
TCP
Flow Control

• 16 bits of advertised window size: for flow control

TCP implements flow control, i.e., adjusting the rate of sending
packets up or down to make best use of current conditions
(a) in the network and (b) in the receiving host

The advertised window deals with (b)

The destination has only a limited amount of buffer memory it
can store new segments in

If the application is not reading the data as fast as it arrives, the
buffer will fill up



TCP
Flow Control

• 16 bits of advertised window size: for flow control

TCP implements flow control, i.e., adjusting the rate of sending
packets up or down to make best use of current conditions
(a) in the network and (b) in the receiving host

The advertised window deals with (b)

The destination has only a limited amount of buffer memory it
can store new segments in

If the application is not reading the data as fast as it arrives, the
buffer will fill up



TCP
Flow Control

• 16 bits of advertised window size: for flow control

TCP implements flow control, i.e., adjusting the rate of sending
packets up or down to make best use of current conditions
(a) in the network and (b) in the receiving host

The advertised window deals with (b)

The destination has only a limited amount of buffer memory it
can store new segments in

If the application is not reading the data as fast as it arrives, the
buffer will fill up



TCP
Flow Control

• 16 bits of advertised window size: for flow control

TCP implements flow control, i.e., adjusting the rate of sending
packets up or down to make best use of current conditions
(a) in the network and (b) in the receiving host

The advertised window deals with (b)

The destination has only a limited amount of buffer memory it
can store new segments in

If the application is not reading the data as fast as it arrives, the
buffer will fill up



TCP
Flow Control

• 16 bits of advertised window size: for flow control

TCP implements flow control, i.e., adjusting the rate of sending
packets up or down to make best use of current conditions
(a) in the network and (b) in the receiving host

The advertised window deals with (b)

The destination has only a limited amount of buffer memory it
can store new segments in

If the application is not reading the data as fast as it arrives, the
buffer will fill up



TCP
Flow Control

The window size is the amount of buffer the receiver has left:
the receiver sends this value in each segment going back to the
sender

If the space left is very small, the sender can slow down
sending until space in the receiver is freed up



TCP
Flow Control

The window size is the amount of buffer the receiver has left:
the receiver sends this value in each segment going back to the
sender

If the space left is very small, the sender can slow down
sending until space in the receiver is freed up



TCP
Flow Control

A B

100

Initially B has space 100 in its buffer

Initially B has space 100 in its buffer



TCP
Flow Control

A B

100

80 bytes

A sends 80 bytes

A sends 80 bytes



TCP
Flow Control

A B

20

B saves the data in the buffer

B save the data in its buffer



TCP
Flow Control

A B

20

reply + adv 20

On the next returning segment, B advertises 20

On the next returning segment, B advertises 20



TCP
Flow Control

A B

20
20 bytes

A now knows it shouldn’t send more than 20

A now knows it shouldn’t send more than 20



TCP
Flow Control

A B

0

Next advertisment would be 0

Next advertisement would be 0



TCP
Flow Control

A B

40

Until B reads some of the data

Until B reads some of the data



TCP
Flow Control

A B

20

On the next returning segment, B advertises 20

reply + adv 40

And can advertise the space



TCP
Flow Control

Thus B can tell A to slow down or speed up as appropriate to its
remaining buffer space

16 bits gives a maximum buffer of 65535 bytes: much too small
for modern hosts that have megabytes to play with

There is a header option to scale this up to something
reasonable

Symmetrically, A has its own advertised window that it sends to
B

The other flow control mechanism to deal with varying
conditions in the network comes later



TCP
Flow Control

Thus B can tell A to slow down or speed up as appropriate to its
remaining buffer space

16 bits gives a maximum buffer of 65535 bytes: much too small
for modern hosts that have megabytes to play with

There is a header option to scale this up to something
reasonable

Symmetrically, A has its own advertised window that it sends to
B

The other flow control mechanism to deal with varying
conditions in the network comes later



TCP
Flow Control

Thus B can tell A to slow down or speed up as appropriate to its
remaining buffer space

16 bits gives a maximum buffer of 65535 bytes: much too small
for modern hosts that have megabytes to play with

