
TCP
The Transmission Control Protocol (TCP) is the transport layer
for a reliable, connection-oriented protocol

Often called “TCP/IP”

It is hugely more complicated than UDP as it must create a
reliable transport from the unreliable IP it runs on

There is a lot of complication to deal with the error cases, such
as packet loss and packet duplication

There is overhead in setting up (and taking down) the
connection to manage these mechanisms

And more to complexity improve performance and flow control

A lot of state about each connection needs to be stored by the
OS
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TCP

The basis of the reliability is the use of acknowledgement
(ACK) packets for every packet sent

If host A sends host B a packet, B must send an ACK packet
back to A to inform it of the safe arrival of the packet

If A does not get an ACK, it resends the packet

But ACKs on their own do not solve all the problem
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This is due to the Two Armies Problem: suppose two armies A
and B wish to coordinate an attack on C

A sends a message to B: “attack at dawn”

How does A know that B got the message? A cannot safely
attack until it knows B is ready

So B sends an acknowledgement to A: “OK”

But the ACK might be intercepted and A might not get the ACK
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So A should send an ACK for the ACK back to B

But this might not get through. . .

For full reliability it looks like we need an infinite regress!
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TCP avoids the Two Armies Problem by using timeouts and
packet retransmissions

For every packet:

A starts a retransmission timer when it sends to B

If the timer runs out before it gets an ACK, it resends the packet
and restarts the timer

Repeat until A gets an ACK (or A gives up)
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Problems to solve include:

• how long to wait before a resend? This might be a slow but
otherwise reliable link and resending will just clog the
system with extra duplicate packets

• how many times to resend before giving up? It might be
the destination has gone away entirely (perhaps
disconnected or crashed)

• how long B should wait before sending the ACK? You can
piggyback an ACK on an ordinary data packet, so it may
be better for B to wait until some data is ready to be
returned rather than sending an otherwise empty ACK.
This saves on packets sent

• IP datagrams can arrive out of order, so we need some
way to recognise which ACK goes with which packet
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Other problems TCP also needs to address include:

• how to maintain order in the data? IP datagrams can arrive
out of order, so we need some way of reassembling the
original data stream in the correct order

• how to manage duplicates? Resends can produce
duplicate packets (if the original was not actually lost) so
we need some way to recognise and discard extra copies

• Flow control: how to increase the rate of sending packets
when things are going well, and decrease the rate when
they are not
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pretty much the same thing, just in different layers)

A TCP header is complicated as it must address many complex
issues
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32 bits

Options

16 bit source port 16 bit destination port

32 bit sequence number

32 bit acknowledgement number

4 bit
header
length

16 bit window size

16 bit checksum 16 bit urgent pointer

20 bytes
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reserved
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TCP header
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These numbers are the heart of TCP’s reliability

Every byte in a TCP connection is numbered

The 32 bit sequence number starts at some random value and
increases by 1 for each byte sent

So if a segment contains 10 bytes of data, the sequence
number on the next segment sent will be 10 greater
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byte of data in the segment

The destination acknowledges those bytes it has received by
filling in the ACK field with the appropriate byte number and
setting the ACK flag
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The reverse connection from destination to source has its own
sequence number as TCP is fully duplex

Everything we say here is true for data travelling in the reverse
direction: the reverse traffic has its own independent sequence
numbers and flow control
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Note that a destination might not immediately get the whole
segment that was sent due to fragmentation in the IP layer

IP must wait for all the fragments and reconstruct the segment
before it can pass it on to TCP and then TCP can send the ACK

And this can play havoc with TCP’s timers

Another reason to avoid fragmentation
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The returning ACK field contains the sequence number of the
next byte the destination expects to receive, e.g., if the
sequence number is 20001 and 14 bytes are received it returns
20015 in the ACK field

ACKs can be piggybacked on normal returning data packets,
they don’t need to be separate packets

This helps reduce the amount of network traffic
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When B gets these bytes it
can ACK all the way up to 60
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Sequence numbers

In fact this diagram is not realistic: it is over-simplified to fit on
the slide

TCP specifies that A should continue until it get gets three
duplicate ACKs (i.e., four ACKs with the same sequence
number, not piggybacked on data and not changing the
advertised window) before resending

This is to avoid triggering resends too easily, e.g., it might be
just a case of A’s packets being slightly reordered in transit,
where a resend is not actually required (remember TCP runs
on top of the unreliable IP)

Exercise When might we receive many ACKs with the same
sequence number, but nothing is in error?
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Sequence numbers

The sequence number wraps around after
232 − 1 = 4294967295 bytes

This is under 10 seconds for a 10Gb/s Ethernet

Additional mechanisms to extend the count have had to be
devised in the light of modern fast networks

Exercise E.g., using the TCP header timestamp option. Read
about PAWS

Much more on SEQ and ACKing later, but note that sequence
numbers solve the segment ordering problem, too
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can have options, so is of variable length

So maximum is 60 bytes. Minimum is the fixed part: 20 bytes

• Many flags performing various functions
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Most of these will be described in more detail as we go along:

• URG: urgent data
• ACK: the acknowledgement field is active
• PSH: push this data to the application as fast as possible
• RST: reset (break) the connection
• SYN: synchronise a new connection
• FIN: finish a connection
• ECE: congestion notification
• CWR: congestion window reduced
• 4 reserved bits, set to 0


