
TCP Strategies
Silly Window Syndrome

Another problem with tinygrams is manifested as silly window
syndrome



TCP Strategies
Silly Window Syndrome

data

ACK n, ws = 1

ACK n, ws = 0

1 byte of data

A B

1 byte of data

ACK n+1, ws = 0

etc

ACK n+1, ws = 1

Silly Window Syndrome

A is sending data to B, but
B’s buffer is nearly full and B
is reading only one byte at a
time;



TCP Strategies
Silly Window Syndrome

data

ACK n, ws = 1

ACK n, ws = 0

1 byte of data

A B

1 byte of data

ACK n+1, ws = 0

etc

ACK n+1, ws = 1

Silly Window Syndrome

B’s buffer fills, and B ACKs
with a window of 0;



TCP Strategies
Silly Window Syndrome

data

ACK n, ws = 1

ACK n, ws = 0

1 byte of data

A B

1 byte of data

ACK n+1, ws = 0

etc

ACK n+1, ws = 1

Silly Window Syndrome

A holds off sending more
data;



TCP Strategies
Silly Window Syndrome

data

ACK n, ws = 1

ACK n, ws = 0

1 byte of data

A B

1 byte of data

ACK n+1, ws = 0

etc

ACK n+1, ws = 1

Silly Window Syndrome

B reads a byte;



TCP Strategies
Silly Window Syndrome

data

ACK n, ws = 1

ACK n, ws = 0

1 byte of data

A B

1 byte of data

ACK n+1, ws = 0

etc

ACK n+1, ws = 1

Silly Window Syndrome

B sends a window update
segment, size 1;



TCP Strategies
Silly Window Syndrome

data

ACK n, ws = 1

ACK n, ws = 0

1 byte of data

A B

1 byte of data

ACK n+1, ws = 0

etc

ACK n+1, ws = 1

Silly Window Syndrome

A get this and sends as
much data as possible, i.e., 1
byte;



TCP Strategies
Silly Window Syndrome

data

ACK n, ws = 1

ACK n, ws = 0

1 byte of data

A B

1 byte of data

ACK n+1, ws = 0

etc

ACK n+1, ws = 1

Silly Window Syndrome

B ACKs with window 0;



TCP Strategies
Silly Window Syndrome

data

ACK n, ws = 1

ACK n, ws = 0

1 byte of data

A B

1 byte of data

ACK n+1, ws = 0

etc

ACK n+1, ws = 1

Silly Window Syndrome

B reads a byte;



TCP Strategies
Silly Window Syndrome

data

ACK n, ws = 1

ACK n, ws = 0

1 byte of data

A B

1 byte of data

ACK n+1, ws = 0

etc

ACK n+1, ws = 1

Silly Window Syndrome

B sends an update, size 1;



TCP Strategies
Silly Window Syndrome

data

ACK n, ws = 1

ACK n, ws = 0

1 byte of data

A B

1 byte of data

ACK n+1, ws = 0

etc

ACK n+1, ws = 1

Silly Window Syndrome

A sends 1 byte;



TCP Strategies
Silly Window Syndrome

data

ACK n, ws = 1

ACK n, ws = 0

1 byte of data

A B

1 byte of data

ACK n+1, ws = 0

etc

ACK n+1, ws = 1

Silly Window Syndrome

And so on



TCP Strategies
Silly Window Syndrome

We are back to the two segment per byte high overhead: this is
silly window syndrome

Better is for B not to send an update of 1, but wait until there is
more space

Clarke’s algorithm to avoid SWS is in the server

never send an update for a window of 1; only advertise
a new window when either (a) there is enough space
for a full segment, or (b) the buffer is half empty



TCP Strategies
Silly Window Syndrome

We are back to the two segment per byte high overhead: this is
silly window syndrome

Better is for B not to send an update of 1, but wait until there is
more space

Clarke’s algorithm to avoid SWS is in the server

never send an update for a window of 1; only advertise
a new window when either (a) there is enough space
for a full segment, or (b) the buffer is half empty



TCP Strategies
Silly Window Syndrome

We are back to the two segment per byte high overhead: this is
silly window syndrome

Better is for B not to send an update of 1, but wait until there is
more space

Clarke’s algorithm to avoid SWS is in the server

never send an update for a window of 1; only advertise
a new window when either (a) there is enough space
for a full segment, or (b) the buffer is half empty



TCP Strategies
Congestion

Nagle (in the client) and SWS (in the server) fit together
naturally

Note that TCP code doesn’t have to implement Nagle or SWS
or delayed ACKs or any of these strategies: it’s just a good idea
if it does!