There is a header option to scale this up to something
reasonable

Symmetrically, A has its own advertised window that it sends to
B

The other flow control mechanism to deal with varying
conditions in the network comes later



TCP
Flow Control

Thus B can tell A to slow down or speed up as appropriate to its
remaining buffer space

16 bits gives a maximum buffer of 65535 bytes: much too small
for modern hosts that have megabytes to play with

There is a header option to scale this up to something
reasonable

Symmetrically, A has its own advertised window that it sends to
B

The other flow control mechanism to deal with varying
conditions in the network comes later



TCP
Flow Control

Thus B can tell A to slow down or speed up as appropriate to its
remaining buffer space

16 bits gives a maximum buffer of 65535 bytes: much too small
for modern hosts that have megabytes to play with

There is a header option to scale this up to something
reasonable

Symmetrically, A has its own advertised window that it sends to
B

The other flow control mechanism to deal with varying
conditions in the network comes later



TCP

• Checksum of the header, the data, plus some fields of the
IP layer

Again, bad design!

• Urgent pointer: active if the URG flag is set

The urgent pointer is a pointer into the data stream that
indicates where the current urgent data block ends

Urgent data includes things like interrupts that need to be
processed before any other data that is buffered



TCP

• Checksum of the header, the data, plus some fields of the
IP layer

Again, bad design!

• Urgent pointer: active if the URG flag is set

The urgent pointer is a pointer into the data stream that
indicates where the current urgent data block ends

Urgent data includes things like interrupts that need to be
processed before any other data that is buffered



TCP

• Checksum of the header, the data, plus some fields of the
IP layer

Again, bad design!

• Urgent pointer: active if the URG flag is set

The urgent pointer is a pointer into the data stream that
indicates where the current urgent data block ends

Urgent data includes things like interrupts that need to be
processed before any other data that is buffered



TCP

• Checksum of the header, the data, plus some fields of the
IP layer

Again, bad design!

• Urgent pointer: active if the URG flag is set

The urgent pointer is a pointer into the data stream that
indicates where the current urgent data block ends

Urgent data includes things like interrupts that need to be
processed before any other data that is buffered



TCP

• Checksum of the header, the data, plus some fields of the
IP layer

Again, bad design!

• Urgent pointer: active if the URG flag is set

The urgent pointer is a pointer into the data stream that
indicates where the current urgent data block ends

Urgent data includes things like interrupts that need to be
processed before any other data that is buffered



TCP

The OS should notify the application when an URG is received,
e.g., using an interrupt

The OS interrupt code would then read through the urgent data
block and act appropriately on what it finds there



TCP

The OS should notify the application when an URG is received,
e.g., using an interrupt

The OS interrupt code would then read through the urgent data
block and act appropriately on what it finds there



TCP

In a similar vein we have the

• PSH flag: set to indicate the destination OS should pass
data to the application as soon as possible

The destination OS might be holding back data for some
reason before passing it on to the application, e.g., collecting
together segments into one large buffer for efficiency reasons

Or holding back notifications to the application that data has
arrived: again not to swamp the application with loads of
notifications of small amounts of data

This flag says send the buffered data to the application, don’t
wait



TCP

In a similar vein we have the

• PSH flag: set to indicate the destination OS should pass
data to the application as soon as possible

The destination OS might be holding back data for some
reason before passing it on to the application, e.g., collecting
together segments into one large buffer for efficiency reasons

Or holding back notifications to the application that data has
arrived: again not to swamp the application with loads of
notifications of small amounts of data

This flag says send the buffered data to the application, don’t
wait



TCP

In a similar vein we have the

• PSH flag: set to indicate the destination OS should pass
data to the application as soon as possible

The destination OS might be holding back data for some
reason before passing it on to the application, e.g., collecting
together segments into one large buffer for efficiency reasons

Or holding back notifications to the application that data has
arrived: again not to swamp the application with loads of
notifications of small amounts of data

This flag says send the buffered data to the application, don’t
wait



TCP

In a similar vein we have the

• PSH flag: set to indicate the destination OS should pass
data to the application as soon as possible

