
TCP Timers

Next: TCP has several timers. We have seen

• 2MSL
• Delayed ACK

These are just the start!

TCP Timers
Retransmission Timer

We now consider the timer that determines when to resend in
the absence of an ACK: a retransmission timeout (RTO)

• too short a time is wasteful on slow but otherwise reliable
networks
• too long a time is poor for the data rate

And we want a dynamic behaviour that adapts to changing
conditions rather than a simple fixed timeout

TCP Timers
Retransmission Timer

We now consider the timer that determines when to resend in
the absence of an ACK: a retransmission timeout (RTO)

• too short a time is wasteful on slow but otherwise reliable
networks
• too long a time is poor for the data rate

And we want a dynamic behaviour that adapts to changing
conditions rather than a simple fixed timeout

TCP Timers
Retransmission Timer

We now consider the timer that determines when to resend in
the absence of an ACK: a retransmission timeout (RTO)

• too short a time is wasteful on slow but otherwise reliable
networks
• too long a time is poor for the data rate

And we want a dynamic behaviour that adapts to changing
conditions rather than a simple fixed timeout

TCP Timers
Retransmission Timer

If the network slows down (e.g., heavy other traffic causes less
bandwidth for your packets) the timeout should increase

If the network speeds up (e.g., other traffic reduces) the timeout
should decrease

Jacobson gave an easy algorithm: keep a variable, the round
trip time RTT for each connection

RTT is the best current estimate for the time of a segment
going out and the ACK returning

If we haven’t received an ACK in approximately this time, deem
it lost

TCP Timers
Retransmission Timer

If the network slows down (e.g., heavy other traffic causes less
bandwidth for your packets) the timeout should increase

If the network speeds up (e.g., other traffic reduces) the timeout
should decrease

Jacobson gave an easy algorithm: keep a variable, the round
trip time RTT for each connection

RTT is the best current estimate for the time of a segment
going out and the ACK returning

If we haven’t received an ACK in approximately this time, deem
it lost

TCP Timers
Retransmission Timer

If the network slows down (e.g., heavy other traffic causes less
bandwidth for your packets) the timeout should increase

If the network speeds up (e.g., other traffic reduces) the timeout
should decrease

Jacobson gave an easy algorithm: keep a variable, the round
trip time RTT for each connection

RTT is the best current estimate for the time of a segment
going out and the ACK returning

If we haven’t received an ACK in approximately this time, deem
it lost

TCP Timers
Retransmission Timer

If the network slows down (e.g., heavy other traffic causes less
bandwidth for your packets) the timeout should increase

If the network speeds up (e.g., other traffic reduces) the timeout
should decrease

Jacobson gave an easy algorithm: keep a variable, the round
trip time RTT for each connection

RTT is the best current estimate for the time of a segment
going out and the ACK returning

If we haven’t received an ACK in approximately this time, deem
it lost

TCP Timers
Retransmission Timer

If the network slows down (e.g., heavy other traffic causes less
bandwidth for your packets) the timeout should increase

If the network speeds up (e.g., other traffic reduces) the timeout
should decrease

Jacobson gave an easy algorithm: keep a variable, the round
trip time RTT for each connection

RTT is the best current estimate for the time of a segment
going out and the ACK returning

If we haven’t received an ACK in approximately this time, deem
it lost

TCP Timers
Retransmission Timer

In more detail: when a segment is sent, its timer starts

If the ACK returns before the timeout, TCP looks at the actual
round trip time M and updates RTT using

RTT = αRTT + (1− α)M

α is a smoothing factor, usually 7/8 for easy arithmetic

TCP Timers
Retransmission Timer

In more detail: when a segment is sent, its timer starts

If the ACK returns before the timeout, TCP looks at the actual
round trip time M and updates RTT using

RTT = αRTT + (1− α)M

α is a smoothing factor, usually 7/8 for easy arithmetic

TCP Timers
Retransmission Timer

In more detail: when a segment is sent, its timer starts

If the ACK returns before the timeout, TCP looks at the actual
round trip time M and updates RTT using