TCP Strategies
Congestion

Nagle (in the client) and SWS (in the server) fit together
naturally

Note that TCP code doesn’t have to implement Nagle or SWS
or delayed ACKs or any of these strategies: it’s just a good idea
if it does!



TCP Strategies
Congestion

Nagle and SWS are good for when there is a small amount of
data being transmitted

We need to look at the case of sending large amounts of data

We want the data to get to the destination as fast as possible,
but we now have to consider not just the ability of the
destination to cope, but also the capacity of the network itself



TCP Strategies
Congestion

Nagle and SWS are good for when there is a small amount of
data being transmitted

We need to look at the case of sending large amounts of data

We want the data to get to the destination as fast as possible,
but we now have to consider not just the ability of the
destination to cope, but also the capacity of the network itself



TCP Strategies
Congestion

Nagle and SWS are good for when there is a small amount of
data being transmitted

We need to look at the case of sending large amounts of data

We want the data to get to the destination as fast as possible,
but we now have to consider not just the ability of the
destination to cope, but also the capacity of the network itself



TCP Strategies
Congestion

Congestion happens when more data is being sent than the
network can handle: routers will drop packets if there is not
enough onward bandwidth to cope

There are several strategies in TCP to help deal with and avoid
congestion

The first issue is how to spot congestion, given that it might be
happening in a part of the network many hops away from both
source and destination



TCP Strategies
Congestion

Congestion happens when more data is being sent than the
network can handle: routers will drop packets if there is not
enough onward bandwidth to cope

There are several strategies in TCP to help deal with and avoid
congestion

The first issue is how to spot congestion, given that it might be
happening in a part of the network many hops away from both
source and destination



TCP Strategies
Congestion

Congestion happens when more data is being sent than the
network can handle: routers will drop packets if there is not
enough onward bandwidth to cope

There are several strategies in TCP to help deal with and avoid
congestion

The first issue is how to spot congestion, given that it might be
happening in a part of the network many hops away from both
source and destination



TCP Strategies
Congestion

We watch for segment loss

Segments can be lost though errors in transmission or being
dropped at a congested router (or at the destination)

Poor transmission is less usual these days, so we can assume
loss is due to congestion (which is common these days)

Thus TCP treats missing or duplicate ACKs as a sign of
congestion

Exercise A missing ACK is understandable as a sign of
congestion: reflect briefly on why duplicate ACKs can be
caused by congestion



TCP Strategies
Congestion

We watch for segment loss

Segments can be lost though errors in transmission or being
dropped at a congested router (or at the destination)

Poor transmission is less usual these days, so we can assume
loss is due to congestion (which is common these days)

Thus TCP treats missing or duplicate ACKs as a sign of
congestion

Exercise A missing ACK is understandable as a sign of
congestion: reflect briefly on why duplicate ACKs can be
caused by congestion



TCP Strategies
Congestion

We watch for segment loss

Segments can be lost though errors in transmission or being
dropped at a congested router (or at the destination)

Poor transmission is less usual these days, so we can assume
loss is due to congestion (which is common these days)

Thus TCP treats missing or duplicate ACKs as a sign of
congestion

Exercise A missing ACK is understandable as a sign of
congestion: reflect briefly on why duplicate ACKs can be
caused by congestion



TCP Strategies
Congestion

We watch for segment loss

Segments can be lost though errors in transmission or being
dropped at a congested router (or at the destination)

Poor transmission is less usual these days, so we can assume
loss is due to congestion (which is common these days)

Thus TCP treats missing or duplicate ACKs as a sign of
congestion

Exercise A missing ACK is understandable as a sign of
congestion: reflect briefly on why duplicate ACKs can be
caused by congestion



TCP Strategies
Congestion

We watch for segment loss

Segments can be lost though errors in transmission or being
dropped at a congested router (or at the destination)

Poor transmission is less usual these days, so we can assume
loss is due to congestion (which is common these days)

Thus TCP treats missing or duplicate ACKs as a sign of
congestion

Exercise A missing ACK is understandable as a sign of
congestion: reflect briefly on why duplicate ACKs can be
caused by congestion



TCP Strategies

router may drop

to congestion
packets due

S D

R

heavy traffic

congestion window
to manage congestion

en route

causing congestion

low traffic low traffic

advertised window

at destination
to manage buffering

Congestion somewhere on the path

Congestion can happen in a router due to lack of capacity in an
onward link; a router will drop a packet if it can’t cope