The destination OS might be holding back data for some
reason before passing it on to the application, e.g., collecting
together segments into one large buffer for efficiency reasons

Or holding back notifications to the application that data has
arrived: again not to swamp the application with loads of
notifications of small amounts of data

This flag says send the buffered data to the application, don’t
wait



TCP

Originally it was intended the client application could set the
PSH when it felt the server should not be hanging about
buffering data

These days, there is no mechanism (in the sockets API) for
applications to specify this, but the TCP software itself sets
PSH when appropriate, e.g., when the client’s send buffer
empties

The idea here is that there is no point for the receiver waiting for
more data, as there is no more to send right now



TCP

Originally it was intended the client application could set the
PSH when it felt the server should not be hanging about
buffering data

These days, there is no mechanism (in the sockets API) for
applications to specify this, but the TCP software itself sets
PSH when appropriate, e.g., when the client’s send buffer
empties

The idea here is that there is no point for the receiver waiting for
more data, as there is no more to send right now



TCP

Originally it was intended the client application could set the
PSH when it felt the server should not be hanging about
buffering data

These days, there is no mechanism (in the sockets API) for
applications to specify this, but the TCP software itself sets
PSH when appropriate, e.g., when the client’s send buffer
empties

The idea here is that there is no point for the receiver waiting for
more data, as there is no more to send right now



TCP

After the fixed header there are the options, including window
scale and maximum segment size

After the options header is the data, which can be empty, e.g.
for a pure ACK



TCP

After the fixed header there are the options, including window
scale and maximum segment size

After the options header is the data, which can be empty, e.g.
for a pure ACK



TCP
Options

TCP Options are many and varied

Timestamp kind 8 len 10 timestamp value timestamp echo reply

4 bytes 4 bytes

End of list kind 0

No operation kind 1

Window

scale factor kind 3 len 3 shift

count

Maximum

segment size kind 2 len 4 MSS

2 bytes

SACK ACK kind 5 len

left edge of 1st block

right edge of 1st block

repeat for all blocks

kind 4 len 2
SACK

permitted

Some TCP optional headers



TCP
Options

Options start with a 1 byte kind which indicates what the option
is to do

Kinds 0 and 1 are one byte long; others have a length field

No operation (NOP) is used to pad to align fields to a multiple
of 4 bytes

Maximum segment size (MSS) specifies how large a segment
we can cope with: the headers are not included in count



TCP
Options

Options start with a 1 byte kind which indicates what the option
is to do

Kinds 0 and 1 are one byte long; others have a length field

No operation (NOP) is used to pad to align fields to a multiple
of 4 bytes

Maximum segment size (MSS) specifies how large a segment
we can cope with: the headers are not included in count



TCP
Options

Options start with a 1 byte kind which indicates what the option
is to do

Kinds 0 and 1 are one byte long; others have a length field

No operation (NOP) is used to pad to align fields to a multiple
of 4 bytes

Maximum segment size (MSS) specifies how large a segment
we can cope with: the headers are not included in count



TCP
Options

Options start with a 1 byte kind which indicates what the option
is to do

Kinds 0 and 1 are one byte long; others have a length field

No operation (NOP) is used to pad to align fields to a multiple
of 4 bytes

Maximum segment size (MSS) specifies how large a segment
we can cope with: the headers are not included in count



TCP
MSS

The MSS is the largest TCP segment the host can process

Note that this segment might be reconstructed from more than
one IP fragment, so might not be directly related to the MTU

However, if we want to ensure no IP fragmentation, the MSS
must be set to the MTU minus headers: 40 = 20 + 20 bytes for
IP and TCP

Thus a TCP implementation must be able to process a MSS of
576 − 40 = 536 bytes

The MSS is usually communicated in the option header in the
setup of the TCP connection, and is typically set to avoid
fragmentation



TCP
MSS

The MSS is the largest TCP segment the host can process

Note that this segment might be reconstructed from more than
one IP fragment, so might not be directly related to the MTU

However, if we want to ensure no IP fragmentation, the MSS
must be set to the MTU minus headers: 40 = 20 + 20 bytes for
IP and TCP

