
TCP
TCP State

The various stages a TCP connection can be in (setting up,
tearing down, transmitting data, etc.) are complicated

There is a standard TCP state diagram that describes how TCP
should act in most cases

Though it only covers non-error cases: it does not say what to
do if, say, a SYNFIN segment arrives

And it shows little about timeouts and retransmissions



TCP
TCP State

The various stages a TCP connection can be in (setting up,
tearing down, transmitting data, etc.) are complicated

There is a standard TCP state diagram that describes how TCP
should act in most cases

Though it only covers non-error cases: it does not say what to
do if, say, a SYNFIN segment arrives

And it shows little about timeouts and retransmissions



TCP
TCP State

The various stages a TCP connection can be in (setting up,
tearing down, transmitting data, etc.) are complicated

There is a standard TCP state diagram that describes how TCP
should act in most cases

Though it only covers non-error cases: it does not say what to
do if, say, a SYNFIN segment arrives

And it shows little about timeouts and retransmissions



TCP
TCP State

The various stages a TCP connection can be in (setting up,
tearing down, transmitting data, etc.) are complicated

There is a standard TCP state diagram that describes how TCP
should act in most cases

Though it only covers non-error cases: it does not say what to
do if, say, a SYNFIN segment arrives

And it shows little about timeouts and retransmissions



TCP
TCP State

CLOSED LISTEN

SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACK

FIN_WAIT_1

FIN_WAIT_2

CLOSING

TIME_WAIT

SYN_RCVD

send
SYNACK

simultaneous
open

send ACK

ACK

active

close

passive

close

2MSL timeout

data transfer

simultaneous
close

send ACK

timeout

or close

close

rcv SYNACK

rcv

rcv FIN

rcv FIN

rcv ACKrcv ACK

close: send FIN
send FIN
close:

send FIN
close:

rcv ACK

passive open

send SYN

send ACK

rcv RST

rcv RST

rcv SYN
send SYNACK

send SYN

active open

rcv SYN

rcv FIN

send ACK

send ACK

rcv FINACK

TCP State Diagram



TCP
TCP State

We start (and end) in CLOSED

There are the two opens: active and passive

LISTEN is a server waiting for a connection

ESTABLISHED is the normal data transfer state

And the two closes: active and passive

This state diagram is followed for each end of a connection, i.e.,
each socket in the socketpair



TCP
TCP State

We start (and end) in CLOSED

There are the two opens: active and passive

LISTEN is a server waiting for a connection

ESTABLISHED is the normal data transfer state

And the two closes: active and passive

This state diagram is followed for each end of a connection, i.e.,
each socket in the socketpair



TCP
TCP State

We start (and end) in CLOSED

There are the two opens: active and passive

LISTEN is a server waiting for a connection

ESTABLISHED is the normal data transfer state

And the two closes: active and passive

This state diagram is followed for each end of a connection, i.e.,
each socket in the socketpair



TCP
TCP State

We start (and end) in CLOSED

There are the two opens: active and passive

LISTEN is a server waiting for a connection

ESTABLISHED is the normal data transfer state

And the two closes: active and passive

This state diagram is followed for each end of a connection, i.e.,
each socket in the socketpair



TCP
TCP State

We start (and end) in CLOSED

There are the two opens: active and passive

LISTEN is a server waiting for a connection

ESTABLISHED is the normal data transfer state

And the two closes: active and passive

This state diagram is followed for each end of a connection, i.e.,
each socket in the socketpair



TCP
TCP State

We start (and end) in CLOSED

There are the two opens: active and passive

LISTEN is a server waiting for a connection

ESTABLISHED is the normal data transfer state

And the two closes: active and passive

This state diagram is followed for each end of a connection, i.e.,
each socket in the socketpair



TCP
TCP State

SYN

SYN+ACK

ACK

data+ACK

data+ACK

CLOSED

active open

SYN_SENT

ESTABLISHED

ESTABLISHED

SYN_RCVD

LISTEN

passive open

CLOSED

FIN

ACK

FIN

ACK

data+ACK

data+ACK

CLOSE_WAIT

passive close

LAST_ACK

CLOSED

CLOSED

TIME_WAIT

FIN_WAIT_2

active close

FIN_WAIT_1

Typical TCP Timeline



TCP
TCP State

The active close is somewhat complicated by the need for
reliability

The TIME WAIT state (also called 2MSL state) appears before
the final close: the active-close end of the connection must
remain non-closed until a time period has passed



TCP
TCP State

The active close is somewhat complicated by the need for
reliability

The TIME WAIT state (also called 2MSL state) appears before
the final close: the active-close end of the connection must
remain non-closed until a time period has passed