TCP Strategies
Congestion

Just as the advertised window deals with “congestion in the
destination” (it’s not really congestion), we have the congestion
window for congestion in the network

So how do we determine the congestion window? It’s not a
thing the source or destination can know directly

We do this by sending segments and watching what ACKs we
get



TCP Strategies
Congestion

Just as the advertised window deals with “congestion in the
destination” (it’s not really congestion), we have the congestion
window for congestion in the network

So how do we determine the congestion window? It’s not a
thing the source or destination can know directly

We do this by sending segments and watching what ACKs we
get



TCP Strategies
Congestion

Just as the advertised window deals with “congestion in the
destination” (it’s not really congestion), we have the congestion
window for congestion in the network

So how do we determine the congestion window? It’s not a
thing the source or destination can know directly

We do this by sending segments and watching what ACKs we
get



TCP Strategies
Congestion

If we have a lot of data to send we do not want to wait for each
ACK before sending the next segment

Better is to send several segments and then wait to see from
the ACKs which were safely received



TCP Strategies
Congestion

If we have a lot of data to send we do not want to wait for each
ACK before sending the next segment

Better is to send several segments and then wait to see from
the ACKs which were safely received



TCP Strategies
Congestion

But sending too many segments at once is bad when the
network is congested: our segments will be dropped. We’ll just
be making things worse for everyone, including ourselves

So, if we have an estimate of the capacity of the network (the
congestion window), we will be sending many segments at
once, but not too many

If we get it right, we will have a continual stream of segments
going out and ACKs coming back



TCP Strategies
Congestion

But sending too many segments at once is bad when the
network is congested: our segments will be dropped. We’ll just
be making things worse for everyone, including ourselves

So, if we have an estimate of the capacity of the network (the
congestion window), we will be sending many segments at
once, but not too many

If we get it right, we will have a continual stream of segments
going out and ACKs coming back



TCP Strategies
Congestion

But sending too many segments at once is bad when the
network is congested: our segments will be dropped. We’ll just
be making things worse for everyone, including ourselves

So, if we have an estimate of the capacity of the network (the
congestion window), we will be sending many segments at
once, but not too many

If we get it right, we will have a continual stream of segments
going out and ACKs coming back



TCP Strategies
Slow Start & Congestion Avoidance

We estimate the network congestion by watching the number of
ACKs coming back

This estimate controls the congestion window

This is an another constraint on sending additional to the
advertised window: it’s a bad idea to send more data than
indicated by the either window



TCP Strategies
Slow Start & Congestion Avoidance

We estimate the network congestion by watching the number of
ACKs coming back

This estimate controls the congestion window

This is an another constraint on sending additional to the
advertised window: it’s a bad idea to send more data than
indicated by the either window



TCP Strategies
Slow Start & Congestion Avoidance

We estimate the network congestion by watching the number of
ACKs coming back

This estimate controls the congestion window

This is an another constraint on sending additional to the
advertised window: it’s a bad idea to send more data than
indicated by the either window



TCP Strategies
Slow Start & Congestion Avoidance

We describe a basic flow control strategy (RFC2001/RFC2581)
that estimates the congestion window; many modifications exist
(TCP Tahoe, TCP Reno, TCP Vegas, . . . )

The congestion window (cwnd) is initialised to the maximum
segment (MSS) size of the destination

A variable, ssthresh, the threshold, is initialised to 64KB (say)

Every time a timely ACK is received, the congestion window is
increased by one segment



TCP Strategies
Slow Start & Congestion Avoidance

We describe a basic flow control strategy (RFC2001/RFC2581)
that estimates the congestion window; many modifications exist
(TCP Tahoe, TCP Reno, TCP Vegas, . . . )

The congestion window (cwnd) is initialised to the maximum
segment (MSS) size of the destination

A variable, ssthresh, the threshold, is initialised to 64KB (say)

Every time a timely ACK is received, the congestion window is
increased by one segment



TCP Strategies
Slow Start & Congestion Avoidance

We describe a basic flow control strategy (RFC2001/RFC2581)
that estimates the congestion window; many modifications exist
(TCP Tahoe, TCP Reno, TCP Vegas, . . . )

The congestion window (cwnd) is initialised to the maximum
segment (MSS) size of the destination

A variable, ssthresh, the threshold, is initialised to 64KB (say)

