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Parallel computing as a topic has been around for as long as
computers have been around

But recently it has come back into fashion. . . for reasons to be
explored in this Unit

You have PCs, laptops and phones that are multicore: multiple
processors are in the mainstream

This Unit will look at hardware and software in the context of
parallel computing



Unit Outline

Structure of this unit: starting with 3 hours lectures per week

• Wednesday 10:15
• Thursday 10:15
• Friday 14:15

The aim is to cover the necessary material early in the
semester which will leave the last few weeks free for revision
and problems classes; and to lay the groundwork for the
assignments



Unit Outline
Assessment

Usual combination of assessed coursework and exam: two
pieces of coursework plus exam

1. Shared memory programming (15%)
2. Distributed memory programming (10%)
3. End of unit exam (75%)



Unit Outline
Assessment

Coursework timelines (subject to change):

1. set Thu 19 Oct
due Wed 15 Nov

2. set Thu 16 Nov
due Mon 8 Jan 2024

Feedback on coursework will be provided via Moodle. There
will be general feedback that applies to many people and some
individual feedback

Note that marking parallel programs is very time intensive (for
reasons you will learn in thus unit!), so please don’t expect a
speedy turnaround



C

The coursework will be writing some parallel programs in C on
a supercomputer

Though you must already be familiar with writing C, you may
wish to brush up on your C in preparation

There is a “Remind Yourself About C” document on the Unit
Web page



Unit Outline

Week 6 (starting 6th Nov) will be a “consolidation week”

No lectures for the whole of Computer Science (CM Units)

Presumably other Departments will carry on as usual



Unit Outline

Aims To give students the ability to recognise and understand
the problems and opportunities afforded by parallel systems; to
recognise the differing types of parallelism available and make
advised choices between them; and to take advantage of
progress in technology as modern computers become ever
more parallel.



Unit Outline

Learning Outcomes Students will be able to:

1. write and debug simple parallel programs;
2. recognise the issues surrounding concurrent access to

data;
3. describe the various kinds of parallel hardware, parallel

programming methodologies and the relationship between
them



Unit Outline

Skills required:

1. Comfortable writing C
2. Ability to think through complicated situations



Unit Outline

1. Basics: supercomputers and the consequences of Moore’s
Law; bandwidth vs latency; speedup, efficiency, scalability;
Amdahl’s & Gustafson’s Laws; Flynn’s taxonomy, SPMD;
distributed, shared, NUMA and other memory
architectures.

2. Shared memory computing: multicore systems (cache
coherence and bottlenecks); mutual exclusion and critical
regions; low level constructs including POSIX threads and
synchronisation methods such as barriers, locks,
semaphores, etc.; language-level support including
monitors, OpenMP; vector and array (SIMD), HPF, Cn.



Unit Outline

3. Distributed computing: clusters, message passing, MPI.
Programming using MPI (and SLURM).

4. Parallel algorithms and data structures.
5. Topics in Parallel Computing: examples might include

HPC; MapReduce; distributed file systems; the Grid;
GPGPU and OpenCL; instruction level parallelism (SWAR,
VLIW).



Here Be Dragons

Note that this is a Final Year Unit, so is a lot more stretching
than previous years. It contains a lot of material as parallelism
is a big subject

Also it is very important that you are a confident programmer
with good experience in C. Otherwise you will be spending a
disproportionate amount of time on the coursework. Do think
very carefully about this

Many in the past have assumed “it will be ok, I can wing it”, and
subsequently had great difficulty in the coursework

The coursework is trivial as a sequential program, but very
testing as a parallel program



Unit Outline
Resources

The subject of Parallel Computing is nearly as old as that of
computers and so there are lots of books

None of them really suitable for this course, as we will try to
take a broad overview of the subject

Part of the problem of parallel computing is that there is no
simple unified model (like von Neumann for sequential
computing), and everybody has their own idea on how things
should be done

Leading to loads of books saying “this is the one true path to
parallel computing”

Take them with a pinch of salt!



Unit Outline
Resources

Some books I found on my shelf:

Hardware

• “Highly Parallel Programming”, Almasi & Gottlieb,
Benjamin Cummings
• “Computer Architecture and Parallel Processing”, Hwang &

Briggs, McGraw-Hill



Unit Outline
Resources

Software

• “Concurrent Programming Principles and Practice”,
Andrews, Benjamin Cummings
• “Introduction to Parallel Computing”, Kumar, Grama,

Gupta, Karypis, Benjamin Cummings
• “Concurrent Programming”, Burns & Davies,

Addison-Wesley
• “Designing and Building Parallel Programs”, Foster,

Addison Wesley
• “Distributed Algorithms”, Lynch, Morgan Kaufmann



Unit Outline
Resources

Theory

• “Principles of Concurrent and Distributed Programming”,
Ben-Ari, Prentice Hall
• “Communicating Sequential Processes”, Hoare, Prentice

Hall



Unit Outline
Resources

N.B. Some of these were given to me by the publishers so I’m
not saying they are the best books out there

The thing to do it look at several and find one that suits you:
they contain roughly the same material



Unit Outline
Resources

You don’t need me to tell you that there is a large amount of
material out there on the Web?

Wikipedia is fairly accurate in this area: but, as usual with
Wikipedia, you should check with other sources

There is a Unit Moodle page, but as Moodle is so horrible I tend
to use my own Web page:
http://people.bath.ac.uk/masrjb/CourseNotes/cm30225.html

http://people.bath.ac.uk/masrjb/CourseNotes/cm30225.html


Standard Introductory Slides

Remember:

You are expected to do some work outside of lectures

Lectures are the start of the learning process, not the end!

These slides are reminders to me on what to say in lectures

They are often abbreviated in style, and so are not the whole
story and would not be suitable to be quoted verbatim in an
exam



Standard Introductory Slides

Don’t try to copy everything down from the slides in
lectures—the slides will be available after each lecture

Instead, make a note of what is important and use that later—in
conjunction with the slides—to guide your further reading and
study



Standard Introductory Slides

Do not rely purely on my notes for your revision

People who do this live to regret it

Like every Unit, you are expected to read around the subject for
yourself

You need to take your own notes, read, and participate

You don’t expect to get fit simply by paying to joining a gym. . .



“If you have college courses in CS, buy the books and
spend day and night the few days before class go-
ing through the books and taking notes and answering
questions and programming examples before the first
class even starts. If you really want to do this in your
life, that’s what you should do, not just wait for the ed-
ucation to be handed you. Those who finish at the top
will always be in high demand. You can learn outside
of school too but you have to put a lot of time into it. It
doesn’t come easily. Small steps, each improving on
the other, is what to expect, not instant understanding
and expertise.”

Steve Wozniak, co-founder of Apple



Standard Introductory Slides

Computer Science is not a spectator sport

Anon



Background

You have a problem you wish to solve faster. What do you do?

1. You think hard and devise a better solution

Clearly this is a stupid thing to do. Programmers are much too
lazy to do this

2. You get a faster processor

Better. This used to work, but not any more: processors have
pretty much levelled off at around the 3-5GHz mark and don’t
seem to be getting faster



Background

3. You get a multicore machine and run the problem in parallel

This must be the solution!

Isn’t it?

One purpose of this Unit is to make you realise this is actually
the hardest way of doing it!

In reality, No. 1 is best, then No. 2, lastly No. 3



Background

Consider the following:

• it takes one person ten months to build one house
• it takes ten people one month to build one house
• it takes 100 people one-tenth of a month to build one house

Why is the last so implausible?



Background

When there are 100 people running about they will get in each
others’ way; fight over limited resources like bricks; some will
have to sit and twiddle their thumbs while they wait for others to
finish: you can’t plumb a bathroom until the bathroom has been
built

And so on

And when there are more workers, you will need more
managers — not building themselves but making sure workers
are doing the right things

Simply adding more people won’t necessarily get it done faster

Sometimes adding more people will make it go slower as they
get in each others’ way



Background

But we can scale in a different way:

• it takes one person ten months to build one house
• it takes ten people ten months to build ten houses
• it takes one person 100 months to build ten houses
• it takes ten people 100 months to build 100 houses

This is much more believable: adding more people we can build
more houses simultaneously

In reality, we won’t get a perfect speedup like this, due to
resource contention issues, but we can get pretty close



Background

Most people think parallel computing is about making things go
faster

Up to a point, but they will soon be disappointed

Much more likely to succeed is to make things larger

This scales much better



Background

The first is process parallelism, also called task parallelism

The second is data parallelism

Two very different ways of getting more in a given amount of
time



Background

You all have had the situation where someone tries to help you
do something and it’s ended up taking longer

There is the basic time it takes to solve the problem: then there
are substantial overheads in the coordination of the parts of the
solution

The overheads can easily be larger than the problem itself

This is the reality of parallel computing

Often a parallel version of a small problem will be slower than
the sequential version

Only when the problem is made large enough to overcome the
overheads will it become faster than doing it sequentially



Background

So cost (the number of cpu cycles) of a parallel computation
= cost of computation + cost of management of parallelism

Ideally, we want the cost of management of parallelism to be
minimal

But, if you are not careful, or the problem is such that this is
inevitable, we can find that the cost of management of
parallelism can dominate



Background

Another huge issue is that people have enough difficulties with
programming sequential machines

Some would say that sequential programming is not yet a
“solved” problem

Parallel programming is much harder

If you think you understand parallel programing, you definitely
don’t



Background

You have all the issues of sequential programs plus lots more

And they are issues that many programmers have difficulty
even understanding

Particularly as they have been trained to program for sequential
machines and have habits and assumptions that are simply
invalid for parallel machines



Background

Have I convinced you that parallel programming is difficult yet?

Well, it’s worse than you can imagine!



Background

You will see the terms parallel and concurrent, with some
people using them interchangeably

But it is sometimes important to make a distinction between the
two

concurrent means your computation has separately
executable parts

parallel means those parts are being executed at the same
time

Concurrency is about structure, parallelism is about execution



Background

So, “concurrent” means in parts, and those parts may or may
not be running simultaneously

For example, they might be scheduled one at a time on a single
core CPU)

And “parallel” when we are explicitly talking about stuff running
at the same time on multiple pieces of hardware

Concurrency is about dealing with lots of things at
once. Parallelism is about doing lots of things at once.
Rob Pike



Background

Asynchronous programming is an example of non-parallel
concurrency.

This has been around for a long time in many disguises:
futures, promises, coroutines, generators and others

The idea here is that when some code would block, e.g.,
waiting for some I/O, rather than the processor sitting and
waiting doing nothing, the code should direct the processor to
execute some other task

Later, when the I/O is ready, the processor can come back to
where it was and continue from there



Background

The code makes its own decision on what to do: moving
between different parts of code, ensuring the processor is
always actively working

This is scheduling within the code, without involvement of the
Operating System

As we know, any call to the OS entails a large amount of CPU
overhead, which we avoid here

These are major points of async programming: avoid OS
overheads and keep the processor busy



Background

So async code is concurrent (structural), but not parallel
(execution)

Programming async code is very complicated and shares many
features with programming parallel code

Modern programming languages are starting to support async
programming natively, e.g., JavaScript, Swift, C++, Rust,
Python and more

Constructs in the languages hide varying amounts of the gory
details of choosing and switching between tasks



Background

Async programming is good in cases where we have lots of
tasks that mostly wait, e.g., I/O

Parallel programming is good in cases where we have lots of
tasks that mostly compute

Async is cooperative while parallel is preemptive

Async is for waiting in parallel



Background

In this unit we shall be concentrating on parallelism (though lots
of what we say also applies to async programming, too)

Exercise Reflect on how you might use both async and
parallel programming in one program



Background

In contrast to concurrent and parallel, you might hear of serial
and sequential both being used to describe
non-concurrent/non-parallel systems

Serial and sequential mean the same thing



Background
Moore’s Law

Why is parallelism an important topic these days?