TCP
TCP State

CLOSED LISTEN

SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACK

FIN_WAIT_1

FIN_WAIT_2

CLOSING

TIME_WAIT

SYN_RCVD

send
SYNACK

simultaneous
open

send ACK

ACK

active

close

passive

close

2MSL timeout

data transfer

simultaneous
close

send ACK

timeout

or close

close

rcv SYNACK

rcv

rcv FIN

rcv FIN

rcv ACKrcv ACK

close: send FIN
send FIN
close:

send FIN
close:

rcv ACK

passive open

send SYN

send ACK

rcv RST

rcv RST

rcv SYN
send SYNACK

send SYN

active open

rcv SYN

rcv FIN

send ACK

send ACK

rcv FINACK

TCP State Diagram



TCP
TCP State

At this point this end of the connection has received a final ACK
and sent its final ACK

In a perfect world this would be enough to close the connection

But we have to deal with the case of the final ACK being lost

And resent if it didn’t get to the other end



TCP
TCP State

At this point this end of the connection has received a final ACK
and sent its final ACK

In a perfect world this would be enough to close the connection

But we have to deal with the case of the final ACK being lost

And resent if it didn’t get to the other end



TCP
TCP State

At this point this end of the connection has received a final ACK
and sent its final ACK

In a perfect world this would be enough to close the connection

But we have to deal with the case of the final ACK being lost

And resent if it didn’t get to the other end



TCP
TCP State

At this point this end of the connection has received a final ACK
and sent its final ACK

In a perfect world this would be enough to close the connection

But we have to deal with the case of the final ACK being lost

And resent if it didn’t get to the other end



TCP
TCP State

Just because the application is done with the connection, it
doesn’t mean the connection is finished and the OS can
discard all the connection state

The maximum segment lifetime (MSL) is a value that
represents the longest time a segment can live in the network
before being discarded (probably through TTL expiry)

This was originally defined to be 2 minutes, but
implementations often choose smaller values, like 60 seconds

A TCP connection is required stay in TIME WAIT for twice the
MSL



TCP
TCP State

Just because the application is done with the connection, it
doesn’t mean the connection is finished and the OS can
discard all the connection state

The maximum segment lifetime (MSL) is a value that
represents the longest time a segment can live in the network
before being discarded (probably through TTL expiry)

This was originally defined to be 2 minutes, but
implementations often choose smaller values, like 60 seconds

A TCP connection is required stay in TIME WAIT for twice the
MSL



TCP
TCP State

Just because the application is done with the connection, it
doesn’t mean the connection is finished and the OS can
discard all the connection state

The maximum segment lifetime (MSL) is a value that
represents the longest time a segment can live in the network
before being discarded (probably through TTL expiry)

This was originally defined to be 2 minutes, but
implementations often choose smaller values, like 60 seconds

A TCP connection is required stay in TIME WAIT for twice the
MSL



TCP
TCP State

Just because the application is done with the connection, it
doesn’t mean the connection is finished and the OS can
discard all the connection state

The maximum segment lifetime (MSL) is a value that
represents the longest time a segment can live in the network
before being discarded (probably through TTL expiry)

This was originally defined to be 2 minutes, but
implementations often choose smaller values, like 60 seconds

A TCP connection is required stay in TIME WAIT for twice the
MSL



TCP
TCP State

This is in case the final ACK (of the final FIN) was lost and
needs to be retransmitted

The OS has to keep the connection hanging around for a little
to cover this case

Even if the process that used the connection has exited

And while in this wait state if a new process tries to make a
connection using the same ports it will be denied: the old
connection is still active. We don’t want to deliver late packets
to the new process

In this sense the TCP connection and the process using it are
quite separate entities



TCP
TCP State

This is in case the final ACK (of the final FIN) was lost and
needs to be retransmitted

The OS has to keep the connection hanging around for a little
to cover this case

Even if the process that used the connection has exited

And while in this wait state if a new process tries to make a
connection using the same ports it will be denied: the old
connection is still active. We don’t want to deliver late packets
to the new process

In this sense the TCP connection and the process using it are
quite separate entities



TCP
TCP State

This is in case the final ACK (of the final FIN) was lost and
needs to be retransmitted

The OS has to keep the connection hanging around for a little
to cover this case

Even if the process that used the connection has exited

And while in this wait state if a new process tries to make a
connection using the same ports it will be denied: the old
connection is still active. We don’t want to deliver late packets
to the new process

In this sense the TCP connection and the process using it are
quite separate entities



TCP
TCP State

This is in case the final ACK (of the final FIN) was lost and
needs to be retransmitted

The OS has to keep the connection hanging around for a little
to cover this case

Even if the process that used the connection has exited

And while in this wait state if a new process tries to make a
connection using the same ports it will be denied: the old
connection is still active. We don’t want to deliver late packets
to the new process

In this sense the TCP connection and the process using it are
quite separate entities



TCP
TCP State

This is in case the final ACK (of the final FIN) was lost and
needs to be retransmitted

The OS has to keep the connection hanging around for a little
to cover this case

Even if the process that used the connection has exited

And while in this wait state if a new process tries to make a
connection using the same ports it will be denied: the old
connection is still active. We don’t want to deliver late packets
to the new process

In this sense the TCP connection and the process using it are
quite separate entities



TCP
Teardown

When an application exits, the OS sends FINs on behalf of the
application for all currently open connections. This makes sure
everything is tidied up nicely (even if the programmer didn’t)

And if it was an active close, OS needs to hold the connection
in the 2MSL state for a while: the connection definitely outlives
the application!