Every time a timely ACK is received, the congestion window is
increased by one segment



TCP Strategies
Slow Start & Congestion Avoidance

We describe a basic flow control strategy (RFC2001/RFC2581)
that estimates the congestion window; many modifications exist
(TCP Tahoe, TCP Reno, TCP Vegas, . . . )

The congestion window (cwnd) is initialised to the maximum
segment (MSS) size of the destination

A variable, ssthresh, the threshold, is initialised to 64KB (say)

Every time a timely ACK is received, the congestion window is
increased by one segment



TCP Strategies

Poor use of bandwidth Slow Start (no delayed ACKs)

data

ACK

data

ACK

Slow Start with no delayed ACKs



TCP Strategies

Poor use of bandwidth Slow Start

data

ACK

data

ACK

delayed
ACKs

Slow Start with delayed ACKs



TCP Strategies
Slow Start & Congestion Avoidance

So initially we send one segment

Then two at a time

Then four. . .

This is called slow start



TCP Strategies
Slow Start & Congestion Avoidance

So initially we send one segment

Then two at a time

Then four. . .

This is called slow start



TCP Strategies
Slow Start & Congestion Avoidance

So initially we send one segment

Then two at a time

Then four. . .

This is called slow start



TCP Strategies
Slow Start & Congestion Avoidance

So initially we send one segment

Then two at a time

Then four. . .

This is called slow start



TCP Strategies
Slow Start & Congestion Avoidance

It is actually a near-exponential increase in the congestion
window over time

It is “slow” in comparison with an earlier version of TCP that
started by blasting out segments as fast as possible before the
performance of the network was known

In slow start, the increase continues until we reach the current
threshold ssthresh or returning ACKs are duplicated or timed
out



TCP Strategies
Slow Start & Congestion Avoidance

It is actually a near-exponential increase in the congestion
window over time

It is “slow” in comparison with an earlier version of TCP that
started by blasting out segments as fast as possible before the
performance of the network was known

In slow start, the increase continues until we reach the current
threshold ssthresh or returning ACKs are duplicated or timed
out



TCP Strategies
Slow Start & Congestion Avoidance

It is actually a near-exponential increase in the congestion
window over time

It is “slow” in comparison with an earlier version of TCP that
started by blasting out segments as fast as possible before the
performance of the network was known

In slow start, the increase continues until we reach the current
threshold ssthresh or returning ACKs are duplicated or timed
out



TCP Strategies
Slow Start & Congestion Avoidance

Of course, the rate is also limited by the advertised window of
the destination: we can only send the minimum of the current
congestion window and the advertised window

Note that the congestion window is a limit set by the sender,
while the advertised window is a limit set by the receiver



TCP Strategies
Slow Start & Congestion Avoidance

Of course, the rate is also limited by the advertised window of
the destination: we can only send the minimum of the current
congestion window and the advertised window

Note that the congestion window is a limit set by the sender,
while the advertised window is a limit set by the receiver



TCP Strategies
Slow Start & Congestion Avoidance

If we reach ssthresh without a problem, we change to the
congestion avoidance phase

Now we increase the congestion window cwnd by one segment
for each round trip time (RTT)

So one per burst of segments

This is now a linear increase over time



TCP Strategies
Slow Start & Congestion Avoidance

If we reach ssthresh without a problem, we change to the
congestion avoidance phase

Now we increase the congestion window cwnd by one segment
for each round trip time (RTT)

So one per burst of segments

This is now a linear increase over time



TCP Strategies
Slow Start & Congestion Avoidance

If we reach ssthresh without a problem, we change to the
congestion avoidance phase

Now we increase the congestion window cwnd by one segment
for each round trip time (RTT)

So one per burst of segments

This is now a linear increase over time



TCP Strategies
Slow Start & Congestion Avoidance

If we reach ssthresh without a problem, we change to the
congestion avoidance phase

Now we increase the congestion window cwnd by one segment
for each round trip time (RTT)

So one per burst of segments

This is now a linear increase over time



TCP Strategies
Slow Start & Congestion Avoidance

threshold

slow start
region

congestion avoidance
region

time

seg
m

en
ts

Slow start and congestion avoidance regions



TCP Strategies
Slow Start & Congestion Avoidance

Eventually the network’s limit will be reached and a congested
router somewhere will start dropping segments

The sender will see this when either (a) it gets some duplicate
ACKs, or (b) there is a timeout waiting for ACKs