Thus a TCP implementation must be able to process a MSS of
576 − 40 = 536 bytes

The MSS is usually communicated in the option header in the
setup of the TCP connection, and is typically set to avoid
fragmentation



TCP
MSS

The MSS is the largest TCP segment the host can process

Note that this segment might be reconstructed from more than
one IP fragment, so might not be directly related to the MTU

However, if we want to ensure no IP fragmentation, the MSS
must be set to the MTU minus headers: 40 = 20 + 20 bytes for
IP and TCP

Thus a TCP implementation must be able to process a MSS of
576 − 40 = 536 bytes

The MSS is usually communicated in the option header in the
setup of the TCP connection, and is typically set to avoid
fragmentation



TCP
MSS

The MSS is the largest TCP segment the host can process

Note that this segment might be reconstructed from more than
one IP fragment, so might not be directly related to the MTU

However, if we want to ensure no IP fragmentation, the MSS
must be set to the MTU minus headers: 40 = 20 + 20 bytes for
IP and TCP

Thus a TCP implementation must be able to process a MSS of
576 − 40 = 536 bytes

The MSS is usually communicated in the option header in the
setup of the TCP connection, and is typically set to avoid
fragmentation



TCP
MSS

The MSS is the largest TCP segment the host can process

Note that this segment might be reconstructed from more than
one IP fragment, so might not be directly related to the MTU

However, if we want to ensure no IP fragmentation, the MSS
must be set to the MTU minus headers: 40 = 20 + 20 bytes for
IP and TCP

Thus a TCP implementation must be able to process a MSS of
576 − 40 = 536 bytes

The MSS is usually communicated in the option header in the
setup of the TCP connection, and is typically set to avoid
fragmentation



TCP
Options

As previously mentioned, the window scale option allows us to
multiply up the value in the advertised window size header field

This optional field contains a value from 0 to 14

A value of n scales by 2n: thus a maximum window of
214 × 65535 = 1,073,725,440 bytes (a gigabyte)

But that’s still only about a second’s worth of data in a 10Gb/s
Ethernet!

A large window is very important is modern fast networks to get
the most out of the available bandwidth: we don’t want the
client to have to keep stopping to wait for the server



TCP
Options

As previously mentioned, the window scale option allows us to
multiply up the value in the advertised window size header field

This optional field contains a value from 0 to 14

A value of n scales by 2n: thus a maximum window of
214 × 65535 = 1,073,725,440 bytes (a gigabyte)

But that’s still only about a second’s worth of data in a 10Gb/s
Ethernet!

A large window is very important is modern fast networks to get
the most out of the available bandwidth: we don’t want the
client to have to keep stopping to wait for the server



TCP
Options

As previously mentioned, the window scale option allows us to
multiply up the value in the advertised window size header field

This optional field contains a value from 0 to 14

A value of n scales by 2n: thus a maximum window of
214 × 65535 = 1,073,725,440 bytes (a gigabyte)

But that’s still only about a second’s worth of data in a 10Gb/s
Ethernet!

A large window is very important is modern fast networks to get
the most out of the available bandwidth: we don’t want the
client to have to keep stopping to wait for the server



TCP
Options

As previously mentioned, the window scale option allows us to
multiply up the value in the advertised window size header field

This optional field contains a value from 0 to 14

A value of n scales by 2n: thus a maximum window of
214 × 65535 = 1,073,725,440 bytes (a gigabyte)

But that’s still only about a second’s worth of data in a 10Gb/s
Ethernet!

A large window is very important is modern fast networks to get
the most out of the available bandwidth: we don’t want the
client to have to keep stopping to wait for the server



TCP
Options

As previously mentioned, the window scale option allows us to
multiply up the value in the advertised window size header field

This optional field contains a value from 0 to 14

A value of n scales by 2n: thus a maximum window of
214 × 65535 = 1,073,725,440 bytes (a gigabyte)

But that’s still only about a second’s worth of data in a 10Gb/s
Ethernet!