There is a famous “law” that describes how hardware has
progressed over the years

It is an observation on how the components in integrated
circuits were shrinking over time as engineering advances were
made:

Moore’s Law (1965):

the number of transistors in a chip doubles every two
years



Background
Moore’s Law

There are a number of points to be made

• it’s not a “law” in any real sense, but an observation on how
chips progress
• Moore did not say speed doubles, as often mis-quoted
• some variants say “18 months” instead of “two years”, but

the history of this statement is complex
• it is somewhat self-fulfilling, as engineers tend to use it as a

target for the development of each next generation of chips



Background
Moore’s Law

There is some economics in there, too: the profit margins on
silicon wafers mean that it is better to have fewer larger chips
than lots of smaller chips

So CPUs tend to keep to the same area, meaning a CPU will
have more and more transistors, not that we have more smaller
CPUs



Background
Moore’s Law
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Background
Moore’s Law

We can see why people thought that Moore’s Law was about
speed: for a long time both transistor count and speed went up
exponentially

In 2005 people would have said that CPUs would be running at
480GHz by 2020

However, over the last few years speed has stopped increasing

But, crucially, the transistor count continues to increase

CPUs stay the same physical size



Background
Moore’s Law

Engineer:
What are we going to do with those extra transistors?

Marketer:
How are we going to convince people to buy the new CPUs?

Solution:
multicore processors

Chips with more than one CPU on them



Background

So now chips in new PCs are all multicore

Dual and quad core is everywhere; 64 core processors are
around; 128 cores are arriving soon (PC-style architecture)

Many cores is great, but we are going to have to find out how to
make best use of them

But simply having two CPUs generally won’t make our program
go twice as fast: overheads like interference and
communication between parts of the computation is going to be
a problem



Background

To repeat: all this hardware is all wonderful except for one point

This computational power is only useful if we can write
the software to exploit it

Your phone might have eight cores, but it is likely very little
software it runs is capable of using all their power
simultaneously

Software is far behind hardware and has a lot to do to catch up

We are still in the dark regarding parallel software



Background
A Brief Aside

Note that Moore’s Law also applies to memory: memory chips
have been doubling in capacity at a similar (perhaps faster?)
rate

But the speed of delivery of data from memory to processor(s)
has always lagged behind the speed of processors

Giving a problematic gap between speed of processors and
speed of memory (both in bandwidth and latency)

The gap has decreased a little over the last few years, but on
the other hand multiple processors need more memory
bandwidth

We shall see memory is a big bottleneck in parallel systems



Background
Moore’s Law

Moore’s Law has been going for 58 years so far

It must come to an end at some point: the end has been
predicted many times in the past, but so far technology has
kept moving onwards

Chip designers think it will keep going for several years yet,
some predict decades

Moore himself thinks perhaps it will last until 2025

And — looking at Intel’s products the last few years — it might
currently be taking 5 years to double transistor counts



Background
Moore’s Law

Exercise Some current top end chips have over 100 billion
transistors, and 7000 cores. If Moore’s Law continued, how
many transistors and cores would they have in 10 years? In 20
years?

Exercise Read about Moore’s Second Law (aka Rock’s Law)



Background
Moore’s Law

Software is getting slower more rapidly than hardware
is becoming faster
Wirth’s Law

Software efficiency halves every 18 months, compen-
sating Moore’s law
David May

The speed of software halves every 18 months
Gates’ Law

What Intel giveth, Microsoft taketh away
Anon



Background

There is nothing new in Computer Science and that includes
parallelism. Back when large supercomputers were first
popular they had been parallel for a long time

For example, a common kind of hardware was the vector
processor

This is for data parallelism, namely scaling the data, not the
speed (directly)

E.g., add together these 100 pairs of numbers to produce 100
results



Background

A vector processor is a collection of 10s, or 100s or 1000s of
fairly simple CPUs (technically not proper full CPUs, just ALUs:
see later)

However, in a vector processor, the CPUs are not independent
of each other: at each point in time each processor is doing the
same operation

But on different data

So it can add 100 pairs of numbers simultaneously: data
parallel

This is called single instruction multiple data (SIMD) processing



Background

And there are other ways of making parallel machines: if you
want to make a really big machine, for a long time the
architecture of choice has been the cluster

This is “simply” large numbers of normal PCs connected
together with a network, with your program spread across the
nodes (the PCs)

We can get both process and data parallelism from this
architecture

The hardware is commodity, so clusters with thousands of
CPUs are common; clusters with millions of cores exist



Background

Some words: be aware different people use these terms in
different ways

• core: a single processing element, can be just an ALU or
can have its own instruction decoding unit
• cpu: sometimes just a synonym for core, sometimes a chip

which contains one or more cores
• processor: similar to cpu
• node: a motherboard that can have one or more slots for

multi-core cpus that share some local resource on the
motherboard, particularly memory
• cluster: a collection of nodes connected by a network



Background

For example, the Azure machine you will be using for the
coursework has four nodes, each consisting of two chips, each
with 24 cores



Background

From www.top500.org, the fastest (publicly known) computer in
the world is (June 2023):

Frontier (USA), 8,699,904 cores, comprising AMD
EPYC 64C cpus at 2GHz; plus Radeon Instinct GPUs;
using 23MW power; with Slingshot-11 interconnect;
running HPE Cray OS

This peaks at about 1.2 exaflops

1 exaflop is a quintillion (1018) floating point operations per
second

www.top500.org


Background

This is the first machine to pass the “exaflop barrier”

HPE is Hewlett Packard Enterprise

Slingshot is a high performance network; a Cray technology,
with (e.g.) hardware support for MPI

HPE Cray OS is a variant of SUSE Linux Enterprise Server



Background

But lots of cores is easy: just expensive

Anyone can build a fast CPU. The trick is to build a fast
system.
Seymour Cray



Background

The main problem in a cluster is the slow communications
between the CPUs

A typical network connection is millions of times slower than a
memory bus: milliseconds rather than nanoseconds

To move data from one node in a cluster to another is
(relatively) immensely slow

Programming a cluster is all about moving the data: we might
be able to do a million machine instructions in the time it takes
to fetch some data from another node



Background

On a machine with a million cores it can be faster to do a million
adds on one core rather than ship out the adds to the CPUs; do
a million adds in parallel; then collect the data back together

Just having an immensely parallel machine doesn’t mean it’s
always better to use the parallelism



Background

In a large parallel machine (cluster or otherwise) processing
power is cheap, but data are expensive

This means you have to think about your programs differently

It might be faster to recompute the same value 1000s of times
across many cores than compute it once and communicate it
everywhere

A very different mindset is needed!



Classifications

We need to classify the kinds of parallelism we shall be looking
at

A simple classification was devised by Flynn (1966)

• Single Instruction, Single Data (SISD). Traditional, von
Neumann, single core machines
• Single Instruction, Multiple Data (SIMD). As in a vector

processor. Multiple cores all doing the same operation in
lockstep, but on different datastreams
• Multiple Instruction, Multiple Data (MIMD). Multiple cores

doing different things to different datastreams. What most
people (wrongly) think parallel computing is all about



Classifications

• Multiple Instruction, Single Data (MISD). Something to fill
in the last combination of letters. Sometimes interpreted as
redundancy, e.g., airplane flight control where they have
multiple (different!) computers all processing the same
data

Data
Single Multiple

Instruc- Single SISD SIMD
tion Multiple MISD MIMD



Classifications

Flynn’s classification is nice and simple, so people have
extended it further, in particular sub-dividing MIMD

• Single Program, Multiple Data (SPMD). Recall SIMD runs
the same program on multiple cores in lockstep, so every
core is executing the same instruction. SPMD runs the
same program (on different data) on a MIMD machine, with
each core going their own way, particularly on loops and
conditionals
• Multiple Program Multiple Data (MPMD). A MIMD machine

not running SPMD. So each core running potentially
different programs, e.g., producer-consumer models, or
systolic pipelines (see later)



Classifications

Of course, there are many more classifications we need to look
at

We can think of how the parts of the architecture are connected



Classifications
Uniprocessor

A uniprocessor (unicore) or sequential processor is the
traditional von Neumann architecture of a single CPU, memory,
etc.

input output

ALU Control

memory

CPU

von Neumann Architecture

A hugely successful model that enabled the computer
revolution to take place



Classifications
Coprocessor

A coprocessor is a non-general processor used as a worker by
the processor

memory

CPU

co
pr

oc
es

so
r

Coprocessor

Currently very popular in the form of graphics cards



Classifications
Multiprocessor

A multiprocessor is a loose term applying to most parallel
architectures, except occasionally SIMD, which usually doesn’t
have multiple full cores



Classifications
Shared Memory

A multiprocessor has shared memory when the cores access
memory on a shared bus

memory

CPU CPUCPU CPU CPU

Shared Memory

Cores share each other’s data: if one core modifies the value of
a value in memory, the other cores see that change



Classifications
Shared Memory

In reality, the shared bus can be a lot more complicated, e.g., a
tree or ring structure

In this example, we have symmetric shared memory: every
CPU has the same equal access to the shared memory



Classifications
Shared Memory

This is possibly what most people think of as a typical parallel
architecture

Unfortunately, it has a lot of problems as an architecture

In particular, the memory is a bottleneck

Memory and memory buses are slow relative to a processor
anyway, and when you have several cores all trying to access
memory simultaneously it gets much worse



Classifications
Shared Memory

Even single core processors have a problem with the speed
disparity, so they use fast (but small) intermediate cache
memory

A small (because it’s expensive) chunk of very fast memory
where you store copies of a few of the values you are currently
using from main memory

Sometime two or three (occasionally four) levels of cache of
increasing size but decreasing speed

CPU
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Levels of cache



Classifications
Shared Memory

So shared memory machines try to cut down the traffic on the
bus by using caches

cache

CPU

cache

CPU

cache

CPU

cache

CPU

cache

CPU

memory

Memory caches

Each core has its own chunk of fast cache memory: this cuts
down on use of the bus



Classifications
Shared Memory

If a core is manipulating the value of a variable it will be loaded
into the cache and operated on there, rather than over the bus
in main memory

CPU CPU CPU CPUCPU

x: 1

a value in
memory

A value in memory

CPU CPU CPU CPUCPU

x: 1

read x
uses the bus

Read value

CPU CPU CPU CPUCPU

x: 1

x: 1

cache x

Copy in cache

CPU CPU CPU CPUCPU

x: 1

x: 2

update x

Update x (in cache)

CPU CPU CPU CPUCPU

x: 1

x: 3

update x

again

Update x again

CPU CPU CPU CPUCPU

x: 3

x: 3

sometime later
store x; uses
the bus

Store x later



Classifications
Shared Memory

This reduces pressure on the shared bus: but now we have the
problem of cache coherence

A CPU only updates its cached copy; the global copy remains
at its old value for a while

So if another core want to read the value before the updated
version has been written back, it will get the old value



Classifications
Shared Memory

CPU CPU CPU CPUCPU

x: 1

x: 2

x has been
updated

x has been updated in cache

CPU CPU CPU CPUCPU

x: 1

x: 2

another CPU
wants x

Another CPU wants x



Classifications
Shared Memory

Even worse, dependent on timing, you don’t know if the first
CPU has written the value back or not

Meaning different runs of the same program can produce
different results, dependent on what else happens to be going
on in the system

This is an example of a race condition: differing orders of
execution of concurrent parts of a system produces varying
outcomes

This particular example is a data race: a race condition that
involves updating data



Classifications
Shared Memory

Not what we want, as we can’t control the vagaries of hardware
operation

You might get the right answer on hundreds of runs; it doesn’t
mean your program is correct!