If a host is shut down normally, rather than crashing, the
operating system will (should!) send FINs for all currently open
connections

It really should do the TIME WAIT, but often implementations
don’t bother as this would hold up the shutdown



TCP
Teardown

When an application exits, the OS sends FINs on behalf of the
application for all currently open connections. This makes sure
everything is tidied up nicely (even if the programmer didn’t)

And if it was an active close, OS needs to hold the connection
in the 2MSL state for a while: the connection definitely outlives
the application!

If a host is shut down normally, rather than crashing, the
operating system will (should!) send FINs for all currently open
connections

It really should do the TIME WAIT, but often implementations
don’t bother as this would hold up the shutdown



TCP
Teardown

When an application exits, the OS sends FINs on behalf of the
application for all currently open connections. This makes sure
everything is tidied up nicely (even if the programmer didn’t)

And if it was an active close, OS needs to hold the connection
in the 2MSL state for a while: the connection definitely outlives
the application!

If a host is shut down normally, rather than crashing, the
operating system will (should!) send FINs for all currently open
connections

It really should do the TIME WAIT, but often implementations
don’t bother as this would hold up the shutdown



TCP
Teardown

When an application exits, the OS sends FINs on behalf of the
application for all currently open connections. This makes sure
everything is tidied up nicely (even if the programmer didn’t)

And if it was an active close, OS needs to hold the connection
in the 2MSL state for a while: the connection definitely outlives
the application!

If a host is shut down normally, rather than crashing, the
operating system will (should!) send FINs for all currently open
connections

It really should do the TIME WAIT, but often implementations
don’t bother as this would hold up the shutdown



TCP Strategies

We now take a look at how TCP manages to get the best out of
a connection

For example: TCP gets reliability by acknowledging every byte
sent. Does this mean two segments for every data packet: one
data packet out, one ACK packet back?

It is possible to implement TCP like this, but performance would
be poor

So a typical TCP implementation will be a bit more smart on its
use of ACKs: we have already mentioned delaying an ACK to
let it piggyback on a returning data segment



TCP Strategies

We now take a look at how TCP manages to get the best out of
a connection

For example: TCP gets reliability by acknowledging every byte
sent. Does this mean two segments for every data packet: one
data packet out, one ACK packet back?

It is possible to implement TCP like this, but performance would
be poor

So a typical TCP implementation will be a bit more smart on its
use of ACKs: we have already mentioned delaying an ACK to
let it piggyback on a returning data segment



TCP Strategies

We now take a look at how TCP manages to get the best out of
a connection

For example: TCP gets reliability by acknowledging every byte
sent. Does this mean two segments for every data packet: one
data packet out, one ACK packet back?

It is possible to implement TCP like this, but performance would
be poor

So a typical TCP implementation will be a bit more smart on its
use of ACKs: we have already mentioned delaying an ACK to
let it piggyback on a returning data segment



TCP Strategies

We now take a look at how TCP manages to get the best out of
a connection

For example: TCP gets reliability by acknowledging every byte
sent. Does this mean two segments for every data packet: one
data packet out, one ACK packet back?

It is possible to implement TCP like this, but performance would
be poor

So a typical TCP implementation will be a bit more smart on its
use of ACKs: we have already mentioned delaying an ACK to
let it piggyback on a returning data segment



TCP Strategies

That is just first of many strategies a TCP implementation can
employ while still following the TCP protocol

We shall look at a few basic strategies, starting with more detail
on the advertised window



TCP Strategies

That is just first of many strategies a TCP implementation can
employ while still following the TCP protocol

We shall look at a few basic strategies, starting with more detail
on the advertised window



TCP Strategies
Advertised Window

As data arrives at its destination the OS puts it into a buffer,
ready for the receiving application to read it. We have already
seen the TCP advertised window in a returning segment which
indicates how much of this buffer space is left

The space left depends on

• how fast the sender is sending the data
• how fast the application is reading the data

If the data arrives faster than it is read, the buffer will fill up



TCP Strategies
Advertised Window

As data arrives at its destination the OS puts it into a buffer,
ready for the receiving application to read it. We have already
seen the TCP advertised window in a returning segment which
indicates how much of this buffer space is left

The space left depends on

• how fast the sender is sending the data
• how fast the application is reading the data

If the data arrives faster than it is read, the buffer will fill up



TCP Strategies
Advertised Window

As data arrives at its destination the OS puts it into a buffer,
ready for the receiving application to read it. We have already
seen the TCP advertised window in a returning segment which
indicates how much of this buffer space is left