Note we might be in either of the slow start or the congestion
avoidance phases when congestion occurs: particularly if
ssthresh was initially set very large, as its often done these
days



TCP Strategies
Slow Start & Congestion Avoidance

Eventually the network’s limit will be reached and a congested
router somewhere will start dropping segments

The sender will see this when either (a) it gets some duplicate
ACKs, or (b) there is a timeout waiting for ACKs

Note we might be in either of the slow start or the congestion
avoidance phases when congestion occurs: particularly if
ssthresh was initially set very large, as its often done these
days



TCP Strategies
Slow Start & Congestion Avoidance

Eventually the network’s limit will be reached and a congested
router somewhere will start dropping segments

The sender will see this when either (a) it gets some duplicate
ACKs, or (b) there is a timeout waiting for ACKs

Note we might be in either of the slow start or the congestion
avoidance phases when congestion occurs: particularly if
ssthresh was initially set very large, as its often done these
days



TCP Strategies
Slow Start & Congestion Avoidance

When congestion is detected

• the threshold ssthresh is set to half the current transmit
size. This is the smaller of the current congestion window
and the advertised window. Also, this is rounded up to a
minimum of two segments

• if it was a timeout, the congestion window cwnd is set back
to one segment, and go back into slow start

• when ACKs start coming through, we resume increasing
the congestion window again, according to whether we
were in slow start or congestion avoidance (i.e., whether
cwnd is less than ssthresh or not)



TCP Strategies
Slow Start & Congestion Avoidance

When congestion is detected

• the threshold ssthresh is set to half the current transmit
size. This is the smaller of the current congestion window
and the advertised window. Also, this is rounded up to a
minimum of two segments

• if it was a timeout, the congestion window cwnd is set back
to one segment, and go back into slow start

• when ACKs start coming through, we resume increasing
the congestion window again, according to whether we
were in slow start or congestion avoidance (i.e., whether
cwnd is less than ssthresh or not)



TCP Strategies
Slow Start & Congestion Avoidance

When congestion is detected

• the threshold ssthresh is set to half the current transmit
size. This is the smaller of the current congestion window
and the advertised window. Also, this is rounded up to a
minimum of two segments

• if it was a timeout, the congestion window cwnd is set back
to one segment, and go back into slow start

• when ACKs start coming through, we resume increasing
the congestion window again, according to whether we
were in slow start or congestion avoidance (i.e., whether
cwnd is less than ssthresh or not)



TCP Strategies
Slow Start & Congestion Avoidance

When congestion is detected

• the threshold ssthresh is set to half the current transmit
size. This is the smaller of the current congestion window
and the advertised window. Also, this is rounded up to a
minimum of two segments

• if it was a timeout, the congestion window cwnd is set back
to one segment, and go back into slow start

• when ACKs start coming through, we resume increasing
the congestion window again, according to whether we
were in slow start or congestion avoidance (i.e., whether
cwnd is less than ssthresh or not)



TCP Strategies
timeout

threshold

thresholdslow start
region

congestion avoidance
region

time

seg
m

en
ts

Converging on the optimum rate

The sender eventually converges on a rate that is neither too
fast, nor too slow



TCP Strategies
Slow Start & Congestion Avoidance

And it is dynamic

If conditions on the network change, it will soon adapt to the
new rate, be it faster or slower

If there is no congestion on the network, the rate increases until
it reaches the advertised window: the limiting factor is then the
destination, not the network

This strategy is very effective: get the flow up quickly, but don’t
overshoot network capacity. Also, back off quickly and try again
when a loss happens



TCP Strategies
Slow Start & Congestion Avoidance

And it is dynamic

If conditions on the network change, it will soon adapt to the
new rate, be it faster or slower

If there is no congestion on the network, the rate increases until
it reaches the advertised window: the limiting factor is then the
destination, not the network

This strategy is very effective: get the flow up quickly, but don’t
overshoot network capacity. Also, back off quickly and try again
when a loss happens



TCP Strategies
Slow Start & Congestion Avoidance

And it is dynamic

If conditions on the network change, it will soon adapt to the
new rate, be it faster or slower

If there is no congestion on the network, the rate increases until
it reaches the advertised window: the limiting factor is then the
destination, not the network

This strategy is very effective: get the flow up quickly, but don’t
overshoot network capacity. Also, back off quickly and try again
when a loss happens



TCP Strategies
Slow Start & Congestion Avoidance

And it is dynamic

If conditions on the network change, it will soon adapt to the
new rate, be it faster or slower