And it might always happen to be right on your machine, but
wrong when run on some other machine



Classifications
Shared Memory

There are other ways to fail, too

Others cores might be doing the same: reading and updating
the value. Thus there can be several conflicting copies of what
is supposed to be the same variable in different caches

When one core updates the variable the other cores will still be
using their own in their caches



Classifications
Shared Memory

CPU CPU CPU CPUCPU

x: 1

x: 1 x: 1

multiple 
copies of
x

Multiple copies of x

CPU CPU CPU CPUCPU

x: 1

multiple 

x: 2 x: 3

updates
inconsistent

Multiple inconsistent copies



Classifications
Shared Memory

The cache coherence problem is the issue of trying to make
sure all cached copies of a variable are kept in sync

This might be done in several ways

E.g., in the snarfing protocol, whenever an update is made the
value is immediately written through the bus (increasing traffic
on the bus. . . ) to main memory. The other caches are watching
the bus and if they have a copy of the variable they update their
copy with the value being written (they “snarf” the new value)

This is expensive in hardware and does not scale well to large
number of cores as every write must go through the bus



Classifications
Shared Memory

CPU CPU CPU CPUCPU

x: 1

x: 2 x: 1

new value 
immediately
written

New value immediately written to memory

CPU CPU CPU CPUCPU

x: 2

cache copies 

update from

bus

x: 2

x: 2

Caches copy update from bus



Classifications
Shared Memory

But this is better than you might imagine as typical code reads
values much more than it updates values

In x = y + z two values are read, one is written

So this kind of cache-watching is more effective than you might
think

Secondly, well-written code will avoid using shared values in
the first place. Sharing mutable state across threads is bad
design (more on this later)



Classifications
Shared Memory

Other solutions might be to try to balance the memory/cpu
speed disparity

You could use very fast buses and main memory: not a solution
due to cost

Or use slow processors: IBM tried this and it was surprisingly
good!



Classifications
Shared Memory

Exercise Modern architectures are more like:

CPU CPU CPU CPU

x: 2

CPU CPU CPU CPU

x: 2

x: 2

Modern memory architectures

Does this solve the problem?



Classifications
Shared Memory

Unfortunately, such symmetric shared memory does not scale
well, perhaps a few 100s of cores, with complex hardware
support in the caches

Ampere has a 128 core Arm architecture

Intel have just announced a 288 core x86 chip (Sept 2023)



Classifications
Shared Memory

Exercise Read about cache coherence mechanisms: snoopy
caches; directory based; snarfing; MSI; MESI

Exercise Another complication to symmetric shared memory is
when the cores are not identical: read about performance and
efficiency cores (P-cores and E-cores) used by Intel, Apple and
others



Classifications
Shared Memory

Symmetric shared memory is the model that current small
machines (multicore PCs) use

It is well suited to MIMD, but note that SIMD also uses
symmetric shared memory, but with a different access pattern



Classifications
NUMA

So if symmetric, i.e., uniform access, shared memory does not
scale, we can try managing memory in other ways

mem mem

mem mem mem mem

mem

CPUCPU

CPU CPU CPU CPU

CPU

Example NUMA

Each processor has a chunk of memory, but can also access
memory of other processors, perhaps arranged in a tree



Classifications
NUMA

A processor will have fast access to its closest chunk of
memory, but slower access to more remote memory

And different chunks of remote memory will have different
access speeds



Classifications
NUMA

Of course many other topologies have been tried: star, ring,
hypercube, full interconnect, and so on

mem

memmem

mem

CPUCPU

CPU

CPU

Memory in a ring

This architecture evens out the access time to different chunks
of memory a little



Classifications
NUMA

These are non-uniform memory access

NUMA shared memory scales much better than symmetric
shared memory

By scaling here we mean you can build larger machines with
more processors cost effectively

But there is a downside: now programs and programmers (and
the OS) have to worry about data locality : data a processor
needs should be kept close to that processor

It can make a huge difference to the speed of a program if the
data is not where it should be



Classifications
NUMA

If data is close to the processor that is using it, it will go faster
than if the data has to be fetched from further away

So you try to keep data near the relevant processor

Or the computation on a processor near to the data

Of course, if data needs to be used by several processors, this
becomes a very difficult scheduling problem



Classifications
NUMA

NUMA implementations stratify the memory in terms of
“distance”

For example:

• direct connection on the local memory bus
• on the same node
• one hop away
• two hops away
• and so on



Classifications
NUMA

Though this is often simplified to: local, remote, and “far away”

The OS or system libraries or the programmer will try their best
to place data in appropriate memory to minimise latency, using
their knowledge of the NUMA hierarchy and their knowledge of
the program’s needs

The programmer ideally would have a good idea of the
architecture of a machine before writing code for it

And so the portability of a program is in question

This is still a matter of great research and development!



Classifications
NUMA

And, of course, there are hybrids where CPUs share some
memory symmetrically and some memory NUMA

mem

CPU

CPU

mem

mem

CPU

CPU

CPUCPU

Hybrid NUMA



Classifications
Distributed Memory

NUMA allows architectures to scale to greater numbers of
processors, but it won’t scale indefinitely, perhaps a few 1000s
of cores

If the problem is the memory bus bottleneck which means you
have to keep cached copies of a value, and then you have the
problem of keeping coherence amongst the copies, why not
simply not have shared memory?

Distributed memory says each processor’s memory it its own
and is entirely separate from every other processor’s memory



Classifications
Distributed Memory

Shared memory processors share a single memory address
space: within a single process memory location 42 on one
processor refers to the same thing as memory location 42 on
every other processor, as it’s the same memory

The variable x on this processor is the same as the x on that
processor (assuming SPMD)



Classifications
Distributed Memory

CPU CPU CPU CPUCPU

x: 1

a value in
memory

Shared address space



Classifications
Distributed Memory

Processors in a distributed memory architecture each have
their own, separate, address space

Memory location 42 on one processor is entirely separate from
memory location 42 on every other processor

Each processor has their own version of variable x, nothing to
do with any other x on other processors



Classifications
Distributed Memory

Each processor has its own memory

Network

CPU CPU CPU CPU CPU

x: 23 x: 99

Distributed memory architecture

Typically connected by a network, rather than an expensive
memory bus



Classifications
Distributed Memory

To get at data on another node a processor sends a message
to that node, which will reply with the data

Clearly this message passing will be very much slower than
simple shared memory accesses

Memory access across a network can be factors of thousands,
perhaps millions times slower than local memory

The position of data is now very important

Your code has to change, too



Classifications
Distributed Memory

Think of a shared memory operation:
x = y;
x gets the value of y, “simply” read from memory

Compared with the overhead in distributed memory of creating
a message, sending, waiting, reading the reply

See MPI (Message Passing Interface) later, but conceptually
we have to write

x = FetchDouble(remotecpuname, "y");



Classifications
Distributed Memory

Some underlying message passing library does the hard work
of the messaging

Your code become much more complex to write

Both in needing a lot more text, and in needing thought on
where to put your data



Classifications
Message Passing

Note that you can also use message passing on a shared
memory architecture

Doing so might be useful for coding or program structure
reasons

The underlying messages are now probably implemented as
simple accesses to shared memory

Some parallel programming systems (see later) only provide
messaging across threads (often via mechanisms called
channels), thus masking the underlying architecture and
improving program portability across architectures



Classifications
Distributed Memory

When using distributed memory you try to keep the data a
process needs on the processor it is running on, maybe even
replicating data or replicating computations, and access remote
data as little as you get away with

You have to balance the cost of the computations against the
cost of the data movement

An ideal that is rarely achieved in real programs

Of course, if you replicate data that gets updated, you
immediately have a coherence problem again, but now your
own code has to deal with it



Classifications
Distributed Memory

Note that replicating read-only data (e.g., tables of values) will
be fine: there is no coherence issue with multiple copies of data
that never changes

But you do need to put a lot of thought into replicating
read-write (mutable) data



Classifications
DMA

More sophisticated systems have extensive hardware support
for messaging

They have specific direct memory access (DMA) hardware that
accesses memory independently of the CPUs

Thus messaging proceeds independently of the CPU:
communication is asynchronous with computation, freeing the
CPU to do something else while the message is being
processed by the DMA hardware

Thus allowing more computation; but at the cost of more
complicated programming



Classifications
Computation vs. Communication

The call to FetchDouble above could return immediately and
allow your code to continue computing on something else,
rather than waiting for the value of y to appear: but you can’t
use x until the value has arrived some time later

Of course, you now need some mechanism to be notified when
the value has arrived, and so you can now use x

Such asynchronous programming is very hard to get right

But this idea of overlapping computation and communication is
important and will reappear many times



Classifications
Distributed Memory

In distributed systems the concept of single shared values has
to go completely out of the window

The value of x here is nothing to do with the value of x there

Programs have to be written with this in mind: global shared
mutable values are simply not a good idea, even in
uniprocessor programs!



Classifications
Distributed Memory

Distributed memory is the architecture used by clusters: each
node is effectively a PC

Very suitable for SPMD, not so suitable for SIMD

Even with the huge message passing overhead, clusters are
very popular, particularly with very large problems where the
overhead is small relative to the rest of the computation

The computations do have to be huge!



Classifications
Distributed Memory

Not suitable for small problems, or problems where data need
to move a lot between processors

Scales very well as an architecture. Clusters of over a million
cores exist: see the TOP500 list



Classifications
Scaling

Making big machines is easier with distributed systems, too

When we try to add CPUs to a shared memory system, we
have to pay a great deal for the complicated memory
architecture as it means redesigning the silicon and building
new chips

This can quickly swamp all other costs, so making scaling a
shared memory system impractical

In contrast, the cost of adding CPUs to a distributed memory
system is “simply” the cost of the CPUs and the networking

This is roughly linear (per CPU) price scaling



Classifications
Distributed Memory

However, when scaling a cluster we should take care to scale
the network, too, otherwise we have exactly the same kinds of
bottleneck issues that shared memory systems have

In a network like

Simple shared network

the single shared network is clearly a bottleneck



Classifications
Distributed Memory

So we need to scale the network. There are many choices:

Network with two interfaces

Each processor would use one interface to communicate with
processors 0, 2, 4, etc.., and the other interface to processors
1, 3, 5, etc., thus spreading the load



Classifications
Distributed Memory

Or three interfaces

Network with three interfaces

But this gets expensive very quickly



Classifications
Distributed Memory

Trees are a good way of connecting things:

Tree network

Though the upper links now are a bottleneck, and we have
introduced another non-uniformity



Classifications
Distributed Memory

1

4

8

Fat Tree

In a fat tree links up the tree have larger bandwidths, thus
allowing full simultaneous bandwidth between each pair of
nodes



Classifications
Distributed Memory

Though the latency between nodes will vary

In practice, a full fat tree is quite expensive, so real fat trees
tend to skimp on the upper links a bit, e.g, 1, 2, 2 in the above
diagram would be much cheaper to build (and a “2” would
probably be a pair of “1”s)

Thus trading bandwidth for cost

Many other topologies exist, such as hypercube, torus, Banyan,
etc.

