
programs

/etc/services


Transport Layer
Ports

Certain well-known ports are associated certain services

• web server on port 80 (or 443 for a secure version)
• email server on port 25
• FTP on port 21
• Microsoft SQL server on 1433
• hundreds of others. See /etc/services and RFC6335

A range of ports are reserved for privileged (root/administrator)
programs; most are available to any program that wants to use
them

Typically, port numbers under 1024 are reserved for privileged
programs

/etc/services


Transport Layer
Ports

Certain well-known ports are associated certain services

• web server on port 80 (or 443 for a secure version)
• email server on port 25
• FTP on port 21
• Microsoft SQL server on 1433
• hundreds of others. See /etc/services and RFC6335

A range of ports are reserved for privileged (root/administrator)
programs; most are available to any program that wants to use
them

Typically, port numbers under 1024 are reserved for privileged
programs

/etc/services


Transport Layer
Ports

These associations of port numbers to services are purely
convention and for convenience only: no port is special and you
can run any service on any port

It just means you don’t have the extra problem of determining
the port for, say, the web server: it is almost always 80 (or 443)

You can run a web server on port 25 if you wish: you will just
confuse anyone who tries to send you email



Transport Layer
Ports

These associations of port numbers to services are purely
convention and for convenience only: no port is special and you
can run any service on any port

It just means you don’t have the extra problem of determining
the port for, say, the web server: it is almost always 80 (or 443)

You can run a web server on port 25 if you wish: you will just
confuse anyone who tries to send you email



Transport Layer
Ports

These associations of port numbers to services are purely
convention and for convenience only: no port is special and you
can run any service on any port

It just means you don’t have the extra problem of determining
the port for, say, the web server: it is almost always 80 (or 443)

You can run a web server on port 25 if you wish: you will just
confuse anyone who tries to send you email



Transport Layer

80 Web

23 Telnet

25 email

serverclients

12346

12345

32110

23232

Transport layer ports

Ports also enable multiple simultaneous connections between
two machines, e.g., fetching several web pages

The source port (destination port on the returning packet)
allows the client OS to identify which packet belongs to which
client program



Transport Layer

80 Web

23 Telnet

25 email

serverclients

12346

12345

32110

23232

Transport layer ports

Ports also enable multiple simultaneous connections between
two machines, e.g., fetching several web pages

The source port (destination port on the returning packet)
allows the client OS to identify which packet belongs to which
client program



Transport Layer
Ports

Source ports are usually chosen afresh “at random” (usually:
just increment by 1 for each time) for each new connection and
are called ephemeral ports as they only live for the duration of
the connection

There is no technical difference between ephemeral and
well-known ports, just the way they are used

The quad

source address
source port
destination address
destination port

specifies a connection uniquely: the hosts involved and the
processes on those hosts



Transport Layer
Ports

Source ports are usually chosen afresh “at random” (usually:
just increment by 1 for each time) for each new connection and
are called ephemeral ports as they only live for the duration of
the connection

There is no technical difference between ephemeral and
well-known ports, just the way they are used

The quad

source address
source port
destination address
destination port

specifies a connection uniquely: the hosts involved and the
processes on those hosts



Transport Layer
Ports

Source ports are usually chosen afresh “at random” (usually:
just increment by 1 for each time) for each new connection and
are called ephemeral ports as they only live for the duration of
the connection

There is no technical difference between ephemeral and
well-known ports, just the way they are used

The quad

source address
source port
destination address
destination port

specifies a connection uniquely: the hosts involved and the
processes on those hosts



Transport Layer
Ports

The pair (source address, source port) is often called a socket

A full quad is then called a socket pair

Both TCP and UDP have port fields early in their headers: this
is so that the port numbers are included in the “IP header plus
8 bytes of data” that an ICMP error contains

Thus the OS can identify which process an ICMP belongs to

And a non-initial IP fragment won’t have such identifying
information, so this is why ICMPs are not generated for errors
involving such fragments



Transport Layer
Ports

The pair (source address, source port) is often called a socket

A full quad is then called a socket pair

Both TCP and UDP have port fields early in their headers: this
is so that the port numbers are included in the “IP header plus
8 bytes of data” that an ICMP error contains