A large window is very important is modern fast networks to get
the most out of the available bandwidth: we don’t want the
client to have to keep stopping to wait for the server



TCP
Options

My desktop uses a window scale of 7: 27 × 65535 = 8388480
bytes, or a maximum of 8MB buffer space per connection

Its initial window size on a new TCP connection is 14600,
meaning 27 × 14600 = 1868800 bytes, so a buffer of a bit
under 2MB has been allocated (for this socket)

Exercise Go back and re-read the section on advertised
windows



TCP
Options

My desktop uses a window scale of 7: 27 × 65535 = 8388480
bytes, or a maximum of 8MB buffer space per connection

Its initial window size on a new TCP connection is 14600,
meaning 27 × 14600 = 1868800 bytes, so a buffer of a bit
under 2MB has been allocated (for this socket)

Exercise Go back and re-read the section on advertised
windows



TCP
Options

My desktop uses a window scale of 7: 27 × 65535 = 8388480
bytes, or a maximum of 8MB buffer space per connection

Its initial window size on a new TCP connection is 14600,
meaning 27 × 14600 = 1868800 bytes, so a buffer of a bit
under 2MB has been allocated (for this socket)

Exercise Go back and re-read the section on advertised
windows



TCP
Options

Timestamp (TS val) puts the time of day into the segment
header, allowing accurate measurement of the round trip time
(RTT) of a segment and its ACK. Useful for computing
retransmission times (see later)

Timestamp Echo Reply (TS ECR) in an ACK segment is the
timestamp being returned to the sender so it can compute the
RTT

Selective acknowledgement (SACK) is an extension of the ACK
mechanism that allows more flexible ways of acknowledging
segments. SACK is negotiated in the connection setup with a
SACK Permitted option



TCP
Options

Timestamp (TS val) puts the time of day into the segment
header, allowing accurate measurement of the round trip time
(RTT) of a segment and its ACK. Useful for computing
retransmission times (see later)

Timestamp Echo Reply (TS ECR) in an ACK segment is the
timestamp being returned to the sender so it can compute the
RTT

Selective acknowledgement (SACK) is an extension of the ACK
mechanism that allows more flexible ways of acknowledging
segments. SACK is negotiated in the connection setup with a
SACK Permitted option



TCP
Options

Timestamp (TS val) puts the time of day into the segment
header, allowing accurate measurement of the round trip time
(RTT) of a segment and its ACK. Useful for computing
retransmission times (see later)

Timestamp Echo Reply (TS ECR) in an ACK segment is the
timestamp being returned to the sender so it can compute the
RTT

Selective acknowledgement (SACK) is an extension of the ACK
mechanism that allows more flexible ways of acknowledging
segments. SACK is negotiated in the connection setup with a
SACK Permitted option



TCP
Options

Several options are only allowed in the first segment of a new
connection, e.g., Window scale, MSS and SACK Permitted

This is because some things, e.g., buffer space, need to be set
up before a connection and varying them mid-connection is
difficult or makes little sense



TCP
Options

Several options are only allowed in the first segment of a new
connection, e.g., Window scale, MSS and SACK Permitted

This is because some things, e.g., buffer space, need to be set
up before a connection and varying them mid-connection is
difficult or makes little sense



TCP
Setup and Teardown

TCP is connection oriented, meaning a connection is set up
between source and destination, and all packets that flow within
this connection are related, through the sequence numbers,
and they all use the same state, such as advertised window

For example, a connection to fetch a web page from a server
will involve many segments

Note that each TCP connection is separate from all others and
has its own state

It is important to realise that this is a connection in the transport
layer



TCP
Setup and Teardown

TCP is connection oriented, meaning a connection is set up
between source and destination, and all packets that flow within
this connection are related, through the sequence numbers,
and they all use the same state, such as advertised window

For example, a connection to fetch a web page from a server
will involve many segments

Note that each TCP connection is separate from all others and
has its own state

It is important to realise that this is a connection in the transport
layer



TCP
Setup and Teardown

TCP is connection oriented, meaning a connection is set up
between source and destination, and all packets that flow within
this connection are related, through the sequence numbers,
and they all use the same state, such as advertised window

For example, a connection to fetch a web page from a server
will involve many segments