Exercise Azure uses a Clos network within its datacentres.
Read about this



Classifications
Distributed Memory

The point here is that this is relatively cheap to do with a
distributed memory network. But adding bandwidth by doing
this kind of connectivity in a shared memory system is
extremely expensive as it likely needs new silicon

Adding bandwidth in a network is relatively cheap

But decreasing latency is very expensive whatever the system



Classifications
Virtual Shared/Distributed Virtual Memory

Some programmers don’t like the fact that distributed memory
machines require programming using message passing and
prefer the shared address space model: shared memory is
easier to write programs for (they claim)

They can use virtual shared memory

Just as virtual memory is a way of converting virtual memory
addresses into physical memory addresses, virtual shared
memory is a mechanism to have a single, virtual, address
space that is converted into distributed physical addresses

Thus this is also called distributed virtual memory and
distributed shared memory



Classifications
Virtual Shared/Distributed Virtual Memory

Reading and writing variables will be implemented by a
message passing layer hidden from the programmer in the OS
or systems libraries

So the programmer won’t have to care about it and they can
write programs as if the whole of memory was one big chunk

The programmer writes the simple “x = y” and the
compiler/OS converts this into a shared memory access or a
message call as appropriate

But it will be very NUMA to data



Classifications
Virtual Shared/Distributed Virtual Memory

Unfortunately, programmers do have to care as the speed of a
program will be very hard to predict or control, depending on
how data is distributed across memory and the particular
NUMA architecture it is running on

How long does the assignment “x = y” take? Is it different from
“x = z”?

A good programmer looking for a good, consistent performance
from their code will still need to think hard

A poor programmer will think their life is easier



Classifications
Virtual Shared/Distributed Virtual Memory

The underlying system also needs to solve all the problems of
cache coherence that shared memory hardware has, but now
using the (relatively) slow messaging passing layer rather than
custom-designed hardware

The NUMA aspect is so unpredictable that many programmers
prefer to be in control and have an explicitly non-shared model

When you write FetchDouble you know it is going to be slow

Compare with “how fast is x = y?” in VSM



Classifications
Virtual Shared/Distributed Virtual Memory

The underlying communications layer in VSM might be
implemented

• in the Operating System, such as Mosix. This means all
standard system libraries and user code can be used
unchanged and a cluster looks like a single big machine: a
single system image (SSI)
• by the programming language and libraries, such as

Cluster OpenMP or Unified Parallel C (see later), so the
language may need a bit of learning by the programmer



Classifications
Virtual Shared/Distributed Virtual Memory

VSM is currently fairly rare in practice, though as NUMA
techniques improve, people are starting to talk about shared
memory clusters as being a viable and useful way to proceed



Latency numbers every programmer should know

L1 Cache hit 0.5 ns 0.5 sec
one heart beat

Mutex lock/unlock 25 ns 25 sec
making coffee

Main memory access 100 ns 100 sec
brushing your teeth

Read 1MB from memory 250,000 ns 2.9 days
a long weekend

Round trip within 500,000 ns 5.8 days
datacentre a short holiday
Read 1MB from disk 30,000,000 ns 1 year
Send a packet California→ 150,000,000 ns 4.8 years
Netherlands→ California two round trips

to Mars

https://gist.github.com/hellerbarde/2843375

https://gist.github.com/hellerbarde/2843375


Classifications

The next class of architecture is one we have already touched
on

It has elements of both shared and distributed memory

It is used for data parallel computation



Classifications
Vectors

A vector processor is a SIMD collection of CPUs (actually
ALUs), often with a chunk of global shared memory (and a
single control unit)

memory

mem mem mem mem mem

ALU ALU ALUALUALU

Control

Vector processor

Each processor also has its own chunk of local memory that it
operates on



Classifications
Vectors

The local memory allows each ALU to work on a different set of
values

Note: this is not cache, but simply per-ALU memory



Classifications
Cache vs Local

Cache memory: a fast local copy of a slower memory location.
If a value of a variable is cached on different cores, we want all
the caches to contain the same value for that variable

Local memory: per core memory (not always fast, by the way!)
where we expect to have different values for a given variable in
each



Classifications
Vectors

In a vector processor, the bottleneck to the shared memory still
needs thinking about

For reads: as the cores are all doing the same thing, if one
requests a global shared value from a fixed shared memory
location, then all of them are doing the same

So the memory system puts that single value on the bus and all
the cores read it: no bottleneck

Sometimes called a broadcast



Classifications
Vectors

mem mem mem mem mem

ALU ALU ALUALUALU

One read goes to all cores



Classifications
Vectors

However, as is often the case, it can be that each core wants a
value from a different part of global memory. E.g., core k wants
the k th element from a array

mem mem mem mem mem

ALU ALU ALUALUALU

Reading a vector of values



Classifications
Vectors

In this case, it takes careful management, both by the hardware
and by the programmer, to ensure the transfers use the shared
memory bus efficiently

The case of sending the sending the k item to the k th core is
often optimised by the hardware using coalescence

Using a wide bus (e.g., 512 bits) a single read operation can
fetch multiple data (e.g., 16 integers) and put them all on the
bus simultaneously

Each core reads the value it wants

The next 16 values are sent in the next transfer; and so on



Classifications
Vectors

mem mem mem mem mem

ALU ALU ALUALUALU

A single fat read goes to multiple cores



Classifications
Vectors

However, it needs data accesses in the program to be of certain
patterns for this to work, e.g., linear access to an array

The kinds of access pattern allowed for coalescence are
dependent on what the hardware supports, but are generally
picking some subset of a contiguous chunk of the shared
memory

Otherwise, the reads cannot be coalesced and might require
many (e.g., 16) individual reads: much slower

E.g., proc k wants value k2 from the array



Classifications
Vectors

mem mem mem mem mem

ALU ALU ALUALUALU

read 3

read 2

read 1

Awkward distribution done in multiple reads



Classifications
Vectors

Similarly for writes: e.g., core k writing a value to the k th slot in
an array could be coalesced

Multiple writes to a single location make no sense and are often
disallowed by the system

Exercise Consider the case of indirecting through a pointer to
global memory (a) when each core points to the same location
and (b) when each core points to a different location in the
global memory

Exercise Consider the case of indirecting through a pointer to
local memory (a) when it’s pointing to the same location on all
cores and (b) when it’s pointing to a different location on each
core



Classifications
Vectors

Often there is fast direct communications between
neighbouring CPUs

memory

mem mem mem mem mem

ALU ALU ALUALUALU

Control

Neighbour connections

This allows data to shuffle up and down the vector very quickly:
many problems (e.g., differential equations solving) work on
data and neighbour data in this way



Classifications
Arrays

Clearly, vector processors are SIMD and not suitable for MIMD
or even SPMD

Vector processors appeared early in parallel computing as they
are relatively easy to build: ALUs are relatively easy to build
and replicate, while control units are complex and hard



Classifications
Arrays

An extension of the idea was the array processor

memmemmemmem

ALUALUALUALU

memmemmemmem

memory

memmem mem mem

memmemmemmem

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

control

Array processor

memmemmemmem

ALUALUALUALU

memmemmemmem

memory

memmem mem mem

memmemmemmem

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

control

Array with diagonal connections



Classifications
Arrays

The CPUs are in SIMD lockstep as before, but now in an array

Fast connections in two or more directions

This fits well with 2 dimensional differential equation problems

More expensive than vector processors and much less common



Classifications
Arrays

Early array processors were very simple, but they became
bigger as technology advanced

CPU #CPUs mem/CPU
DAP 1979 1 bit 4k 4k bits
CM 1983 1 bit 64k few kB
MPP 1983 1 bit 16k 1 kB
MasPar 1990 4 bit 16k 16kB
MasParII 1992 32 bit 64k 64kB

DAP: ICL Distributed Array Processor
CM: Connection Machine (pretty lights)
MPP: Goodyear Massively Parallel Processor



Classifications
Arrays

Despite being very wimpy processors, this was made up by
having so many of them

Their throughput (results achieved per second) is quite
respectable

They work very well for certain kinds of problem (e.g., weather
forecasting), but are not suited to many other kinds of problems

Vector/array processing processors are important due to their
influence on the design of GPUs



Classifications
Arrays

Shared, distributed and vector processors are the three major
architectures used today

But others have been tried, with varying levels of success



Classifications
Pipelines, Systolic Arrays

Similar looking to vector processors, but actually quite different,
are systolic arrays

These generalise CPU instruction pipelines to processes

mem
CPU

mem
CPU

mem
CPU

Process pipeline

The CPUs are independent (MIMD/MPMD), each performing
one step in the transformation of the input data

More often found in hardware to solve specific problems; not
often found as a generic machine

Exercise Could this be classified MISD?



Classifications
Pipelines, Systolic Arrays

For example, a graphics card might want to do clipping of
polygons, then colouring, then shading

Each step separate, but compute intensive

Just as pipelining instructions in a processor allows instructions
to be processed faster, pipelining these kinds of computations
allows pixels to be computed faster

Used in graphics coprocessors as another form of parallelism

Part of the reason why digital TV is delayed relative to realtime
is that the encoding of the picture goes through a big pipeline
before it is transmitted: there is an inherent latency in pipelines



Classifications
Pipelines, Systolic Arrays

Systolic arrays are the obvious extension

mem
CPU

mem
CPU

mem
CPU

mem
CPU

mem
CPU

mem
CPU

Systolic array

but it is unclear if these were ever built



Classifications
Extensions of von Neumann

So why do all these varieties of parallel architecture exist?

There is essentially just one way uniprocessor machines are
built: the von Neumann model

Is there a model that encapsulates multiprocessors in the same
way?

There are many contenders, but no obvious winner



Classifications
Extensions of von Neumann

We have the original von Neumann 5 box model

input output

ALU Control

memory

CPU

von Neumann 5 box model



Classifications
Extensions of von Neumann

Shared memory MIMD

ALU ControlALU Control ALU Control

input output

memory

Shared memory box model



Classifications
Extensions of von Neumann

Distributed memory MIMD

ALU ControlALU Control ALU Control

memory memorymemory

input output

Distributed memory box model



Classifications
Extensions of von Neumann

Vector processor

ALU

memory

ALU

memory

ALU

memory

ALU

memory

ALU

memory

input output

Memory

Control

Vector processor memory box model



Classifications
Extensions of von Neumann

Perhaps there just isn’t a single extension of von Neumann that
is suitable as a one-size-fits-all solution

Or perhaps we just haven’t thought of it yet?



Classifications
Extensions of von Neumann

There are several theoretical models whose aim is to guide the
design of parallel algorithms and allow the analysis of them

As with von Neumann, the idea is that you

• write your program in accordance with the model
• the model maps well onto all kinds of real hardware
• therefore your program maps well onto all kinds of real

hardware



Classifications
Extensions of von Neumann

Firstly: PRAM

The Parallel Random Access Machine model idealises a
parallel computer as shared memory MIMD, concentrating on
the memory bottleneck

You have a choice of how memory can be accessed:

• Exclusive Read Exclusive Write (EREW). Each memory
location can only be read or written by one processor at a
time. The simplest architecture
• Concurrent Read Exclusive Write (CREW). Each memory

location can be read by many processors simultaneously,
but written by just one processor at a time (c.f. global
memory in a vector processor)



Classifications
Extensions of von Neumann

• Concurrent Read Concurrent Write (CRCW). Each
memory location can be read or written by many
processors simultaneously. Not a realistic model
• Exclusive Read Concurrent Write (ERCW). The fourth

combination, never used.