RTT = αRTT + (1− α)M

α is a smoothing factor, usually 7/8 for easy arithmetic

TCP Timers
Retransmission Timer

Thus RTT increases or decreases smoothly as conditions
change and doesn’t get too upset by the occasional straggler
that is unusually late (or early)

Next, we need to determine a timeout interval given RTT

This should take the standard deviation of the RTT into
account: if the measured RTTs have a large deviation it makes
sense to have a larger timeout

True standard deviations are tricky to compute quickly (square
roots), so Jacobson suggested using the mean deviation

TCP Timers
Retransmission Timer

Thus RTT increases or decreases smoothly as conditions
change and doesn’t get too upset by the occasional straggler
that is unusually late (or early)

Next, we need to determine a timeout interval given RTT

This should take the standard deviation of the RTT into
account: if the measured RTTs have a large deviation it makes
sense to have a larger timeout

True standard deviations are tricky to compute quickly (square
roots), so Jacobson suggested using the mean deviation

TCP Timers
Retransmission Timer

Thus RTT increases or decreases smoothly as conditions
change and doesn’t get too upset by the occasional straggler
that is unusually late (or early)

Next, we need to determine a timeout interval given RTT

This should take the standard deviation of the RTT into
account: if the measured RTTs have a large deviation it makes
sense to have a larger timeout

True standard deviations are tricky to compute quickly (square
roots), so Jacobson suggested using the mean deviation

TCP Timers
Retransmission Timer

Thus RTT increases or decreases smoothly as conditions
change and doesn’t get too upset by the occasional straggler
that is unusually late (or early)

Next, we need to determine a timeout interval given RTT

This should take the standard deviation of the RTT into
account: if the measured RTTs have a large deviation it makes
sense to have a larger timeout

True standard deviations are tricky to compute quickly (square
roots), so Jacobson suggested using the mean deviation

TCP Timers
Retransmission Timer

Mean deviation:

D = βD + (1− β)|RTT −M|

D is close to the standard deviation and is much easier to
calculate quickly

A typical value for β is 3/4

TCP Timers
Retransmission Timer

Mean deviation:

D = βD + (1− β)|RTT −M|

D is close to the standard deviation and is much easier to
calculate quickly

A typical value for β is 3/4

TCP Timers
Retransmission Timer

Mean deviation:

D = βD + (1− β)|RTT −M|

D is close to the standard deviation and is much easier to
calculate quickly

A typical value for β is 3/4

TCP Timers
Retransmission Timer

The timeout value is set to

T = RTT + 4D

The 4 and the values for α, β were found to be good in practice

When sending a segment (or, in practice, a burst of segments)
set the timer to expire after time T

TCP Timers
Retransmission Timer

The timeout value is set to

T = RTT + 4D

The 4 and the values for α, β were found to be good in practice

When sending a segment (or, in practice, a burst of segments)
set the timer to expire after time T

TCP Timers
Retransmission Timer

The timeout value is set to

T = RTT + 4D

The 4 and the values for α, β were found to be good in practice

When sending a segment (or, in practice, a burst of segments)
set the timer to expire after time T

TCP Timers
Retransmission Timer

What if the timer expires before the ACK is received?

• we resend the segment, of course
• but we also need to update RTT somehow

But we can’t use RTT of the resent segment as we might get
the somewhat delayed ACK of the original segment, not of the
resent segment

TCP Timers
Retransmission Timer

What if the timer expires before the ACK is received?

• we resend the segment, of course

• but we also need to update RTT somehow

But we can’t use RTT of the resent segment as we might get
the somewhat delayed ACK of the original segment, not of the
resent segment

TCP Timers
Retransmission Timer

What if the timer expires before the ACK is received?

• we resend the segment, of course
• but we also need to update RTT somehow

But we can’t use RTT of the resent segment as we might get
the somewhat delayed ACK of the original segment, not of the
resent segment

TCP Timers
Retransmission Timer

What if the timer expires before the ACK is received?