Thus the OS can identify which process an ICMP belongs to

And a non-initial IP fragment won’t have such identifying
information, so this is why ICMPs are not generated for errors
involving such fragments



Transport Layer
Ports

The pair (source address, source port) is often called a socket

A full quad is then called a socket pair

Both TCP and UDP have port fields early in their headers: this
is so that the port numbers are included in the “IP header plus
8 bytes of data” that an ICMP error contains

Thus the OS can identify which process an ICMP belongs to

And a non-initial IP fragment won’t have such identifying
information, so this is why ICMPs are not generated for errors
involving such fragments



Transport Layer
Ports

The pair (source address, source port) is often called a socket

A full quad is then called a socket pair

Both TCP and UDP have port fields early in their headers: this
is so that the port numbers are included in the “IP header plus
8 bytes of data” that an ICMP error contains

Thus the OS can identify which process an ICMP belongs to

And a non-initial IP fragment won’t have such identifying
information, so this is why ICMPs are not generated for errors
involving such fragments



Transport Layer
Ports

The pair (source address, source port) is often called a socket

A full quad is then called a socket pair

Both TCP and UDP have port fields early in their headers: this
is so that the port numbers are included in the “IP header plus
8 bytes of data” that an ICMP error contains

Thus the OS can identify which process an ICMP belongs to

And a non-initial IP fragment won’t have such identifying
information, so this is why ICMPs are not generated for errors
involving such fragments



Transport Layer
NAT and Ports

And ports are how a NAT firewall does its magic of matching
returning reply packets to request packets

It keeps a list of private (internal) socket pairs against public
(external) socket pairs

And this is enough to match up replies with requests



Transport Layer
NAT and Ports

And ports are how a NAT firewall does its magic of matching
returning reply packets to request packets

It keeps a list of private (internal) socket pairs against public
(external) socket pairs

And this is enough to match up replies with requests



Transport Layer
NAT and Ports

And ports are how a NAT firewall does its magic of matching
returning reply packets to request packets

It keeps a list of private (internal) socket pairs against public
(external) socket pairs

And this is enough to match up replies with requests



Transport Layer
NAT and Ports

Exercise Read about Port Address Translation

Exercise Sometime we wish to allow an external host to initiate
a connection with a private host behind NAT. Read about port
forwarding

Exercise Reflect upon the idea that ports are “process
addresses”, namely a way to identify a particular process within
a destination



Transport Layer
NAT and Ports

Exercise Read about Port Address Translation

Exercise Sometime we wish to allow an external host to initiate
a connection with a private host behind NAT. Read about port
forwarding

Exercise Reflect upon the idea that ports are “process
addresses”, namely a way to identify a particular process within
a destination



Transport Layer
NAT and Ports

Exercise Read about Port Address Translation

Exercise Sometime we wish to allow an external host to initiate
a connection with a private host behind NAT. Read about port
forwarding

Exercise Reflect upon the idea that ports are “process
addresses”, namely a way to identify a particular process within
a destination



UDP

We start with the User Datagram Protocol (UDP) as it is
simpler, though historically it came along much later than TCP

UDP is the transport layer for an unreliable, connectionless
protocol

Recall that “unreliable” means “not guaranteed reliable”

UDP is not much more than IP with ports

UDP packets are typically called datagrams (like telegrams:
simple individual messages)



UDP

We start with the User Datagram Protocol (UDP) as it is
simpler, though historically it came along much later than TCP

UDP is the transport layer for an unreliable, connectionless
protocol

Recall that “unreliable” means “not guaranteed reliable”

UDP is not much more than IP with ports

UDP packets are typically called datagrams (like telegrams:
simple individual messages)



UDP

We start with the User Datagram Protocol (UDP) as it is
simpler, though historically it came along much later than TCP

UDP is the transport layer for an unreliable, connectionless
protocol

Recall that “unreliable” means “not guaranteed reliable”

UDP is not much more than IP with ports

UDP packets are typically called datagrams (like telegrams:
simple individual messages)