The space left depends on

• how fast the sender is sending the data
• how fast the application is reading the data

If the data arrives faster than it is read, the buffer will fill up



TCP Strategies
Advertised Window

The advertised window is how TCP tells the source to slow
down or speed up

It is a sliding window mechanism, used as a form of flow control

Imagine the bytes being sent as a long stream, starting at byte
0 (actually byte n, given by the initial sequence number) and
going up

A sliding window describes the range of bytes in the stream the
sender can transmit next



TCP Strategies
Advertised Window

The advertised window is how TCP tells the source to slow
down or speed up

It is a sliding window mechanism, used as a form of flow control

Imagine the bytes being sent as a long stream, starting at byte
0 (actually byte n, given by the initial sequence number) and
going up

A sliding window describes the range of bytes in the stream the
sender can transmit next



TCP Strategies
Advertised Window

The advertised window is how TCP tells the source to slow
down or speed up

It is a sliding window mechanism, used as a form of flow control

Imagine the bytes being sent as a long stream, starting at byte
0 (actually byte n, given by the initial sequence number) and
going up

A sliding window describes the range of bytes in the stream the
sender can transmit next



TCP Strategies
Advertised Window

The advertised window is how TCP tells the source to slow
down or speed up

It is a sliding window mechanism, used as a form of flow control

Imagine the bytes being sent as a long stream, starting at byte
0 (actually byte n, given by the initial sequence number) and
going up

A sliding window describes the range of bytes in the stream the
sender can transmit next



TCP Strategies
Advertised Window

As the window gets smaller, the sender should send more
slowly

As the window gets bigger, the sender can send more quickly

The sender recomputes the space available in the receiver
every time it receives an ACK



TCP Strategies
Advertised Window

As the window gets smaller, the sender should send more
slowly

As the window gets bigger, the sender can send more quickly

The sender recomputes the space available in the receiver
every time it receives an ACK



TCP Strategies
Advertised Window

As the window gets smaller, the sender should send more
slowly

As the window gets bigger, the sender can send more quickly

The sender recomputes the space available in the receiver
every time it receives an ACK



TCP Strategies
Advertised Window

The left hand edge of the window is defined by the
acknowledgement number in the latest ACK

The right hand edge is then given by adding on the size of the
advertised window

The window size is sent in every ACK segment

As more ACKs are received, the window closes as the left edge
advances



TCP Strategies
Advertised Window

The left hand edge of the window is defined by the
acknowledgement number in the latest ACK

The right hand edge is then given by adding on the size of the
advertised window

The window size is sent in every ACK segment

As more ACKs are received, the window closes as the left edge
advances



TCP Strategies
Advertised Window

The left hand edge of the window is defined by the
acknowledgement number in the latest ACK

The right hand edge is then given by adding on the size of the
advertised window

The window size is sent in every ACK segment

As more ACKs are received, the window closes as the left edge
advances



TCP Strategies
Advertised Window

The left hand edge of the window is defined by the
acknowledgement number in the latest ACK

The right hand edge is then given by adding on the size of the
advertised window

The window size is sent in every ACK segment

As more ACKs are received, the window closes as the left edge
advances



TCP Strategies
Advertised Window

As the application reads data, the window opens as the right
edge advances

Rarely, the window can shrink (right edge recedes), perhaps if
the buffer shrinks due to the memory being needed elsewhere



TCP Strategies
Advertised Window

As the application reads data, the window opens as the right
edge advances

Rarely, the window can shrink (right edge recedes), perhaps if
the buffer shrinks due to the memory being needed elsewhere



TCP Strategies
Advertised Window

1 2 3 4 5 6 7 8 9 10 11 12

close openshrink

advertised window

13 14 15

not ACKed yet can’t send yetACKed free space

TCP sliding window

This is from the point of view of the sending end of a
connection;



TCP Strategies
Advertised Window

1 2 3 4 5 6 7 8 9 10 11 12

close openshrink

advertised window

13 14 15

not ACKed yet can’t send yetACKed free space

TCP sliding window

The situation is that we have just sent a segment with bytes
5-7; then received an ACK of 5 with a window of 7;



TCP Strategies
Advertised Window

1 2 3 4 5 6 7 8 9 10 11 12

close openshrink

advertised window

13 14 15

not ACKed yet can’t send yetACKed free space

TCP sliding window

Bytes to the left of the window (1-4) have been ACKed and are
safe in the destination;



TCP Strategies
Advertised Window

1 2 3 4 5 6 7 8 9 10 11 12

close openshrink

advertised window

13 14 15

not ACKed yet can’t send yetACKed free space

TCP sliding window

The advertised window tells us there is space for 7 bytes in the
destination: bytes to the right (12 onwards) cannot be sent yet
as the destination has nowhere to put them;