• we resend the segment, of course
• but we also need to update RTT somehow

But we can’t use RTT of the resent segment as we might get
the somewhat delayed ACK of the original segment, not of the
resent segment

TCP Timers
Retransmission Timer

RTT?

ACK

timeout, resend

send

ACK

Retransmission Ambiguity

This is the retransmission ambiguity problem

TCP Timers
Retransmission Timer

The measured RTT would be much too small

Karn’s algorithm is to double the timeout T on each failure, but
do not adjust RTT

When segments start getting through normal RTT updates
continue and RTT quickly reaches the appropriate value

This doubling is called exponential backoff

Alternatively, as is common these days, we have the option
header timestamp and this solves the retransmission ambiguity
directly

TCP Timers
Retransmission Timer

The measured RTT would be much too small

Karn’s algorithm is to double the timeout T on each failure, but
do not adjust RTT

When segments start getting through normal RTT updates
continue and RTT quickly reaches the appropriate value

This doubling is called exponential backoff

Alternatively, as is common these days, we have the option
header timestamp and this solves the retransmission ambiguity
directly

TCP Timers
Retransmission Timer

The measured RTT would be much too small

Karn’s algorithm is to double the timeout T on each failure, but
do not adjust RTT

When segments start getting through normal RTT updates
continue and RTT quickly reaches the appropriate value

This doubling is called exponential backoff

Alternatively, as is common these days, we have the option
header timestamp and this solves the retransmission ambiguity
directly

TCP Timers
Retransmission Timer

The measured RTT would be much too small

Karn’s algorithm is to double the timeout T on each failure, but
do not adjust RTT

When segments start getting through normal RTT updates
continue and RTT quickly reaches the appropriate value

This doubling is called exponential backoff

Alternatively, as is common these days, we have the option
header timestamp and this solves the retransmission ambiguity
directly

TCP Timers
Retransmission Timer

The measured RTT would be much too small

Karn’s algorithm is to double the timeout T on each failure, but
do not adjust RTT

When segments start getting through normal RTT updates
continue and RTT quickly reaches the appropriate value

This doubling is called exponential backoff

Alternatively, as is common these days, we have the option
header timestamp and this solves the retransmission ambiguity
directly

TCP Timers
Persist Timer

The next timer in TCP is the persist timer , sometimes called the
persistence timer

Its role is to prevent deadlock through the loss of window
update segments

TCP Timers
Persist Timer

The next timer in TCP is the persist timer , sometimes called the
persistence timer

Its role is to prevent deadlock through the loss of window
update segments

TCP Timers
Persist Timer

data

ACK, ws = 0

lost

ACK, ws = n

persist timeout

ACK, ws = m

window probe

persist timeout

Persist timer

A sends to B;

TCP Timers
Persist Timer

data

ACK, ws = 0

lost

ACK, ws = n

persist timeout

ACK, ws = m

window probe

persist timeout

Persist timer

B replies with an ACK and a window size of 0;

TCP Timers
Persist Timer

data

ACK, ws = 0

lost

ACK, ws = n

persist timeout

ACK, ws = m

window probe

persist timeout

Persist timer

A gets the ACK and holds off sending to B;

TCP Timers
Persist Timer

data

ACK, ws = 0

lost

ACK, ws = n

persist timeout

ACK, ws = m

window probe

persist timeout

Persist timer

B frees up some buffer space and sends a window update to A;

TCP Timers
Persist Timer

data

ACK, ws = 0

lost

ACK, ws = n

persist timeout

ACK, ws = m

window probe

persist timeout

Persist timer

This is lost;

TCP Timers
Persist Timer

data

ACK, ws = 0

lost

ACK, ws = n

persist timeout

ACK, ws = m

window probe

persist timeout

Persist timer

Now A is waiting for the window update from B and B is waiting
for more data from A: deadlock;