UDP

We start with the User Datagram Protocol (UDP) as it is
simpler, though historically it came along much later than TCP

UDP is the transport layer for an unreliable, connectionless
protocol

Recall that “unreliable” means “not guaranteed reliable”

UDP is not much more than IP with ports

UDP packets are typically called datagrams (like telegrams:
simple individual messages)



UDP

We start with the User Datagram Protocol (UDP) as it is
simpler, though historically it came along much later than TCP

UDP is the transport layer for an unreliable, connectionless
protocol

Recall that “unreliable” means “not guaranteed reliable”

UDP is not much more than IP with ports

UDP packets are typically called datagrams (like telegrams:
simple individual messages)



UDP
Header

32 bits

16 bit source port 16 bit destination port

16 bit UDP length 16 bit UDP checksum

8 bytes

UDP header

• Ports: as described
• Length: of the entire packet, including the 8 bytes of the

header: this could be deduced from the IP layer, but this
keeps layer independence

• Checksum: of the UDP header, the data and some fields
from the IP header



UDP
Header

32 bits

16 bit source port 16 bit destination port

16 bit UDP length 16 bit UDP checksum

8 bytes

UDP header

• Ports: as described

• Length: of the entire packet, including the 8 bytes of the
header: this could be deduced from the IP layer, but this
keeps layer independence

• Checksum: of the UDP header, the data and some fields
from the IP header



UDP
Header

32 bits

16 bit source port 16 bit destination port

16 bit UDP length 16 bit UDP checksum

8 bytes

UDP header

• Ports: as described
• Length: of the entire packet, including the 8 bytes of the

header: this could be deduced from the IP layer, but this
keeps layer independence

• Checksum: of the UDP header, the data and some fields
from the IP header



UDP
Header

32 bits

16 bit source port 16 bit destination port

16 bit UDP length 16 bit UDP checksum

8 bytes

UDP header

• Ports: as described
• Length: of the entire packet, including the 8 bytes of the

header: this could be deduced from the IP layer, but this
keeps layer independence

• Checksum: of the UDP header, the data and some fields
from the IP header



UDP

Incorporating fields from the IP header is poor design, as it ties
UDP to IPv4

Changing the Network layer (e.g., to IPv6) involves changing
the way this checksum is computed

Thus adding extra complication to the v4 to v6 transition

The checksum is optional: put 0 in this field if you want to save
a little time: recall UDP is unreliable!



UDP

Incorporating fields from the IP header is poor design, as it ties
UDP to IPv4

Changing the Network layer (e.g., to IPv6) involves changing
the way this checksum is computed

Thus adding extra complication to the v4 to v6 transition

The checksum is optional: put 0 in this field if you want to save
a little time: recall UDP is unreliable!



UDP

Incorporating fields from the IP header is poor design, as it ties
UDP to IPv4

Changing the Network layer (e.g., to IPv6) involves changing
the way this checksum is computed

Thus adding extra complication to the v4 to v6 transition

The checksum is optional: put 0 in this field if you want to save
a little time: recall UDP is unreliable!



UDP

Incorporating fields from the IP header is poor design, as it ties
UDP to IPv4

Changing the Network layer (e.g., to IPv6) involves changing
the way this checksum is computed

Thus adding extra complication to the v4 to v6 transition

The checksum is optional: put 0 in this field if you want to save
a little time: recall UDP is unreliable!



UDP

UDP is a very thin layer on top of IP

It is as reliable or unreliable as the IP it runs on

It is just about as fast and efficient as IP, with only a small
overhead (8 bytes)



UDP

UDP is a very thin layer on top of IP

It is as reliable or unreliable as the IP it runs on

It is just about as fast and efficient as IP, with only a small
overhead (8 bytes)



UDP

UDP is a very thin layer on top of IP

It is as reliable or unreliable as the IP it runs on

It is just about as fast and efficient as IP, with only a small
overhead (8 bytes)



UDP

UDP is widely used as it is good in a few areas:

• One shot applications. Where we have a single request
and reply. For example, DNS