Classifications
Extensions of von Neumann

PRAMs make many further simplifying assumptions, including:

• Memory is symmetric: every location is accessed at the
same speed. Decreasingly realistic
• There are an unlimited number of processors: there’s

always another processor if you need it. Seems unrealistic,
but not so bad as you think as most programs are unable
to make use of the hardware that we currently have
• Memory is unlimited. This assumption is also often made

in analysis of uniprocessor algorithms



Classifications
Extensions of von Neumann

In the early days of Computer Science, there were many clever
algorithms invented to deal with the lack of available memory

And, to some extent, memory is still limited in some modern
architectures that have very large numbers of CPUs so
proportionally each has only a small share of memory

And people want to run programs on datasets of
ever-increasing size



Classifications
Extensions of von Neumann

So you analyse your program, counting numbers of memory
accesses it makes (according to which of
EREW/CREW/CRCW you have chosen) and this gives you a
measure of the time your program will take to run

This is primarily a MIMD model, but you can analyse SIMD
using it

It totally ignores important realities like NUMA and other
overheads, such as communication time in a distributed
memory system

But it gives you a rough idea and it is extensively used in
analysis of parallel algorithms: we’ll have some examples later



Classifications
Extensions of von Neumann

Next: BSP

The Bulk Synchronous Parallel model

This model takes communication time into account

It assumes processors with local memory communicating over
a network

Good for distributed, but can be used for shared memory where
you just have smaller communication costs



Classifications
Extensions of von Neumann

A computation is modelled as a sequence of supersteps

• each processor does some computation (MIMD, but could
be SIMD)
• each processor does some communication
• each processor waits at a global barrier until everybody

has finished their communications. This is the “bulk
synchronous” part
• repeat



Classifications
Extensions of von Neumann

BSP supersteps



Classifications
Extensions of von Neumann

Processing is simplified in this way to give us a chance of being
able to make an analysis

Fortunately, many real computations are not too far from this
shape

More realistic than PRAMs, but harder work to get analyses out
of it

But those analyses tend to be a better match to realistic
hardware



Classifications
Extensions of von Neumann

And so on for many other models, some practical, some not

For example, parallel Turing machines and Communicating
Sequential Processes (CSP) amongst others. Both better at
describing the nature and limitations of parallel programs than
for investigating how well they work

But the fact remains that there is not one simple theoretical
model that works well for all kinds of parallel processing

This might be the source of the confusion in parallel hardware,
but we have to live with it



Analysis

So we need to look at how to analyse parallel algorithms

Analysis of parallel algorithms is like analysis of sequential
algorithms, just more complicated

Later we shall see statements like “this takes time O(n2) using
O(p) processors”

But we shall start with a few simple measures that we can use
to indicate how well our parallel algorithms are working

They are quite crude, but effective



Analysis
Speedup

They mostly measure the parallel algorithm in comparison with
a corresponding sequential algorithm

Or a parallel implementation with a corresponding sequential
implementation: by timing actual running code

We have seen that having p processors won’t necessarily make
our program run p times as fast

The speedup using p processors is

Sp =
time on a sequential processor
time on p parallel processors

Ideally we’d like Sp = p, but this never happens



Analysis
Speedup

Usually Sp is much smaller than p for several reasons

Firstly, there is communications overheads between processors

This might be fairly small for shared memory, or large for
distributed memory, but it is present

Time spent communicating is time not spent computing



Analysis
Speedup

So more communications (data movement) will tend to lead to
smaller speedups

For example, speedups on distributed memory machines can
be reduced as the cost of communications is quite high

But speedups can improve for a larger computation where the
relative cost of communications drops

Remember clusters are used for large problems where the
emphasis is on size, not speed



Analysis
Slowdown

In really bad cases, Sp < 1, i.e., our parallel program goes
slower than our sequential program even though we’ve thrown
all this expensive hardware at it!

This is more common than we’d like



Analysis
Speedup: Amdahl’s Law

Now there is the natural upper bound of Sp ≤ p: we wouldn’t
expect to get more speedup than the number of processors we
have

But it turns out that the number of processors is generally not
the limiting factor on speedup: there is another fundamental
restriction on speedup that is often overlooked

Amdahl’s Law reveals a natural upper bound on the speedup
that is theoretically possible even before we add in
implementation overheads



Analysis
Speedup: Amdahl’s Law

Suppose we have a problem of which 90% can be run in
parallel, leaving 10% sequential code

For example, we have to read data before we can process it: a
necessary sequentiality. Similarly for writing after processing.
Or the add after the square in x2 + 1

So there’s always some sequentiality

But in the best possible case, using an unlimited number of
processors, we might be able to get the parallel part down to as
close to zero time as we like

We still have the 10% sequential part



Analysis
Speedup: Amdahl’s Law

So the speedup is

S∞ =
time on a sequential processor

time on parallel processors
=

100
10

= 10

A speedup of 10 even on an infinite number of processors

It doesn’t even matter what the problem is, or what hardware
we have



Analysis
Speedup: Amdahl’s Law

This is Amdahl’s Law:

Every program has a natural limit on the maximum
speedup it can attain, regardless of the number of pro-
cessors used



Analysis
Speedup: Amdahl’s Law

We can quantify Amdahl’s Law:

Let T = Tseq + Tpar be the time spent in the sequential and
parallel parts of our problem on a sequential processor

Then the maximum speedup Sp using p processors on the
parallel part is

Sp ≤
Tseq + Tpar

Tseq + Tpar/p

where we have perfectly parallelised the parallel part



Analysis
Speedup: Amdahl’s Law

Thus there is a natural upper limit on how fast programs can go

Most do I/O, which must be serialised (made sequential)

Further, as p →∞, we get

S∞ ≤
Tseq + Tpar

Tseq

so there is a limit even given infinite processing power

This limit is determined by the time taken in the sequential part
of the computation



Analysis
Speedup: Amdahl’s Law

To see this consider the fraction x = Tseq/(Tseq + Tpar) which is
the proportion of the sequential part within the whole

Note that 0 ≤ x ≤ 1, and that rearranging the above gives

Sp ≤
1

x + (1− x)/p

And so
S∞ ≤

1
x

is bounded



Analysis
Speedup: Amdahl’s Law

Note that Amdahl does not say anything about how the
speedup varies with p

All Amdahl says is that an upper limit exists

Your program may not get anywhere close to that limit and
often in real programs, does not



Analysis
Speedup: Amdahl’s Law

In real programs, there are many other factors that affect
speedup, so that the speedup may well vary all over the place
as p increases

It can even decrease as p gets larger



Analysis
Speedup: Amdahl’s Law

p

Amdahl’s

limit

speedup = psp
eed

u
p

Speedup in theory

p

Amdahl’s

limit

Actual

speedup

speedup = psp
eed

u
p

Speedup in practice



Analysis
Speedup: Amdahl’s Law

To emphasize: all we know is that actual speedup is below
Amdahl’s limit

Exercise Show that if 0 ≤ x ≤ 1, then

1
x + (1− x)/p

≤ p

Exercise What is the maximum speedup of a program that is
100% sequential?



Analysis
Speedup: Gustafson’s Law

Amdahl’s law is real: there is a natural limit on speedup for a
given problem

But there’s another point of view

Gustafson pointed out that in real life larger machines tend to
attract larger problems

Amdahl assumes a fixed size of problem

Gustafson’s Law (occasionally called Gustafson-Barsis’s Law)
gives us another limit
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Speedup: Gustafson’s Law

Suppose we have a problem of size n

Sp(n) ≤
1

xn + (1− xn)/p

where Sp(n) is the speedup on p processors for a problem of
size n; xn is the fraction of the computation spent sequentially

Gustafson argues: as n gets larger, the sequential part
relatively decreases, so xn → 0 (p is fixed)

So
Sp(∞) ≤ p

i.e., we now get a speedup limit that is the “perfect” speedup p
— on an infinitely sized problem



Analysis
Speedup: Amdahl’s Law, Gustafson’ Law

Both Amdahl and Gustafson are correct: they just apply to
different cases of scaling

Amdahl: fixed problem, scaling processing power (sometimes
called strong scaling)

Gustafson: fixed processing power, scaling problem

This should convince you that even a simple measure like
speedup can be problematic!

But it does re-emphasise the fact that parallelism is not about
making things faster, but about making things larger



Analysis
Speedup

Speedup is a simple measure, often proving that your parallel
program is slower than it ought to be

1

1

p

S
p

Typical speedup curve

Sometimes it takes p to be surprisingly large before you even
catch up with the uniprocessor time with Sp = 1 (sometimes
never!)



Analysis
Speedup

Very common is the low start, a modest increase, then a tailing
off

But taking it further

1

1

S
p

p

Adding more processors

We might eventually find adding processors makes it slower!
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Speedup

This is usually due to increased communications between the
processors adding more overhead but not more speedup,
perhaps due to Amdahl

Of course, it’s not always this bad, but it’s quite common!

It does mean there is often an optimum number of processors
for a given size of problem that achieves the best speedup

Of course, these are only typical behaviours: a given program
may behave quite differently from all of this



Analysis
Speedup

Exercise Consider what might be the difference between a
sequential implementation of something and a parallel
implementation running on one processor



Analysis
Superlinear Speedup

You will get used to seeing Sp < p

On the other hand, it is possible that Sp > p

This seemingly impossible condition is called superlinear
speedup

It is quite rare in real life, but it really can happen that a program
runs more than p times as fast on p processors

This can happen for a variety of reasons, some technological,
and some more philosophical



Analysis
Superlinear Speedup

The first technological reason is due to cache memory

Cache memory is a lot faster than main memory so if you can
fit your problem entirely in cache, it will run faster

For example, a Core i7: perhaps 200 cycles to access main
memory, compared to 2 cycles for a L1 cache hit

p processors might have p times the cache of a single
processor, so a problem spread across the processors might
well fit in the larger amount of cache available

Of course, this takes a certain kind of low-communication,
easily dividable problem to work; and the right hardware
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Superlinear Speedup

Note: modern CPUs tend to share cache across multiple cores,
so it is unlikely p cores has p times as much cache

(This helps with cache coherence!)
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Superlinear Speedup

Another (more philosophical) reason is due to the way speedup
is defined

Sp =
time on a sequential processor
time on p parallel processors

What are we comparing against what?

Here is an example to illustrate the issue

We have bubblesort running on a uniprocessor: we wish to
make it run on a parallel machine



Analysis
Superlinear Speedup

One way of doing this is:

• split the data into equal halves
• bubblesort each half in parallel
• merge the two sorted lists together

This is 2-way parallelism

The middle step can be itself parallelised recursively: split into
two, bubble and merge, giving 4-way parallelism

Depending on the number of processors we have, we can keep
recursively dividing



Analysis
Superlinear Speedup

This seems like a reasonable way to implement bubblesort on a
parallel machine

What is the speedup? We need to find out how long each
version takes to run

Normal bubblesort takes time n2/2 + O(n) comparisons in the
average case to sort n items

So bubblesorting the two halves (in parallel) takes time

(n/2)2/2 + O(n/2) = n2/8 + O(n)
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Superlinear Speedup

Merging n values takes O(n), giving a total of

n2/8 + O(n) + O(n) = n2/8 + O(n)

time

This gives speedup

S2 =
n2/2 + O(n)
n2/8 + O(n)

≈ 4

Already superlinear!