TCP Timers
Persist Timer

data

ACK, ws = 0

lost

ACK, ws = n

persist timeout

ACK, ws = m

window probe

persist timeout

Persist timer

To prevent this, A starts the persist timer when it gets the 0
window from B;

TCP Timers
Persist Timer

data

ACK, ws = 0

lost

ACK, ws = n

persist timeout

ACK, ws = m

window probe

persist timeout

Persist timer

If the timer expires, A prods B by sending a 1 byte segment: a
window probe;

TCP Timers
Persist Timer

data

ACK, ws = 0

lost

ACK, ws = n

persist timeout

ACK, ws = m

window probe

persist timeout

Persist timer

If B gets this, the ACK will contain B’s current window size;

TCP Timers
Persist Timer

data

ACK, ws = 0

lost

ACK, ws = n

persist timeout

ACK, ws = m

window probe

persist timeout

Persist timer

If the window is still 0, A resets the timer and tries again later

TCP Timers
Persist Timer

The persist timer starts with something like 1.5 sec, doubling
with each probe and is rounded up or down to lie within 5 to 60
seconds

So the timeouts are 5, 5, 6, 12, 24, 48, 60, 60, 60, . . .

The persist mechanism never gives up, sending window probes
until either the window opens, or the connection closes

The persist timer is unset when a non-zero window is received

TCP Timers
Persist Timer

The persist timer starts with something like 1.5 sec, doubling
with each probe and is rounded up or down to lie within 5 to 60
seconds

So the timeouts are 5, 5, 6, 12, 24, 48, 60, 60, 60, . . .

The persist mechanism never gives up, sending window probes
until either the window opens, or the connection closes

The persist timer is unset when a non-zero window is received

TCP Timers
Persist Timer

The persist timer starts with something like 1.5 sec, doubling
with each probe and is rounded up or down to lie within 5 to 60
seconds

So the timeouts are 5, 5, 6, 12, 24, 48, 60, 60, 60, . . .

The persist mechanism never gives up, sending window probes
until either the window opens, or the connection closes

The persist timer is unset when a non-zero window is received

TCP Timers
Persist Timer

The persist timer starts with something like 1.5 sec, doubling
with each probe and is rounded up or down to lie within 5 to 60
seconds

So the timeouts are 5, 5, 6, 12, 24, 48, 60, 60, 60, . . .

The persist mechanism never gives up, sending window probes
until either the window opens, or the connection closes

The persist timer is unset when a non-zero window is received

TCP Timers
Keepalive Timer

Yet another timer in TCP is the keepalive

This one is an optional part of the TCP/IP standard, and some
implementations do not have it as it is occasionally regarded as
controversial

When a TCP connection is idle no packets flow between source
and destination

So part of the path could break and be restored and the
connection is none the wiser

This gives us a bit of resilience against flaky networks

TCP Timers
Keepalive Timer

Yet another timer in TCP is the keepalive

This one is an optional part of the TCP/IP standard, and some
implementations do not have it as it is occasionally regarded as
controversial

When a TCP connection is idle no packets flow between source
and destination

So part of the path could break and be restored and the
connection is none the wiser

This gives us a bit of resilience against flaky networks

TCP Timers
Keepalive Timer

Yet another timer in TCP is the keepalive

This one is an optional part of the TCP/IP standard, and some
implementations do not have it as it is occasionally regarded as
controversial

When a TCP connection is idle no packets flow between source
and destination

So part of the path could break and be restored and the
connection is none the wiser

This gives us a bit of resilience against flaky networks

TCP Timers
Keepalive Timer

Yet another timer in TCP is the keepalive

This one is an optional part of the TCP/IP standard, and some
implementations do not have it as it is occasionally regarded as
controversial

When a TCP connection is idle no packets flow between source
and destination

So part of the path could break and be restored and the
connection is none the wiser

This gives us a bit of resilience against flaky networks

TCP Timers
Keepalive Timer

Yet another timer in TCP is the keepalive

This one is an optional part of the TCP/IP standard, and some
implementations do not have it as it is occasionally regarded as
controversial

When a TCP connection is idle no packets flow between source
and destination

So part of the path could break and be restored and the
connection is none the wiser

This gives us a bit of resilience against flaky networks

TCP Timers
Keepalive Timer

On the other hand, sometimes a server wants to know if a client
is still alive: each client TCP connection uses some resources
in the server (buffers, timers, etc.)