If there is no congestion on the network, the rate increases until
it reaches the advertised window: the limiting factor is then the
destination, not the network

This strategy is very effective: get the flow up quickly, but don’t
overshoot network capacity. Also, back off quickly and try again
when a loss happens



TCP Strategies
Fast Retransmit

As previously mentioned, when an out-of-order segment is
received the TCP protocol calls for an immediate (possibly
duplicate) ACK: it must not be delayed

Thus the sender will start seeing duplicate ACKs

This is to inform the sender as soon as possible that something
is wrong

Jacobson’s Fast Retransmit strategy builds on the idea that the
receipt of several duplicated ACKs is indicative of a lost
segment



TCP Strategies
Fast Retransmit

As previously mentioned, when an out-of-order segment is
received the TCP protocol calls for an immediate (possibly
duplicate) ACK: it must not be delayed

Thus the sender will start seeing duplicate ACKs

This is to inform the sender as soon as possible that something
is wrong

Jacobson’s Fast Retransmit strategy builds on the idea that the
receipt of several duplicated ACKs is indicative of a lost
segment



TCP Strategies
Fast Retransmit

As previously mentioned, when an out-of-order segment is
received the TCP protocol calls for an immediate (possibly
duplicate) ACK: it must not be delayed

Thus the sender will start seeing duplicate ACKs

This is to inform the sender as soon as possible that something
is wrong

Jacobson’s Fast Retransmit strategy builds on the idea that the
receipt of several duplicated ACKs is indicative of a lost
segment



TCP Strategies
Fast Retransmit

As previously mentioned, when an out-of-order segment is
received the TCP protocol calls for an immediate (possibly
duplicate) ACK: it must not be delayed

Thus the sender will start seeing duplicate ACKs

This is to inform the sender as soon as possible that something
is wrong

Jacobson’s Fast Retransmit strategy builds on the idea that the
receipt of several duplicated ACKs is indicative of a lost
segment



TCP Strategies
Fast Retransmit

Recall that the argument is that one or two duplicate ACKs
might simply be due to out-of-order delivery, as IP is unreliable

Three or more is taken to mean something is wrong

If this happens, the sender should retransmit the indicated
segment immediately: fast retransmit



TCP Strategies
Fast Retransmit

Recall that the argument is that one or two duplicate ACKs
might simply be due to out-of-order delivery, as IP is unreliable

Three or more is taken to mean something is wrong

If this happens, the sender should retransmit the indicated
segment immediately: fast retransmit



TCP Strategies
Fast Retransmit

Recall that the argument is that one or two duplicate ACKs
might simply be due to out-of-order delivery, as IP is unreliable

Three or more is taken to mean something is wrong

If this happens, the sender should retransmit the indicated
segment immediately: fast retransmit



TCP Strategies
Fast Recovery

Next, Jacobsen says do not go into slow start but do congestion
avoidance: this is the fast recovery strategy

We don’t want slow start as the duplicate ACKs indicate that
later data have reached the destination and is buffered there

So data is still arriving (mostly) and we don’t want to abruptly
cut the flow by doing slow start

Fast Retransmit & Fast Recovery are quite effective at getting
the flow going again after a loss

Exercise Read RFC2001 for the details we have not mentioned
here



TCP Strategies
Fast Recovery

Next, Jacobsen says do not go into slow start but do congestion
avoidance: this is the fast recovery strategy

We don’t want slow start as the duplicate ACKs indicate that
later data have reached the destination and is buffered there

So data is still arriving (mostly) and we don’t want to abruptly
cut the flow by doing slow start

Fast Retransmit & Fast Recovery are quite effective at getting
the flow going again after a loss

Exercise Read RFC2001 for the details we have not mentioned
here



TCP Strategies
Fast Recovery

Next, Jacobsen says do not go into slow start but do congestion
avoidance: this is the fast recovery strategy

We don’t want slow start as the duplicate ACKs indicate that
later data have reached the destination and is buffered there

So data is still arriving (mostly) and we don’t want to abruptly
cut the flow by doing slow start

Fast Retransmit & Fast Recovery are quite effective at getting
the flow going again after a loss

Exercise Read RFC2001 for the details we have not mentioned
here



TCP Strategies
Fast Recovery

Next, Jacobsen says do not go into slow start but do congestion
avoidance: this is the fast recovery strategy

We don’t want slow start as the duplicate ACKs indicate that
later data have reached the destination and is buffered there