Note that each TCP connection is separate from all others and
has its own state

It is important to realise that this is a connection in the transport
layer



TCP
Setup and Teardown

TCP is connection oriented, meaning a connection is set up
between source and destination, and all packets that flow within
this connection are related, through the sequence numbers,
and they all use the same state, such as advertised window

For example, a connection to fetch a web page from a server
will involve many segments

Note that each TCP connection is separate from all others and
has its own state

It is important to realise that this is a connection in the transport
layer



TCP
Setup and Teardown

The underlying layer, IP, is not connection oriented, and each
individual datagram is treated individually, e.g., might take a
different route to its destination: IP is connectionless

Thus TCP connection has a weak version of sessions: though
no further session mechanism is provided, e.g., no session
resumption



TCP
Setup and Teardown

The underlying layer, IP, is not connection oriented, and each
individual datagram is treated individually, e.g., might take a
different route to its destination: IP is connectionless

Thus TCP connection has a weak version of sessions: though
no further session mechanism is provided, e.g., no session
resumption



TCP
Connection(less)

UDP is not connection oriented. Each datagram in UDP is
treated individually

UDP is a connectionless protocol

Of course, both connection oriented and connectionless
protocols are useful in the right circumstances



TCP
Connection(less)

UDP is not connection oriented. Each datagram in UDP is
treated individually

UDP is a connectionless protocol

Of course, both connection oriented and connectionless
protocols are useful in the right circumstances



TCP
Connection(less)

UDP is not connection oriented. Each datagram in UDP is
treated individually

UDP is a connectionless protocol

Of course, both connection oriented and connectionless
protocols are useful in the right circumstances



TCP
Setup and Teardown

Setting up a TCP connection is complicated, as there is a lot of
state that must be set up, e.g., sequence numbers, initial
advertised windows, and buffers amongst other things

Similarly, closing a connection is not trivial: we must ensure all
segments in flight have been ACKed properly. Perhaps
segments need to be resent. Thus a connection will hang
around for a little after closing to ensure everything is tidied up

Fortunately for the application programmer, all this detail is
taken care of by the TCP layer software in the operating
system: though it does have occasional repercussions in the
application if the connection needs to outlive the application for
a while



TCP
Setup and Teardown

Setting up a TCP connection is complicated, as there is a lot of
state that must be set up, e.g., sequence numbers, initial
advertised windows, and buffers amongst other things

Similarly, closing a connection is not trivial: we must ensure all
segments in flight have been ACKed properly. Perhaps
segments need to be resent. Thus a connection will hang
around for a little after closing to ensure everything is tidied up

Fortunately for the application programmer, all this detail is
taken care of by the TCP layer software in the operating
system: though it does have occasional repercussions in the
application if the connection needs to outlive the application for
a while



TCP
Setup and Teardown

Setting up a TCP connection is complicated, as there is a lot of
state that must be set up, e.g., sequence numbers, initial
advertised windows, and buffers amongst other things

Similarly, closing a connection is not trivial: we must ensure all
segments in flight have been ACKed properly. Perhaps
segments need to be resent. Thus a connection will hang
around for a little after closing to ensure everything is tidied up

Fortunately for the application programmer, all this detail is
taken care of by the TCP layer software in the operating
system: though it does have occasional repercussions in the
application if the connection needs to outlive the application for
a while



TCP
Setup and Teardown

Before TCP can send data, it exchanges some packets with the
setup information



TCP
Setup and Teardown

SYN n

Establishment

SYN m, ACKn+1

ACK m+1

active open passive open

TCP setup handshake

Three segments are needed to exchange the information
needed to make a new connection;



TCP
Setup and Teardown

SYN n

Establishment

SYN m, ACKn+1

ACK m+1

active open passive open

TCP setup handshake

The initiator, the client, sends a segment with the SYN flag set
and its initial sequence number (ISN), n, is randomly
generated;



TCP
Setup and Teardown

SYN n

Establishment

SYN m, ACKn+1

ACK m+1

active open passive open

TCP setup handshake

The receiver, the server, replies with another SYN segment
containing its own ISN, m;



TCP
Setup and Teardown

SYN n

Establishment

SYN m, ACKn+1

ACK m+1

active open passive open

TCP setup handshake

It also ACKs the client’s ISN with n + 1, the sequence number
of the next byte it expects from the client;