If the client has crashed these resources could better be used
elsewhere

To do this the server sets a keepalive timer when the
connection goes idle

A typical value is 2 hours

TCP Timers
Keepalive Timer

On the other hand, sometimes a server wants to know if a client
is still alive: each client TCP connection uses some resources
in the server (buffers, timers, etc.)

If the client has crashed these resources could better be used
elsewhere

To do this the server sets a keepalive timer when the
connection goes idle

A typical value is 2 hours

TCP Timers
Keepalive Timer

On the other hand, sometimes a server wants to know if a client
is still alive: each client TCP connection uses some resources
in the server (buffers, timers, etc.)

If the client has crashed these resources could better be used
elsewhere

To do this the server sets a keepalive timer when the
connection goes idle

A typical value is 2 hours

TCP Timers
Keepalive Timer

On the other hand, sometimes a server wants to know if a client
is still alive: each client TCP connection uses some resources
in the server (buffers, timers, etc.)

If the client has crashed these resources could better be used
elsewhere

To do this the server sets a keepalive timer when the
connection goes idle

A typical value is 2 hours

TCP Timers
Keepalive Timer

When the timer expires, the server can send a keepalive probe

This is simply an empty segment (i.e., no data)

If the server gets an ACK, everything is OK

If not, the server might conclude the client is no longer active

TCP Timers
Keepalive Timer

When the timer expires, the server can send a keepalive probe

This is simply an empty segment (i.e., no data)

If the server gets an ACK, everything is OK

If not, the server might conclude the client is no longer active

TCP Timers
Keepalive Timer

When the timer expires, the server can send a keepalive probe

This is simply an empty segment (i.e., no data)

If the server gets an ACK, everything is OK

If not, the server might conclude the client is no longer active

TCP Timers
Keepalive Timer

When the timer expires, the server can send a keepalive probe

This is simply an empty segment (i.e., no data)

If the server gets an ACK, everything is OK

If not, the server might conclude the client is no longer active

TCP Timers
Keepalive Timer

There are four cases

1. the client is up and running: the keepalive probe is ACKed
and everybody is happy. The keepalive timer is reset to 2
hours

2. the client has crashed or is otherwise not responding to
TCP: the server gets no ACK and resends after 75
seconds. After 10 probes, 75 seconds apart, if there is no
response, the server terminates the connection with
“connection timed out” sent to the server application

TCP Timers
Keepalive Timer

There are four cases

1. the client is up and running: the keepalive probe is ACKed
and everybody is happy. The keepalive timer is reset to 2
hours

2. the client has crashed or is otherwise not responding to
TCP: the server gets no ACK and resends after 75
seconds. After 10 probes, 75 seconds apart, if there is no
response, the server terminates the connection with
“connection timed out” sent to the server application

TCP Timers
Keepalive Timer

There are four cases

1. the client is up and running: the keepalive probe is ACKed
and everybody is happy. The keepalive timer is reset to 2
hours

2. the client has crashed or is otherwise not responding to
TCP: the server gets no ACK and resends after 75
seconds. After 10 probes, 75 seconds apart, if there is no
response, the server terminates the connection with
“connection timed out” sent to the server application

TCP Timers
Keepalive Timer

3. the client has crashed and rebooted. The client gets the
probe and responds with a RST. The server gets the RST
and terminates the connection with “connection reset by
peer” sent to the application

4. the client is up and running, but is unreachable, e.g.,
broken routing. This is indistinguishable from case 2, so
the same events ensue

TCP Timers
Keepalive Timer

3. the client has crashed and rebooted. The client gets the
probe and responds with a RST. The server gets the RST
and terminates the connection with “connection reset by
peer” sent to the application