Analysis
Superlinear Speedup

On 4 processors we could repeat: the speedup we get is
S4 ≈ 16

Clearly this a wonderful algorithm

If we were to implement it, we would truly see these speedups

What is happening?
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Superlinear Speedup

Consider the same subdividing algorithm on a single processor

Time to bubblesort halves: 2× (n2/8 + O(n)) = n2/4 + O(n);
time to merge O(n); total n2/4 + O(n)

“Speedup”

S1 =
n2/2 + O(n)
n2/4 + O(n)

≈ 2

So we win even on a uniprocessor



Analysis
Superlinear Speedup

What is happening is that bubblesort is a really poor sorting
algorithm on average

By subdividing and merging we are converting it into a different
kind of sort: if we recurse all the way we have actually
implemented a merge sort

Merge sort has complexity O(n log n)
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Superlinear Speedup

The point of this is that by converting bubblesort to be parallel
in this way we are fundamentally changing it

This is an extreme case, but in general we must be care when
computing speedups that we are comparing like with like

It may not always be possible to have a suitable parallel version
of an algorithm: in such a case “speedup” is not meaningful

In most real cases we don’t get this effect, but it’s worth being
aware that it can happen



Analysis
Speedup

Some people go further and define speedup as

Sp =
time of the best possible sequential algorithm

time on p parallel processors

but this has its own problems, not least that we might not know
the best possible sequential way of doing things

And we now might be comparing two completely unrelated
algorithms
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Speedup

In a similar vein, another reason for getting superlinear
speedups is that the original, sequential, program was poorly
written

Perhaps the programmer spent more time thinking about the
parallel version, or gained more experience from writing the
sequential version, making it substantially better code than the
sequential version

This is much the same as the “transform bad algorithm to better
algorithm” above, but is now “transform bad code to better
code”

So, again, we are not really comparing like with like
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Speedup

And occasionally we see superlinear speedup due to
randomness

If the data contains random numbers, or there is something that
adds an elements of randomness to the run time we can get a
superlinear speedup

This time due to the parallel version “getting lucky” and hitting a
special case that finishes early relative to your measured
sequential version

So also not comparing like with like

You would need to ensure each run had the same randomness
to be properly comparable; or run many times and take an
average time



Analysis
Speedup

In conclusion: speedup is a nice and simple, easy to
understand measure: but we have to take care over what it is
telling us

Some problems are pathologically parallel, meaning they fall
easily into parallel parts that have a minimum of communication

For such problems it is easy to get good speedups

E.g., graphics rendering, weather forecasting, parameter
sweeping, etc. Often they are data parallel problems

Other problems fare less well — in terms of speed — from
parallelisation!



Analysis
Efficiency

If we are lucky enough that Sp increases with p we can make
our program get faster by adding more processors

But at what cost?

If we can double the speed of a program using 4 processors we
feel we are doing better than if we used a different approach
that needed 8 processors for the same speedup

Efficiency measures this



Analysis
Efficiency

Efficiency is speedup per processor:

Ep =
Sp

p
=

time on a sequential processor
p × time on p parallel processors

Usually 0 ≤ Ep ≤ 1, and is often written as a percentage

Ep = 0.5 (50%) means we are using only half of the processors’
capabilities on our computation; half is lost in overheads or
idling while waiting for something

Ep = 1 (100%) means we are using all the processors all the
time on our computation

Ep > 1 indicate superlinear speedup: we are using more than
100% of the processors!



Analysis
Efficiency

Efficiency is useful when we need to gauge the cost of a
parallel system: the higher the efficiency the better the
utilisation of the processors

When Ep < 1 this indicates that somewhere at some point a
processor not working on the computation. Perhaps it is
occupied in communication; or possibly just lying idle waiting



Analysis
Efficiency

Typical efficiency graph on a fixed size problem:

1

E

1

p

p

Efficiency graph dropoff
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Speedup and Efficiency

As an example of calculating speedup and efficiency we
consider a pipeline (systolic array)

Systolic array

Data moves from one processor to the next being transformed
at each stage: we assume one time step per transform

This could equally be a CPU instruction pipeline
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Speedup and Efficiency

A p-stage pipeline will take p time steps to fill; after that it
produces one result per time step

So it can produce n results in p + n − 1 time steps

A sequential system will take np time steps to do the p steps on
the n computations
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Speedup and Efficiency

The speedup is

Sp =
np

p + n − 1
=

p
(p − 1)/n + 1

As time passes, the number of tasks n gets large, and Sp → p

A p-stage pipeline has a speedup is less than p, but that gets
closer to p as time progresses

Also, the speedup starts low (for n = 1, Sp = p/(p + 1− 1) = 1)
and increases over time, getting closer and closer to p



Analysis
Speedup and Efficiency

The efficiency is

Ep =
Sp

p
=

n
p + n − 1

=
1

(p − 1)/n + 1

As n gets large, Ep → 1

Eventually we are (close to) using all the processors all the
time: perfect efficiency!

Also, the efficiency starts low (for n = 1,
Ep = 1/(p + 1− 1) = 1/p) and increases over time
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Speedup and Efficiency

Pipelines are a really good way of making something parallel:
both great speedup and great efficiency

As long as we can keep the pipeline full: in a CPU each time
we take a jump the instruction pipeline breaks, empties and
needs to refill

To keep high efficiency we need to avoid this: thus the
complications in the designs of modern processors that are
aimed at keeping the pipeline full

(Things like speculative evaluation and branch prediction, using
many transistors. . . )
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Other measures

Speedup and Efficiency are simple, but useful measures of a
parallel system, as long as you take care over using them

There are many other measures that are occasionally used, but
they are of lesser importance

Exercise Some people use the phrase “negative speedup”
rather than “slowdown”. Why is that incorrect?
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Karp-Flatt

Sometimes people use the Karp-Flatt metric as a measure of
an implementation to see how well it is doing

This is essentially an empirical measure of the sequential
fraction of a computation (important for the Amdahl limit)

e =

1
Sp
− 1

p

1− 1
p

where Sp is the measured speedup and p the number of
processors
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Karp-Flatt

A larger e indicates a larger sequential part

If we have perfect speedup, Sp = p, and e = 0

If we have no speedup, Sp = 1, and e = 1

If we have slowdown, e.g., Sp = 1/2, and e ≈ 2

(If we have superlinear speedup, Sp > p, and e < 0)

Exercise Calculate Karp-Flatt for the pipeline. What does it tell
us?
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Karp-Flatt

Note that Karp-Flatt will give you an estimate for the sequential
time for a given implementation

It does not tell us the sequential limit for the problem

After all, you might just have a poor implementation

A big Karp-Flatt value is often an indication you need to re-think
your code



Analysis
Work Efficient

Next: a parallel algorithm is work efficient (cost efficient) if the
number of operations it performs is no more than the sequential
algorithm

For example, a parallel algorithm might duplicate some
operations on separate processors as it is more convenient, or
reduces communications

The parallel overhead is

To = pTp − Ts

where Ts is the sequential time and Tp is the parallel time



Analysis
Work Efficient

This measures the amount of extra work we are doing to get
the parallelism

A measure of the extra energy expended in the parallel
algorithm or implementation

And the cost of the overheads (e.g., communication) when we
measure a real implementation

Exercise Calculate the parallel overhead for the pipeline. What
does it tell us?
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Isoefficiency

Another question is “how scalable is this algorithm?”

Here we ask for a relationship between p, the number of
processors and n the size of the problem for a given efficiency

If we increase p, how much to we have to increase n to
maintain a given efficiency?
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Isoefficiency

Increasing p will generally decrease efficiency (Amdahl)

Increasing n will generally increase efficiency (Gustafson)

A poorly scalable algorithm will need to increase n a lot to
maintain efficiency as we increase p

This relationship is called the isoefficiency, and expresses n as
a function of p

It quantifies the balance between Amdahl and Gustafson



Analysis
Isoefficiency

Computing the isoefficiency can be a bit fiddly, but often it is
easiest to start by looking at the parallel overhead

We have efficiency E = Ts/pTp and overhead To = pTp − Ts.
Combining these:

E =
Ts

p
(

To+Ts
p

) =
Ts

To + Ts
=

1
1 + To/Ts

So to keep E constant, we need to keep To/Ts constant
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Isoefficiency

So we must have
Ts = cTo

for some constant c

As both Ts and To depend on n and p, this equation generally
gives us enough to solve for n in terms of p



Analysis
Isoefficiency

Example. The p-stage pipeline had efficiency

E = n/(p + n − 1)

on a problem of size n

The overhead

To = pTp − Ts = p(p + n − 1)− np = p2 − p

independent of n

This fixed overhead again tells us it is a good idea to keep the
pipeline full!



Analysis
Isoefficiency

We want Ts = cTo which is

np = c(p2 − p)

We solve for n
n = c(p − 1)

Thus the isoefficiency is

n = O(p)



Analysis
Isoefficiency

This is linear in p: if we double p we need only double n to
maintain efficiency

So this tells us pipelines are very scalable



Analysis
Measures Conclusion

There are many ways we can measure if our parallel program is
performing well, or poorly

But we do need to be careful that we are making meaningful
comparisons of parallel and sequential algorithms

Exercise Compute these measures for summing n numbers
using p processors



Analysis
Bandwidth and Latency

While we are thinking about measurement of parallel systems
we need to make a quick comment about bandwidth and
latency as they play an important role in the way we regard
communications overhead

Bandwidth is the number of bytes per second transmitted over
some medium

Latency is how long we have to wait for the data to arrive
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Bandwidth and Latency

Bandwidth is often mentioned in descriptions of things as it is
easy to visualise (a rate of flow)

However, latency is often just as important in parallel systems

Bandwidths these days are pretty high: Mb and Gb rates are
common

Latencies of milliseconds may seem small, but relatively
speaking they are the big problem
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Bandwidth and Latency

Example A memory bus (DDR5) might have 400Gb/sec
bandwidth and latency 100ns.

Fast, but processors are faster! Data might arrive at a
prodigious rate when it does arrive, but a processor could do a
lot of work while it was waiting for the first byte to arrive

This is why processors have lots of complex and clever caching
to avoid going off-chip
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Bandwidth and Latency

Example A local network (10Gb Ethernet) might have
bandwidth 10Gb/sec and latency 100µs

This is how nodes in a cluster are often connected

Again we are in the range of hundreds of thousands of
instructions while waiting

And this does not include the CPU overhead of going through
the Operating System to send and receive the packets from the
network
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Bandwidth and Latency

The latency affects coding strongly: it may be worthwhile doing
duplicate computations if that is faster than fetching a value

In large parallel systems compute power is cheap and
plentiful, but communications are slow and expensive

This is why when we implement parallel code we really need to
concentrate on the communications more than the
computations
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Bandwidth and Latency

It is quite easy to increase bandwidth

Doubling the width of a bus will double the bandwidth, but do
nothing to the latency

We might get a huge bandwidth by strapping a USB stick to a
pigeon: the latency would not be so good, though!

For a long time sneakernet was the best way to transmit large
volumes of data

Exercise Read about how data was transmitted to generate the
recent (2019) image of a black hole



Analysis
Note: Moore says sizes of RAM are increasing, but latencies
are far behind

Sizes of RAM over time

Graph from Kevin K. Chang, PhD., CMU 2017
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Bandwidth and Latency

Latency is often limited by Physics: the speed of light is a big
factor on latency these days

Thus, like Amdahl, latency is another natural limit on parallel
computation

Particularly on distributed architectures



Shared Memory Systems

We now move on to look at shared memory and distributed
memory systems in more detail, in particular the issues that
arise in software and programming

We start with shared memory MIMD as people think it seems
more similar to SISD than distributed memory is, and so is
“easier”

We will look at simple programs that have multiple threads of
control, i.e., parts of the process are running simultaneously on
separate processors



Shared Memory Systems

Note: a single program might use several processes, and each
process might contain several threads

Separate processes have separate (virtual) memory address
spaces (my memory location 42 is different from your memory
location 42)

Multiple threads in the same process (generally) share the
same (virtual) address space (my memory location 42 is the
same as your memory location 42)

Here we consider the shared part, i.e., threads within a process



Shared Memory Systems

Suppose we want to count the number of positive values in a
list of numbers

count = 0;

for (i = 0; i < 100; i++) {

if (val[i] > 0) { count = count + 1; }

}

In C or C++ or Java or whatever

It’s not really worthwhile parallelising this in real life (Exercise
why?), but let’s try



Shared Memory Systems

We could split this into two blocks

1
for (i = 0; i < 50; i++) {

if (val[i] > 0) count = count + 1;

}

2
for (i = 50; i < 100; i++) {

if (val[i] > 0) count = count + 1;

}

and by magic to be discussed later have blocks 1 and 2 run in
parallel on separate processors, sharing the variables (i.e.,
shared memory)



Shared Memory Systems

1 2
for (i = 0; i < 50; i++) { for (j = 50; j < 100; j++) {

if (val[i] > 0) { if (val[j] > 0) {

count = count + 1; count = count + 1;

} }

} }

Note we want to share val and count, but not the loop
variables!