TCP
Setup and Teardown

SYN n

Establishment

SYN m, ACKn+1

ACK m+1

active open passive open

TCP setup handshake

The initial SYN can be lost just like any other segment, so we
need to ACK it independently of the first data byte, which
comes later;



TCP
Setup and Teardown

SYN n

Establishment

SYN m, ACKn+1

ACK m+1

active open passive open

TCP setup handshake

The client ACKs the server’s ISN with m + 1



TCP
Setup and Teardown

This is called a three way handshake

These segments contain no user data: they are overhead in
setting up the connection

Overhead in time and overhead in packets on the network

After the handshake we can start sending data

The client (first one to initiate) is said to do an active open,
while the server does a passive open



TCP
Setup and Teardown

This is called a three way handshake

These segments contain no user data: they are overhead in
setting up the connection

Overhead in time and overhead in packets on the network

After the handshake we can start sending data

The client (first one to initiate) is said to do an active open,
while the server does a passive open



TCP
Setup and Teardown

This is called a three way handshake

These segments contain no user data: they are overhead in
setting up the connection

Overhead in time and overhead in packets on the network

After the handshake we can start sending data

The client (first one to initiate) is said to do an active open,
while the server does a passive open



TCP
Setup and Teardown

This is called a three way handshake

These segments contain no user data: they are overhead in
setting up the connection

Overhead in time and overhead in packets on the network

After the handshake we can start sending data

The client (first one to initiate) is said to do an active open,
while the server does a passive open



TCP
Setup and Teardown

This is called a three way handshake

These segments contain no user data: they are overhead in
setting up the connection

Overhead in time and overhead in packets on the network

After the handshake we can start sending data

The client (first one to initiate) is said to do an active open,
while the server does a passive open



TCP
Setup and Teardown

SYN n

SYN m

SYN n, ACK m+1

SYN m, ACKn+1

Establishment

TCP simultaneous open

It is possible (but rare) for both hosts to do an active open,
where the SYNs cross each other in flight

Matching TCP port numbers will identify when this happens

This is defined to produce one new connection, not two



TCP
Setup and Teardown

SYN n

SYN m

SYN n, ACK m+1

SYN m, ACKn+1

Establishment

TCP simultaneous open

It is possible (but rare) for both hosts to do an active open,
where the SYNs cross each other in flight

Matching TCP port numbers will identify when this happens

This is defined to produce one new connection, not two



TCP
Setup and Teardown

SYN n

SYN m

SYN n, ACK m+1

SYN m, ACKn+1

Establishment

TCP simultaneous open

It is possible (but rare) for both hosts to do an active open,
where the SYNs cross each other in flight

Matching TCP port numbers will identify when this happens

This is defined to produce one new connection, not two



TCP
Setup and Teardown

FIN s

ACK s+1

ACK r+1

FIN r, ACK s

Normal Termination

active close passive close

TCP teardown

Closing a connection takes up to four segments;



TCP
Setup and Teardown

FIN s

ACK s+1

ACK r+1

FIN r, ACK s

Normal Termination

active close passive close

TCP teardown

TCP is full duplex, and a connection in one direction may be
closed independently of the other;



TCP
Setup and Teardown

FIN s

ACK s+1

ACK r+1

FIN r, ACK s

Normal Termination

active close passive close

TCP teardown

The FIN flag is set to indicate a half close: this indicates no
more data will be sent from this end;



TCP
Setup and Teardown

FIN s

ACK s+1

ACK r+1

FIN r, ACK s

Normal Termination

active close passive close

TCP teardown

We can still receive data at this end;



TCP
Setup and Teardown

FIN s

ACK s+1

ACK r+1

FIN r, ACK s

Normal Termination

active close passive close

TCP teardown

The FIN is ACKed;



TCP
Setup and Teardown

FIN s

ACK s+1

ACK r+1

FIN r, ACK s

Normal Termination

active close passive close

TCP teardown

When the other end wants to close, it sends a FIN and gets an
appropriate ACK;