TCP Strategies
Advertised Window

1 2 3 4 5 6 7 8 9 10 11 12

close openshrink

advertised window

13 14 15

not ACKed yet can’t send yetACKed free space

TCP sliding window

Bytes within the window are either not ACKed yet, or represent
free space;



TCP Strategies
Advertised Window

1 2 3 4 5 6 7 8 9 10 11 12

close openshrink

advertised window

13 14 15

not ACKed yet can’t send yetACKed free space

TCP sliding window

unACKed bytes (5-7) are those that have been sent by the
sender, possibly received by the destination, and an ACK not
yet received by the sender and possibly not yet sent by the
receiver;



TCP Strategies
Advertised Window

1 2 3 4 5 6 7 8 9 10 11 12

close openshrink

advertised window

13 14 15

not ACKed yet can’t send yetACKed free space

TCP sliding window

The free space (8-11) is the actual number of bytes that the
sender can be sure that can be buffered;



TCP Strategies
Advertised Window

1 2 3 4 5 6 7 8 9 10 11 12

close openshrink

advertised window

13 14 15

not ACKed yet can’t send yetACKed free space

TCP sliding window

The sender can compute this free space as the latest window
value minus the number of bytes sent but as yet unACKed;



TCP Strategies
Advertised Window

1 2 3 4 5 6 7 8 9 10 11 12

close openshrink

advertised window

13 14 15

not ACKed yet can’t send yetACKed free space

TCP sliding window

Thus the sender knows the limit on how much more data it can
currently send



TCP Strategies
Advertised Window

It is not unusual for the window to reduce to 0, for example
when the destination application is reading its data slowly

The sender will have to wait before sending more data

When the receiver is ready to receive more data it will send a
duplicate ACK with the same ACK number as the ACK with
window 0, but now with a non-zero window: this is a window
update segment

It may or may not contain data itself

Complications arise if this window update gets lost: the Persist
Timer (see later) is used here



TCP Strategies
Advertised Window

It is not unusual for the window to reduce to 0, for example
when the destination application is reading its data slowly

The sender will have to wait before sending more data

When the receiver is ready to receive more data it will send a
duplicate ACK with the same ACK number as the ACK with
window 0, but now with a non-zero window: this is a window
update segment

It may or may not contain data itself

Complications arise if this window update gets lost: the Persist
Timer (see later) is used here



TCP Strategies
Advertised Window

It is not unusual for the window to reduce to 0, for example
when the destination application is reading its data slowly

The sender will have to wait before sending more data

When the receiver is ready to receive more data it will send a
duplicate ACK with the same ACK number as the ACK with
window 0, but now with a non-zero window: this is a window
update segment

It may or may not contain data itself

Complications arise if this window update gets lost: the Persist
Timer (see later) is used here



TCP Strategies
Advertised Window

It is not unusual for the window to reduce to 0, for example
when the destination application is reading its data slowly

The sender will have to wait before sending more data

When the receiver is ready to receive more data it will send a
duplicate ACK with the same ACK number as the ACK with
window 0, but now with a non-zero window: this is a window
update segment

It may or may not contain data itself

Complications arise if this window update gets lost: the Persist
Timer (see later) is used here



TCP Strategies
Advertised Window

It is not unusual for the window to reduce to 0, for example
when the destination application is reading its data slowly

The sender will have to wait before sending more data

When the receiver is ready to receive more data it will send a
duplicate ACK with the same ACK number as the ACK with
window 0, but now with a non-zero window: this is a window
update segment

It may or may not contain data itself

Complications arise if this window update gets lost: the Persist
Timer (see later) is used here



TCP Strategies
Delayed ACKs

The next strategy we have mentioned before

Instead of immediately ACKing every segment, we can slightly
delay it and piggyback it on returning data



TCP Strategies
Delayed ACKs

The next strategy we have mentioned before

Instead of immediately ACKing every segment, we can slightly
delay it and piggyback it on returning data



TCP Strategies
Delayed ACKs

keystroke

echo keydata

data

ACK

ACK

Client Server

keystroke

echo key

data

ACK

data + ACK

time

Immediate ACK Delayed ACK

Immediate vs. delayed ACK

For example, when logged in to a remote terminal each
keystroke is echoed back to your screen;



TCP Strategies
Delayed ACKs

keystroke

echo keydata

data

ACK

ACK

Client Server

keystroke

echo key

data

ACK

data + ACK

time

Immediate ACK Delayed ACK

Immediate vs. delayed ACK

An immediate ACK would use four segments;



TCP Strategies
Delayed ACKs

keystroke

echo keydata

data

ACK

ACK

Client Server

keystroke

echo key

data

ACK

data + ACK

time

Immediate ACK Delayed ACK

Immediate vs. delayed ACK

A delayed ACK piggybacking on the data for the echoed key
uses just three segments



TCP Strategies
Delayed ACKs

As far as the user is concerned, they see the keystroke echo in
the same way, with no extra delay, but fewer segments are sent