No communication or interaction between the threads: instant
speedup of 2?



Shared Memory Systems

It may run twice as fast, but sometimes will give the wrong
answer!

Sometimes it will give a value of count that is too small

The problem is the shared resource, the variable count

We have two separate threads reading and updating the value



Shared Memory Systems

Occasionally, just occasionally, the following happens

1 2
read the value of count read the value of count

into a CPU register into a CPU register

add 1 add 1

store the value store the value



Shared Memory Systems

So both read a value, 10, say. Both add 1 to get 11. Both store
11.

Even if we don’t have hardware that supports simultaneous
reads and writes (we might have EREW) it can still go wrong

1 2
read the value of count ...

add 1 read the value of count

store the value add 1

... store the value



Shared Memory Systems

The parallel version is simply an incorrect program

This is another example of a race condition where an
unexpected or overlooked timing in the execution produces an
incorrect result

It is a data race: an unsynchronized, concurrent access to data
involving a write

Read-only data is always safe to share: nothing can go wrong

But when a write (or multiple writes) is involved, things can go
badly wrong
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And notice this can even happen on a single processor, when
multiple threads are being timeshared by the OS

The OS may choose to deschedule thread 1 in between its
read and write; and schedule thread 2 that reads the old value

Exercise And it might give even worse counts: think why

So this is a concurrency error, and not just a parallelism error



Shared Memory Systems

The race may or may not happen according all kinds of external
events that might affect the timing of the execution of the
updates

So the program may often be right, and occasionally wrong

Or the program may often be wrong, and occasionally right

The program might always give the correct answer on your
machine, but give the wrong answer on your customer’s
machine

Exercise Compare with deadlocks



Shared Memory Systems

Note: the “obvious solution” of having separate count1 and
count2 introduces a new, separate, problem we shall address
later: for now we need to consider shared resources



Races

Philosophy Exercise A race condition is only a bug if the
non-determinism is undesirable. Discuss



Shared Memory Systems

The myriad ways of avoiding race conditions are what keep
programmers and theoreticians in their jobs

And the people designing debugging tools

Some debugging tools exist which will find simple errors like the
above, but in general we have to rely on programmers finding
the bugs by thinking



Shared Memory Systems
Race Condition Detection Tools

Some tools to help detect race conditions:

• Intel Parallel Inspector, a Visual Studio plugin
• Helgrind, a Valgrind plugin
• Data Race Detection (DRD), another Valgrind plugin

Ideally, the programming language itself would prevent you
from writing code with races (see later for examples)

Experience tells us it is hopeless to rely on the programmer to
get it right!



Shared Memory Systems

Areas of code that use a shared resource are called a critical
region (also called a critical section)

In the above example, the increments of count form a (small)
critical region

A critical region comprises any pieces of code that access a
resource that might be updated in parallel

So, in this example, any region of code that updates count is
critical

So these pieces of code have to be carefully thought out to
avoid race conditions



Shared Memory Systems

Such critical regions are rife in parallel programs and appear in
many different guises

Sometimes you can run a program 100 times and get the right
answer, but on the 101st time it is wrong

Such events can have a very low probability, making them hard
to debug by “run it and see if it works”

But they do happen, so you have to find them by hard thought
instead



Shared Memory Systems
Locks

The problem is that two (or more) threads are trying to update
something at the same time (update = read, modify, write)

In between the read and the write another thread might have
gone behind the first’s back and updated the thing itself



Shared Memory Systems
Locks

The simplest solution to stop multiple threads updating a
resource is to allow only one thread at a time to do an update
on a shared resource

If a second thread wishes to update while a first has already
started, the second is forced to wait until the first has finished

This will ensure correct updates by avoiding the update overlap
we saw earlier

Note, though, the second thread will have to wait: this is an
inefficiency and if that happens a lot the system as a whole will
be slower than it ought



Concurrency Primitives
Locks

We are forcing the bits of code in the critical region into
executing sequentially, which Amdahl tells us is bad for
speedup

But the sequential execution is essential for the code to be
correct

So we need to make critical regions as small and fast as
possible



Concurrency Primitives
Locks

One simple way of enforcing this mutual exclusion on critical
regions is the use of locks

Also called: mutexes. Some confused people use semaphores
(see later), but these are better employed for other problems

A lock is a simple flag that says “Please wait, this region is
busy”



Concurrency Primitives
Locks

We must surround all critical regions that update a given
shared resource with a grab and release of the lock:

get lock get lock

do stuff on a resource other stuff on same resource

release lock release lock

If a second thread tries to grab the lock it will be made to wait
until the lock is released by the first thread

In this way we can ensure that two updates never overlap



Concurrency Primitives
We will get either

get lock try to get lock

do stuff on a resource (wait)

release lock (wait)

get lock

other stuff on same resource

release lock

or

try to get lock get lock

(wait) other stuff on same resource

(wait) release lock

get lock

do stuff on a resource

release lock

No parallelism on access to the resource!



Concurrency Primitives
Locks

Note that every piece of parallel code in the program that
updates that resource will have to have to be wrapped in the
grab of the lock

If we miss protecting any occurrence of a parallel update, the
whole thing is broken

This is clearly a good source of bugs

Locks are a very crude method to prevent race conditions, but
they are widely used



Concurrency Primitives
Locks

This also applies to more than two threads, of course

The first grab of the lock will succeed, the others will have to
wait until the lock is released

If more than one thread tries to grab the lock at the same
instant, just one will succeed. The others will have to wait

If there are several threads waiting on a lock, just one will get
the lock when it is released: the other threads continue to wait



Concurrency Primitives
Locks

Also, most implementations of locks are not fair in the sense
that any one of the waiting threads will get the lock, there’s no
first-in-first-out enforced

This is because (a) it’s extra overhead for the OS to implement
such a FIFO and (b) most programs don’t need it, so why have
an overhead that most programs don’t want?

The threads are likely arriving at the lock in a non-deterministic
order, so what’s the sense in preserving that random order?



Concurrency Primitives
Locks

Also, it’s bad practice for the programmer to rely on the
order of things happening in a parallel system

If certain things need to happen in a certain order, the
programmer must write code to ensure that this happens

You can’t rely on luck, or that they usually happen in the right
order

Also note that specifying orders on events is another form of
sequentiality, which we would like to minimise



Concurrency Primitives
Locks

Often, the wait on the lock is implemented and enforced by the
operating system, which might deschedule the waiting thread to
free up the CPU for something else to run

With this kind of lock implementation, a thread takes no CPU
time while locked

Thus the overhead of this lock is the CPU time it takes for the
OS to deschedule and later reschedule the thread (not trivial!)



Concurrency Primitives
Spinlocks

In contrast, sometimes the lock wait is implemented as a busy
wait : the thread keeps trying in a tight (busy) loop to grab the
lock, continually burning CPU cycles

These are called spinlocks

The argument is that critical regions should be small to
maintain efficiency, so it will only be a short time before the lock
will be released

And by the time the OS has descheduled the waiting thread the
lock could already be free, so instead just keep busy trying



Concurrency Primitives
Spinlocks

This is good for when responsiveness is more important than
CPU cost, e.g., real-time systems, but too expensive for many
systems

Note that spinlocks use CPU cycles, thus occupying the CPU,
while blocking locks release the CPU so it can potentially used
for something else



Concurrency Primitives
Spinlocks

You should take care over using spinlocks rather than blocking
locks

They assume that the holding thread only holds the lock for a
brief time: but the holding thread can be preempted by the OS
at any time

Thus preventing release of the lock for an arbitrarily long period
of time



Concurrency Primitives
Spinlocks

Exercise And read about the cache-thrashing behaviour that
occurs if the spinlock is not implemented carefully

. . . do not use spinlocks in user space, unless you ac-
tually know what you’re doing. And be aware that the
likelihood that you know what you are doing is basically
nil
Linus Torvalds



Concurrency Primitives
Locks

A hybrid implementation will spin for a short while, then pass to
the OS: trying to get the best of both approaches

Though there is still great debate over the best approach



Concurrency Primitives
Locks

To use a lock, in pseudocode:

countlock = make_a_new_lock();

...

get_lock(countlock); get_lock(countlock);

count = count + 1; count = 2*count;

free_lock(countlock); free_lock(countlock);

Remember we must put a grab and release of the countlock
around all updates to count in code where there might be
more than one thread wanting to update the value



Concurrency Primitives
Locks

For most programming languages it is the responsibility of the
programmer to spot all the shared resources that need this
treatment and to write correct code to enforce exclusive access

Getting this wrong (e.g., overlooking an update to count and
not putting in the lock) is the source of one of the most common
bugs in parallel programming

Particularly for programmers trained in sequential
programming; for sequential programs all accesses are already
sequential!
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Also, be careful not to over-lock

We don’t need locks when there can only be one thread
updating count, e.g., in a non-parallel part of the code, or we
are already in some protected larger critical region

Over-locking is safe, but simply wastes time and thereby
reduces speedup
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Locks are definitely needed when we update (read then modify)
the value of a variable

The question arises regarding whether we need a lock around
a simple read of a multi-byte value, such as a 32-bit (4 byte)
integer

It is easy to believe some bytes of a value might be written
while half-way through being read, resulting in a mix of the bits
of the old and new values

Called read (or write) tearing
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However, for most (non-embedded) machine architectures
these days it is likely (not certain!) to be safe to read simple
values like integers or doubles that fit in a register: the
hardware read is atomic (another side effect of the caching
mechanism)

Though you do need to be careful on strange machine
architectures, or with compilers that try to be too clever (For
hackers: think about non-aligned accesses)

Certainly, though, for reading all of a larger object or structure,
a lock will be necessary to ensure consistency across the
multiple machine reads it takes to read in the whole structure
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int x, y;

...

y = x;

Usually safe as reads of ints are generally atomic
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// Also OO classes or objects

struct rational {

int num, den;

};

struct rational r, s;

...

r = s;

Possibly unsafe, as it could take two machine reads to get all of
s, which might be modified halfway through by another thread

Unlikely, but you can’t rely on that

Analogously for the write of r
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Exercise For C geeks. There is an aliasing problem with bit
fields in a struct

struct {

int a: 5;

int b: 3;

}

where an update to field a might be implemented as a read of a
byte, modifying the bits of a, then writing a byte. Investigate

Exercise What about a 128-bit long long int on a 64-bit
machine?
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What about when we need to use more than one lock?