4. the client is up and running, but is unreachable, e.g.,
broken routing. This is indistinguishable from case 2, so
the same events ensue

TCP Timers
Keepalive Timer

There are several reasons not to use keepalive

• they can cause a generally good connection to be closed
because of a temporary failure of a router
• they use bandwidth
• some network operators charge per packet

TCP Timers
Keepalive Timer

There are several reasons not to use keepalive

• they can cause a generally good connection to be closed
because of a temporary failure of a router

• they use bandwidth
• some network operators charge per packet

TCP Timers
Keepalive Timer

There are several reasons not to use keepalive

• they can cause a generally good connection to be closed
because of a temporary failure of a router
• they use bandwidth

• some network operators charge per packet

TCP Timers
Keepalive Timer

There are several reasons not to use keepalive

• they can cause a generally good connection to be closed
because of a temporary failure of a router
• they use bandwidth
• some network operators charge per packet

TCP Timers
Keepalive Timer

The latter two are not particularly good arguments as the cost
is just a couple of packets every 2 hours

It is usually possible to disable keepalive in the application:
some people think that keepalive should not be in the TCP
layer, but should be handled by the application layer (i.e., the
non-existent session layer)

TCP Timers
Keepalive Timer

The latter two are not particularly good arguments as the cost
is just a couple of packets every 2 hours

It is usually possible to disable keepalive in the application:
some people think that keepalive should not be in the TCP
layer, but should be handled by the application layer (i.e., the
non-existent session layer)

TCP Strategies

Many other strategies to improve throughput have been
proposed

Some have been widely adopted

Exercise Read about the problems of long fat pipes

Exercise Read about Protect Against Wrapped Sequence
numbers (PAWS), Selective Acknowledgement (SACK)

TCP Strategies

Many other strategies to improve throughput have been
proposed

Some have been widely adopted

Exercise Read about the problems of long fat pipes

Exercise Read about Protect Against Wrapped Sequence
numbers (PAWS), Selective Acknowledgement (SACK)

TCP Strategies

Many other strategies to improve throughput have been
proposed

Some have been widely adopted

Exercise Read about the problems of long fat pipes

Exercise Read about Protect Against Wrapped Sequence
numbers (PAWS), Selective Acknowledgement (SACK)

TCP Strategies

Many other strategies to improve throughput have been
proposed

Some have been widely adopted

Exercise Read about the problems of long fat pipes

Exercise Read about Protect Against Wrapped Sequence
numbers (PAWS), Selective Acknowledgement (SACK)

TCP Extensions

Exercise Multipath TCP (MPTCP) has been suggested both for
extra performance, failover and for mobile hosts that roam
between, say, cellular and Wi-Fi (used in iOS7). It layers one
MPTCP connection over one or more TCP connections, e.g.,
using both the cellular and Wi-Fi links simultaneously for one
MPTCP connection

Exercise And potential alternatives to TCP. Read about TCP
for Transactions (TTCP), Stream Control Transmission Protocol
(SCTP), Datagram Congestion Control Protocol (DCCP)

TCP Alternatives

QUIC (originally “quick UDP Internet connection”, now just a
name, not an acronym) is a Google-originated alternative to
TCP (RFC9000)

Originally designed as a transport layer for HTTP/3 (the next
version of HTTP), QUIC can be used as a general transport
protocol

It is reliable, connection oriented, has congestion control, is
encrypted and authenticated and is transmitted within UDP
datagrams (port 443, mostly)

TCP Alternatives

QUIC (originally “quick UDP Internet connection”, now just a
name, not an acronym) is a Google-originated alternative to
TCP (RFC9000)

Originally designed as a transport layer for HTTP/3 (the next
version of HTTP), QUIC can be used as a general transport
protocol

It is reliable, connection oriented, has congestion control, is
encrypted and authenticated and is transmitted within UDP
datagrams (port 443, mostly)

TCP Alternatives

QUIC (originally “quick UDP Internet connection”, now just a
name, not an acronym) is a Google-originated alternative to
TCP (RFC9000)