It is important to reduce the traffic on a heavily loaded network

It also reduces the chance of a lost segment



TCP Strategies
Delayed ACKs

As far as the user is concerned, they see the keystroke echo in
the same way, with no extra delay, but fewer segments are sent

It is important to reduce the traffic on a heavily loaded network

It also reduces the chance of a lost segment



TCP Strategies
Delayed ACKs

As far as the user is concerned, they see the keystroke echo in
the same way, with no extra delay, but fewer segments are sent

It is important to reduce the traffic on a heavily loaded network

It also reduces the chance of a lost segment



TCP Strategies
Delayed ACKs

By delaying, we might also be able to ACK more than one
segment at a time

If we receive, say, two segments in a period we are delaying,
we can simply ACK the last segment: this implicitly ACKs the
previous two segments

An ACK is actually about acknowledging bytes, not
acknowledging segments, but will usually align with segments

So an ACK indicates which byte we are expecting next and
says all previous bytes have been safely received

This reduces traffic again



TCP Strategies
Delayed ACKs

By delaying, we might also be able to ACK more than one
segment at a time

If we receive, say, two segments in a period we are delaying,
we can simply ACK the last segment: this implicitly ACKs the
previous two segments

An ACK is actually about acknowledging bytes, not
acknowledging segments, but will usually align with segments

So an ACK indicates which byte we are expecting next and
says all previous bytes have been safely received

This reduces traffic again



TCP Strategies
Delayed ACKs

By delaying, we might also be able to ACK more than one
segment at a time

If we receive, say, two segments in a period we are delaying,
we can simply ACK the last segment: this implicitly ACKs the
previous two segments

An ACK is actually about acknowledging bytes, not
acknowledging segments, but will usually align with segments

So an ACK indicates which byte we are expecting next and
says all previous bytes have been safely received

This reduces traffic again



TCP Strategies
Delayed ACKs

By delaying, we might also be able to ACK more than one
segment at a time

If we receive, say, two segments in a period we are delaying,
we can simply ACK the last segment: this implicitly ACKs the
previous two segments

An ACK is actually about acknowledging bytes, not
acknowledging segments, but will usually align with segments

So an ACK indicates which byte we are expecting next and
says all previous bytes have been safely received

This reduces traffic again



TCP Strategies
Delayed ACKs

By delaying, we might also be able to ACK more than one
segment at a time

If we receive, say, two segments in a period we are delaying,
we can simply ACK the last segment: this implicitly ACKs the
previous two segments

An ACK is actually about acknowledging bytes, not
acknowledging segments, but will usually align with segments

So an ACK indicates which byte we are expecting next and
says all previous bytes have been safely received

This reduces traffic again



TCP Strategies
Delayed ACKs

data 1−5

data 6−10

ACK 16

data 11−15

ACKing bytes received

ACKs acknowledge bytes received, not segments



TCP Strategies
Delayed ACKs

So how long to delay an ACK?

If too long, the sender might think the segment was lost and
resend

If too short, we do not get so many free piggybacks or multiple
ACKed segments

A typical implementation will delay for up to 200ms



TCP Strategies
Delayed ACKs

So how long to delay an ACK?

If too long, the sender might think the segment was lost and
resend

If too short, we do not get so many free piggybacks or multiple
ACKed segments

A typical implementation will delay for up to 200ms



TCP Strategies
Delayed ACKs

So how long to delay an ACK?

If too long, the sender might think the segment was lost and
resend

If too short, we do not get so many free piggybacks or multiple
ACKed segments

A typical implementation will delay for up to 200ms



TCP Strategies
Delayed ACKs

So how long to delay an ACK?

If too long, the sender might think the segment was lost and
resend

If too short, we do not get so many free piggybacks or multiple
ACKed segments

A typical implementation will delay for up to 200ms



TCP Strategies
Delayed ACKs

The TCP specification says you should send an ACK for at
least every second full-sized segment and you must not delay
for more than 500ms

This one of the many timers associated with TCP

Each time you receive a data segment the TCP software should
set a timer for that segment that expires after 200ms



TCP Strategies
Delayed ACKs

The TCP specification says you should send an ACK for at
least every second full-sized segment and you must not delay
for more than 500ms

This one of the many timers associated with TCP

Each time you receive a data segment the TCP software should
set a timer for that segment that expires after 200ms



TCP Strategies
Delayed ACKs

The TCP specification says you should send an ACK for at
least every second full-sized segment and you must not delay
for more than 500ms

This one of the many timers associated with TCP

Each time you receive a data segment the TCP software should
set a timer for that segment that expires after 200ms



TCP Strategies
Delayed ACKs

If the segment has not already been ACKed (e.g., on a
returning data segment), ACK it when the timer expires

Many operating systems have a single global timer that fires
every 200ms rather than a timer per segment received

When the timer goes off, all unACKed segments are ACKed

Not so accurate as per-segment timers, but much easier to
implement



TCP Strategies
Delayed ACKs

If the segment has not already been ACKed (e.g., on a
returning data segment), ACK it when the timer expires