TCP
Setup and Teardown

FIN s

ACK s+1

ACK r+1

FIN r, ACK s

Normal Termination

active close passive close

TCP teardown

Note there may still be data (and the corresponding returning
ACKs) flowing from the server to the client before the server
decides to close;



TCP
Setup and Teardown

FIN s

ACK s+1

ACK r+1

FIN r, ACK s

Normal Termination

active close passive close

TCP teardown

The first close is called an active close;



TCP
Setup and Teardown

FIN s

ACK s+1

ACK r+1

FIN r, ACK s

Normal Termination

active close passive close

TCP teardown

The other end does a passive close



TCP
Setup and Teardown

FIN s

ACK s+1

ACK r+1

FIN r, ACK s

Normal Termination

active close passive close

Active close from left

Either end can initiate the active close; it does not need to be
the host that did the active open



TCP
Setup and Teardown

Normal Termination

FIN s ACK r

ACK s+1

FIN r

ACK r+1

passive close active close

Active close from right

Either end can initiate the active close; it does not need to be
the host that did the active open



TCP
Setup and Teardown

ACK s+1

FIN s,ACK r+1

FIN r, ACK s

3 Segment Termination

active close passive close

Three segment close

The passive close FIN can be piggybacked on the ACK: this
then takes only three segments



TCP
Setup and Teardown

FIN s

ACK s+1

ACK r+1

FIN r

Termination

Simultaneous active close

There can (rarely) be a simultaneous active close: this takes
four segments again



TCP
Termination

Connections are almost always ended by the FIN handshake,
but there is another way to end a connection when something is
badly wrong

This is to send a reset (RST) segment, i.e., with the RST flag
set

This is for error cases, e.g., a segment arrives that doesn’t
appear to be for a current connection, the server will reply with
a RST

For example, if a server crashes and reboots while the client is
still sending the server will not know what to do with the
segments it is receiving; so it replies with a RST



TCP
Termination

Connections are almost always ended by the FIN handshake,
but there is another way to end a connection when something is
badly wrong

This is to send a reset (RST) segment, i.e., with the RST flag
set

This is for error cases, e.g., a segment arrives that doesn’t
appear to be for a current connection, the server will reply with
a RST

For example, if a server crashes and reboots while the client is
still sending the server will not know what to do with the
segments it is receiving; so it replies with a RST



TCP
Termination

Connections are almost always ended by the FIN handshake,
but there is another way to end a connection when something is
badly wrong

This is to send a reset (RST) segment, i.e., with the RST flag
set

This is for error cases, e.g., a segment arrives that doesn’t
appear to be for a current connection, the server will reply with
a RST

For example, if a server crashes and reboots while the client is
still sending the server will not know what to do with the
segments it is receiving; so it replies with a RST



TCP
Termination

Connections are almost always ended by the FIN handshake,
but there is another way to end a connection when something is
badly wrong

This is to send a reset (RST) segment, i.e., with the RST flag
set

This is for error cases, e.g., a segment arrives that doesn’t
appear to be for a current connection, the server will reply with
a RST

For example, if a server crashes and reboots while the client is
still sending the server will not know what to do with the
segments it is receiving; so it replies with a RST



TCP
Termination

When a host gets a RST it ends the connection immediately,
discarding all state and buffered segments

Often seen by the application as a “connection reset by peer”
message



TCP
Termination

When a host gets a RST it ends the connection immediately,
discarding all state and buffered segments

Often seen by the application as a “connection reset by peer”
message



TCP
Termination

A connection ended by FINs is called an orderly release; if
ended by a RST it is an abortive release

RSTs are not ACKed: the connection ends right here

Exercise Think about the security aspects of this: a third party
can inject a RST segment into a connection to kill it



TCP
Termination

A connection ended by FINs is called an orderly release; if
ended by a RST it is an abortive release

RSTs are not ACKed: the connection ends right here

Exercise Think about the security aspects of this: a third party
can inject a RST segment into a connection to kill it



TCP
Termination

A connection ended by FINs is called an orderly release; if
ended by a RST it is an abortive release

RSTs are not ACKed: the connection ends right here

Exercise Think about the security aspects of this: a third party
can inject a RST segment into a connection to kill it