Originally designed as a transport layer for HTTP/3 (the next
version of HTTP), QUIC can be used as a general transport
protocol

It is reliable, connection oriented, has congestion control, is
encrypted and authenticated and is transmitted within UDP
datagrams (port 443, mostly)

TCP Alternatives

The last is important as routers have a tendency to mess with
(or drop) packets if they don’t recognise the protocol

There have been several new protocols in the past that have
failed to gain popular use as routers would not recognise them

In fact, the QUIC header is encrypted (inside the UDP packet)
to prevent routers inspecting or trying to modify it

TCP Alternatives

The last is important as routers have a tendency to mess with
(or drop) packets if they don’t recognise the protocol

There have been several new protocols in the past that have
failed to gain popular use as routers would not recognise them

In fact, the QUIC header is encrypted (inside the UDP packet)
to prevent routers inspecting or trying to modify it

TCP Alternatives

The last is important as routers have a tendency to mess with
(or drop) packets if they don’t recognise the protocol

There have been several new protocols in the past that have
failed to gain popular use as routers would not recognise them

In fact, the QUIC header is encrypted (inside the UDP packet)
to prevent routers inspecting or trying to modify it

TCP Alternatives

Note: QUIC uses UDP purely to avoid router problems: it would
be better to layer directly over IP, but history won’t let us do that

QUIC is not a lightweight protocol: it is as heavyweight as
TCP+TLS

It is “quick” in the sense of “fast”, not “simple”

TCP Alternatives

Note: QUIC uses UDP purely to avoid router problems: it would
be better to layer directly over IP, but history won’t let us do that

QUIC is not a lightweight protocol: it is as heavyweight as
TCP+TLS

It is “quick” in the sense of “fast”, not “simple”

TCP Alternatives

Note: QUIC uses UDP purely to avoid router problems: it would
be better to layer directly over IP, but history won’t let us do that

QUIC is not a lightweight protocol: it is as heavyweight as
TCP+TLS

It is “quick” in the sense of “fast”, not “simple”

TCP Alternatives

Support for QUIC is growing in OSs and applications, for
example the Chrome browser uses QUIC whenever possible to
fetch Web pages

It has a 3 way opening handshake, like TCP, but this handshake
also negotiates encryption

This saves time over the current schemes that open TCP and
then establishes encryption (see TLS, later)

TCP Alternatives

Support for QUIC is growing in OSs and applications, for
example the Chrome browser uses QUIC whenever possible to
fetch Web pages

It has a 3 way opening handshake, like TCP, but this handshake
also negotiates encryption

This saves time over the current schemes that open TCP and
then establishes encryption (see TLS, later)

TCP Alternatives

Support for QUIC is growing in OSs and applications, for
example the Chrome browser uses QUIC whenever possible to
fetch Web pages

It has a 3 way opening handshake, like TCP, but this handshake
also negotiates encryption

This saves time over the current schemes that open TCP and
then establishes encryption (see TLS, later)

TCP Alternatives

Multiple data streams are multiplexed over a single connection,
again saving time over TCP that would need to start up a
connection for each stream

For example, a Web page might fetch dozens of items (text,
images, JavaScript, . . .) from the same server

These could all be sent within a single QUIC connection

TCP Alternatives

Multiple data streams are multiplexed over a single connection,
again saving time over TCP that would need to start up a
connection for each stream

For example, a Web page might fetch dozens of items (text,
images, JavaScript, . . .) from the same server

These could all be sent within a single QUIC connection

TCP Alternatives

Multiple data streams are multiplexed over a single connection,
again saving time over TCP that would need to start up a
connection for each stream

For example, a Web page might fetch dozens of items (text,
images, JavaScript, . . .) from the same server

These could all be sent within a single QUIC connection

TCP Alternatives

Current browsers do try to multiplex multiple streams over a
single TCP connection, but this causes problems as an error in
one stream causes TCP’s error mechanisms to kick in, affecting
all streams in the connection, even if the other streams had no
error in themselves