Many operating systems have a single global timer that fires
every 200ms rather than a timer per segment received

When the timer goes off, all unACKed segments are ACKed

Not so accurate as per-segment timers, but much easier to
implement



TCP Strategies
Delayed ACKs

If the segment has not already been ACKed (e.g., on a
returning data segment), ACK it when the timer expires

Many operating systems have a single global timer that fires
every 200ms rather than a timer per segment received

When the timer goes off, all unACKed segments are ACKed

Not so accurate as per-segment timers, but much easier to
implement



TCP Strategies
Delayed ACKs

If the segment has not already been ACKed (e.g., on a
returning data segment), ACK it when the timer expires

Many operating systems have a single global timer that fires
every 200ms rather than a timer per segment received

When the timer goes off, all unACKed segments are ACKed

Not so accurate as per-segment timers, but much easier to
implement



TCP Strategies
Delayed ACKs

There is another rule concerning delayed ACKs

If you get an out-of-order segment (its sequence number is not
the one you are expecting next, e.g., a segment was possibly
lost), you must not delay, but send an ACK immediately

This might well be a duplicate ACK of one you sent earlier. This
is to inform the sender as soon as possible that something
might have gone wrong

Though the other end will wait for three duplicate ACKs just to
be sure before resending



TCP Strategies
Delayed ACKs

There is another rule concerning delayed ACKs

If you get an out-of-order segment (its sequence number is not
the one you are expecting next, e.g., a segment was possibly
lost), you must not delay, but send an ACK immediately

This might well be a duplicate ACK of one you sent earlier. This
is to inform the sender as soon as possible that something
might have gone wrong

Though the other end will wait for three duplicate ACKs just to
be sure before resending



TCP Strategies
Delayed ACKs

There is another rule concerning delayed ACKs

If you get an out-of-order segment (its sequence number is not
the one you are expecting next, e.g., a segment was possibly
lost), you must not delay, but send an ACK immediately

This might well be a duplicate ACK of one you sent earlier. This
is to inform the sender as soon as possible that something
might have gone wrong

Though the other end will wait for three duplicate ACKs just to
be sure before resending



TCP Strategies
Delayed ACKs

There is another rule concerning delayed ACKs

If you get an out-of-order segment (its sequence number is not
the one you are expecting next, e.g., a segment was possibly
lost), you must not delay, but send an ACK immediately

This might well be a duplicate ACK of one you sent earlier. This
is to inform the sender as soon as possible that something
might have gone wrong

Though the other end will wait for three duplicate ACKs just to
be sure before resending



TCP Strategies
Nagle

Next strategy: when sending keystrokes (or other small data)
over a network there is a lot of wasted bandwidth

A keystroke could be 1 byte

This is sent in a TCP segment that has 20 bytes of header

This is contained in a IP datagram with 20 bytes of header

And so on down the layers



TCP Strategies
Nagle

Next strategy: when sending keystrokes (or other small data)
over a network there is a lot of wasted bandwidth

A keystroke could be 1 byte

This is sent in a TCP segment that has 20 bytes of header

This is contained in a IP datagram with 20 bytes of header

And so on down the layers



TCP Strategies
Nagle

Next strategy: when sending keystrokes (or other small data)
over a network there is a lot of wasted bandwidth

A keystroke could be 1 byte

This is sent in a TCP segment that has 20 bytes of header

This is contained in a IP datagram with 20 bytes of header

And so on down the layers



TCP Strategies
Nagle

Next strategy: when sending keystrokes (or other small data)
over a network there is a lot of wasted bandwidth

A keystroke could be 1 byte

This is sent in a TCP segment that has 20 bytes of header

This is contained in a IP datagram with 20 bytes of header

And so on down the layers



TCP Strategies
Nagle

Next strategy: when sending keystrokes (or other small data)
over a network there is a lot of wasted bandwidth

A keystroke could be 1 byte

This is sent in a TCP segment that has 20 bytes of header

This is contained in a IP datagram with 20 bytes of header

And so on down the layers



TCP Strategies
Nagle

So we are sending (for the sake of argument) a 41 byte packet
for each byte of data

Such a packet is called a tinygram

The proliferation of tinygrams causes additional congestion in a
network

Nagle created a strategy for reducing this

It applies to the sender of the tinygram (client)



TCP Strategies
Nagle

So we are sending (for the sake of argument) a 41 byte packet
for each byte of data

Such a packet is called a tinygram

The proliferation of tinygrams causes additional congestion in a
network

Nagle created a strategy for reducing this

It applies to the sender of the tinygram (client)



TCP Strategies
Nagle

So we are sending (for the sake of argument) a 41 byte packet
for each byte of data

Such a packet is called a tinygram

The proliferation of tinygrams causes additional congestion in a
network

Nagle created a strategy for reducing this

It applies to the sender of the tinygram (client)



