Networking
CM30078/CM50123
Russell Bradford
2023/24
1. TCP
The Transmission Control Protocol (TCP) is the transport layer for a reliable, connection-oriented protocol
Often called “TCP/IP”
It is hugely more complicated than UDP as it must create a reliable transport from the unreliable IP it runs on
There is a lot of complication to deal with the error cases, such as packet loss and packet duplication
There is overhead in setting up (and taking down) the connection to manage these mechanisms
And more to complexity improve performance and flow control
A lot of state about each connection needs to be stored by the OS
2. TCP
The basis of the reliability is the use of acknowledgement (ACK) packets for every packet sent
If host A sends host B a packet, B must send an ACK packet back to A to inform it of the safe arrival of the packet
If A does not get an ACK, it resends the packet
But ACKs on their own do not solve all the problem
3. TCP
This is due to the Two Armies Problem: suppose two armies A and B wish to coordinate an attack on C
A sends a message to B: “attack at dawn”
How does A know that B got the message? A cannot safely attack until it knows B is ready
So B sends an acknowledgement to A: “OK”
But the ACK might be intercepted and A might not get the ACK
4. TCP
B can’t attack until it knows A got the ACK
So A should send an ACK for the ACK back to B
But this might not get through…
For full reliability it looks like we need an infinite regress!
5. TCP
TCP avoids the Two Armies Problem by using timeouts and packet retransmissions
For every packet:
A starts a retransmission timer when it sends to B
If the timer runs out before it gets an ACK, it resends the packet and restarts the timer
Repeat until A gets an ACK (or A gives up)
6. TCP
Problems to solve include:
· how long to wait before a resend? This might be a slow but otherwise reliable link and resending will just clog the system with extra duplicate packets
· how many times to resend before giving up? It might be the destination has gone away entirely (perhaps disconnected or crashed)
· how long B should wait before sending the ACK? You can piggyback an ACK on an ordinary data packet, so it may be better for B to wait until some data is ready to be returned rather than sending an otherwise empty ACK. This saves on packets sent
· IP datagrams can arrive out of order, so we need some way to recognise which ACK goes with which packet
7. TCP
Other problems TCP also needs to address include:
· how to maintain order in the data? IP datagrams can arrive out of order, so we need some way of reassembling the original data stream in the correct order
· how to manage duplicates? Resends can produce duplicate packets (if the original was not actually lost) so we need some way to recognise and discard extra copies
· Flow control: how to increase the rate of sending packets when things are going well, and decrease the rate when they are not
8. TCP
TCP packets are often called segments
(Reminder: “segment”, “packet”, “datagram”, “frame” all mean pretty much the same thing, just in different layers)
A TCP header is complicated as it must address many complex issues
9. TCP
[image: Pics/tcp.svg]
TCP header
10. TCP
· Ports: identical to UDP (on purpose: actually UDP copied TCP)
· Two 32 bit values: sequence and acknowledgement
11. TCP
Sequence numbers
These numbers are the heart of TCP’s reliability
Every byte in a TCP connection is numbered
The 32 bit sequence number starts at some random value and increases by 1 for each byte sent
So if a segment contains 10 bytes of data, the sequence number on the next segment sent will be 10 greater
12. TCP
Sequence numbers
The sequence number in the header is the number of the first byte of data in the segment
The destination acknowledges those bytes it has received by filling in the ACK field with the appropriate byte number and setting the ACK flag
13. TCP
Sequence numbers
The reverse connection from destination to source has its own sequence number as TCP is fully duplex
Everything we say here is true for data travelling in the reverse direction: the reverse traffic has its own independent sequence numbers and flow control
14. TCP
Sequence numbers
Note that a destination might not immediately get the whole segment that was sent due to fragmentation in the IP layer
IP must wait for all the fragments and reconstruct the segment before it can pass it on to TCP and then TCP can send the ACK
And this can play havoc with TCP’s timers
Another reason to avoid fragmentation
15. TCP
Sequence numbers
The returning ACK field contains the sequence number of the next byte the destination expects to receive, e.g., if the sequence number is 20001 and 14 bytes are received it returns 20015 in the ACK field
ACKs can be piggybacked on normal returning data packets, they don’t need to be separate packets
This helps reduce the amount of network traffic
16. TCP
[image: Pics/ackack.svg]
ACKing lost segments
A is sending 10 byte segments to B, and B is ACKing them; The segment containing bytes 21-30 is lost; When B next gets a segment it still ACKS with 21: that’s the byte it wants next; While the ACK travels back to A, A is still sending new data; Eventually A gets duplicate ACKs from B: this is a sign of a problem; A resends bytes 21-30; When B gets these bytes it can ACK all the way up to 60
17. TCP
Sequence numbers
In fact this diagram is not realistic: it is over-simplified to fit on the slide
TCP specifies that A should continue until it get gets three duplicate ACKs (i.e., four ACKs with the same sequence number, not piggybacked on data and not changing the advertised window) before resending
This is to avoid triggering resends too easily, e.g., it might be just a case of A’s packets being slightly reordered in transit, where a resend is not actually required (remember TCP runs on top of the unreliable IP)
Exercise When might we receive many ACKs with the same sequence number, but nothing is in error?
18. TCP
Sequence numbers
The sequence number wraps around after bytes
This is under 10 seconds for a 10Gb/s Ethernet
Additional mechanisms to extend the count have had to be devised in the light of modern fast networks
Exercise E.g., using the TCP header timestamp option. Read about PAWS
Much more on SEQ and ACKing later, but note that sequence numbers solve the segment ordering problem, too
19. TCP
Back to the TCP header
· 4 bits header length: measured in 32 bit words: the header can have options, so is of variable length
So maximum is 60 bytes. Minimum is the fixed part: 20 bytes
· Many flags performing various functions
20. TCP
Most of these will be described in more detail as we go along:
· URG: urgent data
· ACK: the acknowledgement field is active
· PSH: push this data to the application as fast as possible
· RST: reset (break) the connection
· SYN: synchronise a new connection
· FIN: finish a connection
· ECE: congestion notification
· CWR: congestion window reduced
· 4 reserved bits, set to 0
rId28.svg

	

	

	

	

 32 bits

 Options

 16 bit source port

 16 bit destination port

 32 bit sequence number

 32 bit acknowledgement number

 4 bit

 header

 length

 16 bit window size

 16 bit checksum

 16 bit urgent pointer

 20 bytes

 CWR

 ECE

 URG

 ACK

 PSH

 RST

 SYN

 FIN

 reserved

 4 bits

 20 bytes

rId31.png
A

[rrp—— rrspe—r—
Erpe—
B 20t

rId44.svg

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

 ACK 11

 ACK 21

 ACK 61

 etc

 lost

 A

 B

 SEQ 21-30

 SEQ 31-40

 SEQ 41-50

 SEQ 51-60

 SEQ 21-30

 SEQ 61-70

 SEQ 1-10

 SEQ 11-20

 ACK 21

 ACK 21

 ACK 21

rId47.png