So data is still arriving (mostly) and we don’t want to abruptly
cut the flow by doing slow start

Fast Retransmit & Fast Recovery are quite effective at getting
the flow going again after a loss

Exercise Read RFC2001 for the details we have not mentioned
here



TCP Strategies
Fast Recovery

Next, Jacobsen says do not go into slow start but do congestion
avoidance: this is the fast recovery strategy

We don’t want slow start as the duplicate ACKs indicate that
later data have reached the destination and is buffered there

So data is still arriving (mostly) and we don’t want to abruptly
cut the flow by doing slow start

Fast Retransmit & Fast Recovery are quite effective at getting
the flow going again after a loss

Exercise Read RFC2001 for the details we have not mentioned
here



TCP Strategies
Congestion

There have been many tweaks to this basic flow control
strategy

• Larger initial ssthresh
• Larger initial cwnd
• Slow start counting number of segments ACKed, not just

the number of ACKs
• Treating duplicate ACKs like a timeout
• On timeout, setting cwnd to half ssthresh, not just 1

segment
• Fast recovery: wait for the ACK of the entire transmit

window before entering congestion avoidance
• Many more



TCP Strategies
Congestion

There have been many tweaks to this basic flow control
strategy

• Larger initial ssthresh
• Larger initial cwnd
• Slow start counting number of segments ACKed, not just

the number of ACKs
• Treating duplicate ACKs like a timeout
• On timeout, setting cwnd to half ssthresh, not just 1

segment
• Fast recovery: wait for the ACK of the entire transmit

window before entering congestion avoidance
• Many more



TCP Strategies
Congestion

Exercise Read about other strategies, such as TCP Reno, TCP
Vegas, TCP New Reno, TCP Hybla, BIC, CUBIC, etc.



TCP Strategies
Congestion

And other kinds of congestion strategy exist and are used

For example, BBR (specifically BBRv3) from Google is not
(primarily) loss based, but develops a model of the state of the
network by monitoring RTTs and the achieved bandwidth of a
connection

It remembers and uses past behaviour as a predictor: not just
the current ACK loss behaviour

Of course, this involves a lot of CPU cycles and could not have
been done in the early days of the Internet

Exercise Read about this



TCP Strategies
Congestion

And other kinds of congestion strategy exist and are used

For example, BBR (specifically BBRv3) from Google is not
(primarily) loss based, but develops a model of the state of the
network by monitoring RTTs and the achieved bandwidth of a
connection

It remembers and uses past behaviour as a predictor: not just
the current ACK loss behaviour

Of course, this involves a lot of CPU cycles and could not have
been done in the early days of the Internet

Exercise Read about this



TCP Strategies
Congestion

And other kinds of congestion strategy exist and are used

For example, BBR (specifically BBRv3) from Google is not
(primarily) loss based, but develops a model of the state of the
network by monitoring RTTs and the achieved bandwidth of a
connection

It remembers and uses past behaviour as a predictor: not just
the current ACK loss behaviour

Of course, this involves a lot of CPU cycles and could not have
been done in the early days of the Internet

Exercise Read about this



TCP Strategies
Congestion

And other kinds of congestion strategy exist and are used

For example, BBR (specifically BBRv3) from Google is not
(primarily) loss based, but develops a model of the state of the
network by monitoring RTTs and the achieved bandwidth of a
connection

It remembers and uses past behaviour as a predictor: not just
the current ACK loss behaviour

Of course, this involves a lot of CPU cycles and could not have
been done in the early days of the Internet

Exercise Read about this



TCP Strategies
Congestion

And other kinds of congestion strategy exist and are used

For example, BBR (specifically BBRv3) from Google is not
(primarily) loss based, but develops a model of the state of the
network by monitoring RTTs and the achieved bandwidth of a
connection

It remembers and uses past behaviour as a predictor: not just
the current ACK loss behaviour

Of course, this involves a lot of CPU cycles and could not have
been done in the early days of the Internet

Exercise Read about this



TCP Strategies
Congestion

Other strategies involve the routers — they are where the
congestion is happening, after all!

Particularly Explicit Congestion Notification (ECN), which aims
to indicate congestion before it happens by routers setting flags
in the IP TOS/DS header when they think congestion is
imminent, so that the hosts get forewarning and can slow down

Exercise Read about ECN and its use of flags in both the IP
header and the TCP header



TCP Strategies
Congestion

Other strategies involve the routers — they are where the
congestion is happening, after all!