TCP Strategies
Nagle

So we are sending (for the sake of argument) a 41 byte packet
for each byte of data

Such a packet is called a tinygram

The proliferation of tinygrams causes additional congestion in a
network

Nagle created a strategy for reducing this

It applies to the sender of the tinygram (client)



TCP Strategies
Nagle

So we are sending (for the sake of argument) a 41 byte packet
for each byte of data

Such a packet is called a tinygram

The proliferation of tinygrams causes additional congestion in a
network

Nagle created a strategy for reducing this

It applies to the sender of the tinygram (client)



TCP Strategies
Nagle

Nagle’s Algorithm:

a TCP connection can have only one outstanding un-
ACKed small segment: no additional small segments
can be sent until that ACK has been received

If you are sending tinygrams, only send one and wait until you
get its ACK before sending any more

Any small segments waiting to be sent should be collected
together into a single larger segment that is sent when the ACK
is received



TCP Strategies
Nagle

Nagle’s Algorithm:

a TCP connection can have only one outstanding un-
ACKed small segment: no additional small segments
can be sent until that ACK has been received

If you are sending tinygrams, only send one and wait until you
get its ACK before sending any more

Any small segments waiting to be sent should be collected
together into a single larger segment that is sent when the ACK
is received



TCP Strategies
Nagle

Nagle’s Algorithm:

a TCP connection can have only one outstanding un-
ACKed small segment: no additional small segments
can be sent until that ACK has been received

If you are sending tinygrams, only send one and wait until you
get its ACK before sending any more

Any small segments waiting to be sent should be collected
together into a single larger segment that is sent when the ACK
is received



TCP Strategies
Nagle

This segment can also be sent if either (a) you collect enough
small segments to fill a MSS segment, or (b) they have
collectively exceeded half the destination’s advertised window
size

This leaves open the definition of “small”

Variants choose anything from “1 byte” to “any segment shorter
than the maximum segment size”



TCP Strategies
Nagle

This segment can also be sent if either (a) you collect enough
small segments to fill a MSS segment, or (b) they have
collectively exceeded half the destination’s advertised window
size

This leaves open the definition of “small”

Variants choose anything from “1 byte” to “any segment shorter
than the maximum segment size”



TCP Strategies
Nagle

This segment can also be sent if either (a) you collect enough
small segments to fill a MSS segment, or (b) they have
collectively exceeded half the destination’s advertised window
size

This leaves open the definition of “small”

Variants choose anything from “1 byte” to “any segment shorter
than the maximum segment size”



TCP Strategies
Nagle

Note that when window scaling is in effect, “small” must be at
least the size of the window scale factor, as we can’t advertise
a window smaller than that

But that won’t be a constraint until the scale is bigger than a
segment, e.g., 210 = 1024, but 211 = 2048 > 1500



TCP Strategies
Nagle

Note that when window scaling is in effect, “small” must be at
least the size of the window scale factor, as we can’t advertise
a window smaller than that

But that won’t be a constraint until the scale is bigger than a
segment, e.g., 210 = 1024, but 211 = 2048 > 1500



TCP Strategies
Nagle

This is a very simple strategy and reduces the number of
tinygrams without introducing extra perceived delay (over that
delay there is there already)

The faster ACKs come back, the more tinygrams can be sent

When there is congestion, so ACKs return more slowly, fewer
tinygrams are sent



TCP Strategies
Nagle

This is a very simple strategy and reduces the number of
tinygrams without introducing extra perceived delay (over that
delay there is there already)

The faster ACKs come back, the more tinygrams can be sent

When there is congestion, so ACKs return more slowly, fewer
tinygrams are sent



TCP Strategies
Nagle

This is a very simple strategy and reduces the number of
tinygrams without introducing extra perceived delay (over that
delay there is there already)

The faster ACKs come back, the more tinygrams can be sent

When there is congestion, so ACKs return more slowly, fewer
tinygrams are sent



TCP Strategies
Nagle

Nagle can reduce the number of segments significantly when
the network is heavily loaded

On the other hand, sometimes buffering up tinygrams is not a
good idea: e.g., in a graphical interface over a network, each
mouse movement becomes a tinygram. Buffering the segments
would cause the cursor to jump erratically

Nagle can be turned off for such cases



TCP Strategies
Nagle

Nagle can reduce the number of segments significantly when
the network is heavily loaded

On the other hand, sometimes buffering up tinygrams is not a
good idea: e.g., in a graphical interface over a network, each
mouse movement becomes a tinygram. Buffering the segments
would cause the cursor to jump erratically

Nagle can be turned off for such cases



TCP Strategies
Nagle

Nagle can reduce the number of segments significantly when
the network is heavily loaded

On the other hand, sometimes buffering up tinygrams is not a
good idea: e.g., in a graphical interface over a network, each
mouse movement becomes a tinygram. Buffering the segments
would cause the cursor to jump erratically

Nagle can be turned off for such cases