• Where a fast response is required. We have no overhead
in setting up a connection before data can be exchanged
(see TCP). E.g., DNS

• Where speed is more important than accuracy. For
example, media streaming, where the occasional lost
packet is not a problem, but a slow packet is



UDP

UDP is widely used as it is good in a few areas:

• One shot applications. Where we have a single request
and reply. For example, DNS

• Where a fast response is required. We have no overhead
in setting up a connection before data can be exchanged
(see TCP). E.g., DNS

• Where speed is more important than accuracy. For
example, media streaming, where the occasional lost
packet is not a problem, but a slow packet is



UDP

UDP is widely used as it is good in a few areas:

• One shot applications. Where we have a single request
and reply. For example, DNS

• Where a fast response is required. We have no overhead
in setting up a connection before data can be exchanged
(see TCP). E.g., DNS

• Where speed is more important than accuracy. For
example, media streaming, where the occasional lost
packet is not a problem, but a slow packet is



UDP

UDP is widely used as it is good in a few areas:

• One shot applications. Where we have a single request
and reply. For example, DNS

• Where a fast response is required. We have no overhead
in setting up a connection before data can be exchanged
(see TCP). E.g., DNS

• Where speed is more important than accuracy. For
example, media streaming, where the occasional lost
packet is not a problem, but a slow packet is



UDP

No provision is made for lost or duplicated packets in UDP. Any
application that uses UDP must deal with these issues itself, as
required

For example, DNS over UDP sets a timer when a request is
sent. If the reply takes too long in coming, assume the request
or the reply was lost and resend the request

Duplicates are not a problem with DNS

A video streamer might just patch over a lost packet with a copy
of a previous packet; and so on

Exercise UDP is ideal for streaming video and audio, but a lot
of services use HTTP over TCP. What are the advantages and
disadvantages of doing this?



UDP

No provision is made for lost or duplicated packets in UDP. Any
application that uses UDP must deal with these issues itself, as
required

For example, DNS over UDP sets a timer when a request is
sent. If the reply takes too long in coming, assume the request
or the reply was lost and resend the request

Duplicates are not a problem with DNS

A video streamer might just patch over a lost packet with a copy
of a previous packet; and so on

Exercise UDP is ideal for streaming video and audio, but a lot
of services use HTTP over TCP. What are the advantages and
disadvantages of doing this?



UDP

No provision is made for lost or duplicated packets in UDP. Any
application that uses UDP must deal with these issues itself, as
required

For example, DNS over UDP sets a timer when a request is
sent. If the reply takes too long in coming, assume the request
or the reply was lost and resend the request

Duplicates are not a problem with DNS

A video streamer might just patch over a lost packet with a copy
of a previous packet; and so on

Exercise UDP is ideal for streaming video and audio, but a lot
of services use HTTP over TCP. What are the advantages and
disadvantages of doing this?



UDP

No provision is made for lost or duplicated packets in UDP. Any
application that uses UDP must deal with these issues itself, as
required

For example, DNS over UDP sets a timer when a request is
sent. If the reply takes too long in coming, assume the request
or the reply was lost and resend the request

Duplicates are not a problem with DNS

A video streamer might just patch over a lost packet with a copy
of a previous packet; and so on

Exercise UDP is ideal for streaming video and audio, but a lot
of services use HTTP over TCP. What are the advantages and
disadvantages of doing this?



UDP

No provision is made for lost or duplicated packets in UDP. Any
application that uses UDP must deal with these issues itself, as
required

For example, DNS over UDP sets a timer when a request is
sent. If the reply takes too long in coming, assume the request
or the reply was lost and resend the request

Duplicates are not a problem with DNS

A video streamer might just patch over a lost packet with a copy
of a previous packet; and so on

Exercise UDP is ideal for streaming video and audio, but a lot
of services use HTTP over TCP. What are the advantages and
disadvantages of doing this?



UDP

UDP is a widely used protocol (e.g., streaming video or audio),
but we also require a reliable way of sending data

Thus the need for TCP



UDP

UDP is a widely used protocol (e.g., streaming video or audio),
but we also require a reliable way of sending data

Thus the need for TCP