QUIC does this multiplexing more efficiently, never stopping a
good stream within a connection

QUIC manages errors at the stream level, not the connection
level

TCP Alternatives

Current browsers do try to multiplex multiple streams over a
single TCP connection, but this causes problems as an error in
one stream causes TCP’s error mechanisms to kick in, affecting
all streams in the connection, even if the other streams had no
error in themselves

QUIC does this multiplexing more efficiently, never stopping a
good stream within a connection

QUIC manages errors at the stream level, not the connection
level

TCP Alternatives

Current browsers do try to multiplex multiple streams over a
single TCP connection, but this causes problems as an error in
one stream causes TCP’s error mechanisms to kick in, affecting
all streams in the connection, even if the other streams had no
error in themselves

QUIC does this multiplexing more efficiently, never stopping a
good stream within a connection

QUIC manages errors at the stream level, not the connection
level

TCP Alternatives

And:

• more sophisticated ACK mechanisms
• connection migration, e.g., WiFi to cellular
• sophisticated flow control (still under development)
• and lots of other stuff building on the knowledge gained

since TCP was first invented

TCP Alternatives

QUIC is growing, but it will be a long time before it replaces
TCP (lots of code to rewrite!)

And TCP with TLS has had decades of tuning, so QUIC has a
lot of work to do to catch up

Exercise Read about how QUIC reduces connection
overheads and about the head-of-line blocking problem

Exercise Read about SPDY, the predecessor to QUIC, and its
relationship to HTTP/2

Exercise Read about the middlebox (router) problem and why
it means that new protocols will have a hard time on the Internet

TCP Alternatives

QUIC is growing, but it will be a long time before it replaces
TCP (lots of code to rewrite!)

And TCP with TLS has had decades of tuning, so QUIC has a
lot of work to do to catch up

Exercise Read about how QUIC reduces connection
overheads and about the head-of-line blocking problem

Exercise Read about SPDY, the predecessor to QUIC, and its
relationship to HTTP/2

Exercise Read about the middlebox (router) problem and why
it means that new protocols will have a hard time on the Internet

TCP Alternatives

QUIC is growing, but it will be a long time before it replaces
TCP (lots of code to rewrite!)

And TCP with TLS has had decades of tuning, so QUIC has a
lot of work to do to catch up

Exercise Read about how QUIC reduces connection
overheads and about the head-of-line blocking problem

Exercise Read about SPDY, the predecessor to QUIC, and its
relationship to HTTP/2

Exercise Read about the middlebox (router) problem and why
it means that new protocols will have a hard time on the Internet

UDP Alternatives

Exercise And don’t forget UDP: UDPLite, RUDP, UDT, etc.

TCP

TCP is a huge success: from 1200 bits/sec telephone lines to
gigabit networks and beyond it has turned out to be massively
flexible and scalable

It took a lot of work, though!

TCP

TCP is a huge success: from 1200 bits/sec telephone lines to
gigabit networks and beyond it has turned out to be massively
flexible and scalable

It took a lot of work, though!

TCP

Here is a small part of the output from ss -io (socket statistics)
on a Linux machine:

tcp ESTAB 0 0 172.16.2.1:34956 34.117.14.220:https

timer:(keepalive,31sec,0)

ts sack cubic wscale:7,7 rto:220 rtt:18.341/0.5 ato:40 mss:1368

pmtu:1420 rcvmss:647 advmss:1368 cwnd:2 ssthresh:7

bytes_sent:7179 bytes_retrans:240 bytes_acked:6939

bytes_received:6747 segs_out:515 segs_in:508 data_segs_out:198

data_segs_in:188 send 1.19Mbps lastsnd:28652 lastrcv:29228

lastack:28632 pacing_rate 2.39Mbps delivery_rate 634kbps

delivered:191 app_limited busy:32268ms retrans:0/8

rcv_space:13800 rcv_ssthresh:64156 minrtt:17.318