Particularly Explicit Congestion Notification (ECN), which aims
to indicate congestion before it happens by routers setting flags
in the IP TOS/DS header when they think congestion is
imminent, so that the hosts get forewarning and can slow down

Exercise Read about ECN and its use of flags in both the IP
header and the TCP header



TCP Strategies
Congestion

Other strategies involve the routers — they are where the
congestion is happening, after all!

Particularly Explicit Congestion Notification (ECN), which aims
to indicate congestion before it happens by routers setting flags
in the IP TOS/DS header when they think congestion is
imminent, so that the hosts get forewarning and can slow down

Exercise Read about ECN and its use of flags in both the IP
header and the TCP header



TCP Strategies
Congestion

Exercise Read about Random Early Detection/Drop (RED),
which is also used in routers

Exercise We use ICMP to indicate other kinds of errors, but
why is it not a good idea to use ICMP when a router drops a
packet due to congestion?



TCP Strategies
Congestion

Exercise Read about Random Early Detection/Drop (RED),
which is also used in routers

Exercise We use ICMP to indicate other kinds of errors, but
why is it not a good idea to use ICMP when a router drops a
packet due to congestion?



TCP Strategies
tcpdump

Exercise Use tcpdump to watch these strategies in operation.
The netcat program is an easy way to set up connections and
send data



TCP Strategies
Path MTU Discovery

The next strategy we have seen already: it is aimed at getting
the largest segment size a connection can handle. But not too
large

IP layer fragmentation is expensive, so we employ path MTU
discovery: but now we need to look at it from a TCP perspective

TCP has (potentially) more information: namely the optional
MSS header sent in the setup handshake



TCP Strategies
Path MTU Discovery

The next strategy we have seen already: it is aimed at getting
the largest segment size a connection can handle. But not too
large

IP layer fragmentation is expensive, so we employ path MTU
discovery: but now we need to look at it from a TCP perspective

TCP has (potentially) more information: namely the optional
MSS header sent in the setup handshake



TCP Strategies
Path MTU Discovery

The next strategy we have seen already: it is aimed at getting
the largest segment size a connection can handle. But not too
large

IP layer fragmentation is expensive, so we employ path MTU
discovery: but now we need to look at it from a TCP perspective

TCP has (potentially) more information: namely the optional
MSS header sent in the setup handshake



TCP Strategies
Path MTU Discovery

We can send segments of decreasing size, starting with the
minimum of the MSS of the sending interface and the MSS
announced by the other end, or 536 if the other end did not give
an MSS

And with the IP flag DF (Don’t Fragment) set

Note the cross-layer activity here!



TCP Strategies
Path MTU Discovery

We can send segments of decreasing size, starting with the
minimum of the MSS of the sending interface and the MSS
announced by the other end, or 536 if the other end did not give
an MSS

And with the IP flag DF (Don’t Fragment) set

Note the cross-layer activity here!



TCP Strategies
Path MTU Discovery

We can send segments of decreasing size, starting with the
minimum of the MSS of the sending interface and the MSS
announced by the other end, or 536 if the other end did not give
an MSS

And with the IP flag DF (Don’t Fragment) set

Note the cross-layer activity here!



TCP Strategies
Path MTU Discovery

If an ICMP error “fragmentation needed but DF set” happens
during a TCP connection, the congestion window should
remain unchanged, but it should only resend one segment
before ACKs start appearing again

This is to reflect the fact that it’s not congestion at fault here, but
we do need to back off a bit to allow ACKs to start coming
through again

It is recommended you try a larger MTU once in a while, e.g.,
every 10 minutes, as routes can vary dynamically



TCP Strategies
Path MTU Discovery

If an ICMP error “fragmentation needed but DF set” happens
during a TCP connection, the congestion window should
remain unchanged, but it should only resend one segment
before ACKs start appearing again

This is to reflect the fact that it’s not congestion at fault here, but
we do need to back off a bit to allow ACKs to start coming
through again

It is recommended you try a larger MTU once in a while, e.g.,
every 10 minutes, as routes can vary dynamically



TCP Strategies
Path MTU Discovery

If an ICMP error “fragmentation needed but DF set” happens
during a TCP connection, the congestion window should
remain unchanged, but it should only resend one segment
before ACKs start appearing again

This is to reflect the fact that it’s not congestion at fault here, but
we do need to back off a bit to allow ACKs to start coming
through again

It is recommended you try a larger MTU once in a while, e.g.,
every 10 minutes, as routes can vary dynamically