Of course, we can and should have separate locks in order to
protect separate resources: we could use countlock to
protect updates to another shared variable sum, but that would
prevent one thread updating count while another is updating
sum, which is perfectly safe to do

The only real reason to share a lock like this would be in when
there are severe memory limitations: but lock implementations
tend to use only a little memory per lock
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But we do need to be careful about what we protect from what
as it all has a cost

Getting and releasing a lock can be relatively cheap (in some
architectures and operating systems; expensive in others) but it
is not free: it is an overhead to be taken into account and
avoided if you can

In many implementations these days the cost of getting an
uncontended lock (not already locked) is cheap, while the cost
of getting a lock that is already held is expensive

So the common (you hope) case is cheap
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Also note, locks can be used to protect anything, not just
variables, e.g., whole function calls or whole loops. But we
should try too keep the regions small

get_lock(mux);

someone_elses_dodgy_code();

free_lock(mux);

Another reason to use a single lock could be that the code you
want to protect is so complicated you are not clear on how to
proceed!
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Locks are a simple, low level mechanism

Too low level: they are easy to use incorrectly

Suppose we have a couple of variables x and y we are
protecting with mutexes mx and my respectively. We want to
swap their values; elsewhere replace them both by their
average

tmp = x; av = (x+y)/2;

x = y; x = av;

y = tmp; y = av;
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To make this safe we have to use both locks

get_lock(mx);

get_lock(my);

tmp = x;

x = y;

y = tmp;

free_lock(my);

free_lock(mx);
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Some pages of code later

get_lock(my);

get_lock(mx);

av = (x+y)/2;

x = av;

y = av;

free_lock(mx);

free_lock(my);

Spot the bug!
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This will probably work most of the time, but occasionally just
hangs doing nothing

Sometimes we will get

1 2
get_lock(mx); get_lock(my);

get_lock(my); (waits) get_lock(mx); (waits)

This is simple deadlock, another race condition
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A very easy error to make, but often very difficult to find,
particularly as the locks of mx and my may be widely separated
in the code, or in someone else’s code

The use of locks requires a great deal of careful management
when the code gets large

Exercise Why wouldn’t having another mutex mxy to protect
both x and y solve things?
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If we want to use a lock in portable code, we can use a library
specification like POSIX

This is a standard that covers a large number of functions,
specifying their use and behaviour
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The pthread section on the POSIX specification contains
several functions that we shall soon be looking at:

• Locks: pthread mutex init, lock, unlock, destroy
• Barriers: pthread barrier init, wait, destroy
• Condition Variables: pthread cond init, wait, signal,
broadcast, destroy
• Semaphores: sem init, post, wait, destroy
• Management: pthread create, join

And many others
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For example, pthread create (we shall come back to this
later)

#include <pthread.h>

int pthread_create(pthread t *thread,

const pthread attr t *attr,

void *(*start_routine) (void *),

void *arg);

is how to create a new thread: it takes an attribute (always
NULL for our purposes), a function of one argument to start
executing, and a value to pass as the argument to that function

It returns a thread identifier in the first argument
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Documentation for POSIX pthread functions is available
everywhere, online and possibly on your own computer

For example, on Linux you can use manual pages, e.g.,
man pthread create
to get detailed information
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A real example of locks, as defined by the POSIX standard,
where they are called mutexes

#include <pthread.h>

pthread_mutex_t mutex;

An (uninitialised) mutex
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int pthread_mutex_init(pthread_mutex_t *restrict mutex,

const pthread_mutexattr_t

*restrict attr)

Initialises the mutex pointed at by the first argument, returns a 0
that indicates success or non-0 to indicate failure

POSIX locks come with various attributes: the default (NULL) is
normally what you want

pthread_mutex_t mut;

if (pthread_mutex_init(&mut, NULL) != 0) { ...error... }
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There is a alternative static way to initialise mutexes if all you
need is a basic lock:

// declare and initialise

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;



Concurrency Primitives
POSIX Locks

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

The main grab and free functions

It is an error to try and unlock a mutex that is held by another
thread: the thread that locks must be the thread that unlocks

This is a POSIX specification designed to make locks widely
implementable of a variety of architectures

And this is not a limitation: it is a desired behaviour. If you
allowed another thread to unlock a mutex you can bet this
would be misused by some programmers thus opening a new
opportunity to write buggy code



Concurrency Primitives
POSIX Locks

“It is an error”: some implementations return an error value,
while others (depending on the OS) have undefined behaviour

Some versions of mutexes also allow recursive (or reentrant)
locking, where a thread that already owns a lock can lock it
again; it needs to do the same number of unlocks to free the
lock

Non-recursive versions just self-deadlock, or have undefined
behaviour



Concurrency Primitives
POSIX Locks

On fairness of POSIX mutexes:

Posix says “the scheduling policy shall determine which thread
shall acquire the mutex” if more than one is waiting

This allows implementations to take
pthread attr setschedpolicy and thread priorities into
account: we shall not talk about that here!
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int pthread_mutex_trylock(pthread_mutex_t *mutex);

Like pthread mutex lock but return immediately (without
getting the lock) if the lock was already held. It returns a value
of 0 if it got the lock, a non-zero otherwise

This function is occasionally useful, but less than you might
believe, as the result doesn’t quite mean what people think it
means (sequential assumptions. . . )
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It doesn’t say “the mutex is locked”, but really says “the mutex
was locked”

It gives the instantaneous state of the lock at the time of the
trylock function call: it is possible that by the time the calling
thread looks at the value that was returned by trylock the lock
is already free
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int pthread_mutex_destroy(pthread_mutex_t *mutex);

It’s good to clear up when you no longer need the mutex as this
may free up some system resources
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Example code:

#include <pthread.h>

...

pthread_mutex_t m;

/* ought to check values returned by these calls */

pthread_mutex_init(&m, NULL);

...

pthread_mutex_lock(&m);

... <CR> ...

pthread_mutex_unlock(&m);

...

pthread_mutex_destroy(&m);

We can lock and unlock a mutex as often as we wish: we would
typically create it once and use it many times before tidying up
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The properties of POSIX locks are specified just to the point to
make them useful: in a portable program you can’t rely on any
feature not explicitly mentioned

For example, calling destroy on an uninitialised lock; or calling
init on an already-initialised lock; or destroying a lock while
another thread holds it; or using a bitwise copy of a lock
structure; and so on

Remember that a lot of machines don’t have the nice
predictable architecture of a PC

And even PC architectures are very complicated these days
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Exercise Read about pthread_spin_lock and
pthread_rwlock

Advanced Exercise Think about mutexes in the context of
async programming, where we have concurrency (but not
necessarily parallelism) and we require threads never to block

pthread_spin_lock
pthread_rwlock


How to make threads

Now we have been introduced to POSIX, we need to take a
little diversion from talking about primitives to cover something
essential to parallelism

Namely, how do we create new threads to run?

As always, a simple idea that can have unexpected
consequences

We shall look at the POSIX mechanism



Concurrency Control
POSIX

Creating threads:

#include <pthread.h>

int pthread_create(pthread_t *thread,

const pthread_attr_t *attr,

void *(*start_routine) (void *),

void *arg);

Link with -lpthread

This looks ugly, but is quite simple in practice: it creates a new
thread running the function start routine on the argument
arg
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It returns a thread identifier in argument thread. This can be
used to do things to the thread

attr is a thread attribute: you probably will never need more
than the default (NULL), but occasionally you might (stack size;
detached thread)

The start routine names a function of one argument that
the thread will start executing when it begins running

The arg is the argument passed to the function (a pointer)
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Roughly:

void *hello(void *n)

{

printf("hello %d\n", *(int*)n);

return n;

}

int main(void)

{

int m;

pthread_t thr;

m = 1;

// should check return value from create ...

pthread_create(&thr, NULL, hello, (void*)&m);

...

}
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pthread create returns (pretty much) immediately with an
error code, 0 indicating success

It makes a new thread that runs separately from the main
thread

Possibly simultaneously with the main thread, depending on the
number of cores and the OS’s scheduling
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It runs the function hello with argument a pointer to m

It does this concurrently with the main function, which
continues to run

The start function will generally call lots of other functions
to perform whatever the thread needs to do

Ugly type casting is common in C
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This also works on uniprocessor systems: the threads are
scheduled in a similar way to processes

You can debug a concurrent program on a sequential machine,
but it may not exhibit some of the more subtle race conditions
or deadlocks as the threads won’t truly be running in parallel
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You can make more threads than there are cores: for example,
run 10 (or 1000) threads on a 4 core machine

And the OS will schedule between the threads

A thread that is blocked (e.g., waiting on a lock) typically would
not be scheduled, so it uses no CPU cycles

The question remains whether that is worth it or not to have
more threads than cores, as both creating threads and OS
scheduling eats up CPU time

A common error is to create hundreds of threads and then
wonder why everything is running slowly

Threads create concurrency, not parallelism
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Incidentally, using threads as a way of structuring your program
can sometimes be a good approach, even if you are not
concerned with parallelism

For example, have a GUI running on one thread and the
computation it controls on another thread

Called structure by process
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More realistically we type cast in the create:

void hello(int *n)

{

printf("hello %d\n", *n);

}

int main(void)

{

int m;

pthread_t thr;

m = 1;

pthread_create(&thr, NULL, (void*(*)(void*))hello, (void*)&m);

...

}
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How about two new threads?

void hello(int *n)

{

printf("hello %d\n", *n);

}

int main(void)

{

int m;

pthread_t thr1, thr2;

m = 1;

pthread_create(&thr1, NULL, (void*(*)(void*))hello, (void*)&m);

m = 2;

pthread_create(&thr2, NULL, (void*(*)(void*))hello, (void*)&m);

...

}
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This creates two threads, both running the same code, namely
hello, but on separate threads. Each thread has its own stack,
thus its own copy of n

Unfortunately, it is buggy code!

As usual, it may appear to run correctly several times, printing
"hello 1" and "hello 2" (in either order!)

But sometimes it prints "hello 2" and "hello 2"
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This is another case of sequential assumptions not following
into parallel code: another race condition

It looks like we update m in between the two new threads

But the new threads are in parallel, running asynchronously
with the main thread
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What we expect is

main 1 2
creates 1 1 starts running

reads m=1

updates m prints 1

creates 2 2 starts running

reads m=2

prints 2
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What might happen is

main 1 2
creates 1
updates m 1 starts running

creates 2 reads m=2 2 starts running

prints 2 reads m=2

prints 2

If thread 1 starts running slightly later

In fact, this is quite likely, as creating a new thread takes a fair
amount of time



Concurrency Control
POSIX

There are three threads in the program: the two running hello
and the one running main

The threads are sharing the variable m (via the pointers), so the
behaviour of the program is dependent on what order the
threads happen to access m. This is again bad programming, a
data race

Be very careful about the values you pass into the thread
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We can fix that race by not sharing:

void hello(int *n) {

printf("hello %d\n", *n);

}

int main(void) {

int m1, m2;

pthread_t thr1, thr2;

m1 = 1;

pthread_create(&thr1, NULL, (void*(*)(void*))hello, (void*)&m1);

m2 = 2;

pthread_create(&thr2, NULL, (void*(*)(void*))hello, (void*)&m2);

return 0;

}
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But now we (still) have another race condition, which
fortunately is easier to spot

We might see both hellos, but more likely is we will see nothing
at all

Again, the main thread continues to run and main might return
before the new threads have had chance to get started

In C, when the main function returns the whole process exits,
and all of the threads are terminated, possibly before they have
had chance to print
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To fix this the initial thread should wait for the other threads to
finish

int pthread_join(pthread_t thread, void **retval);

This blocks the calling thread until the named thread exits

This is the main use of the thread identifiers: joining threads
(waiting for threads to finish)

A thread can end by returning from its initial function or by
calling pthread exit(void *retval);
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The thread can return a value, which is a pointer. This will be
copied into where retval in pthread join points

Use NULL if you don’t need a return value

Be careful not to return a pointer to something on the stack of
the exiting thread!

Any thread can wait for any other thread to terminate, as long
as it knows the thread’s id (the pthread t)



Concurrency Control
POSIX

int main(void)

{

int m1, m2;

pthread_t thr1, thr2;

m1 = 1;

pthread_create(&thr1, NULL, (void*(*)(void*))hello, (void*)&m1);

m2 = 2;

pthread_create(&thr2, NULL, (void*(*)(void*))hello, (void*)&m2);

pthread_join(thr1, NULL);

pthread_join(thr2, NULL);

return 0;

}
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• If any thread calls exit() anywhere, the entire process
dies: the exit function means “exit process”
• if any thread calls pthread exit() anywhere, that thread

dies
• if any thread returns from its initial function, that thread dies
• there is no hierarchy of threads, all threads are equal and

independent once created
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The only thing to watch out for is the thread running main,
because in C the main() function has an implicit exit() after
its end. So if it finishes, the entire process subsequently dies

Exercise (For later) Think about what coding would be needed
if we wanted always to get hello 1 printed first and hello 2
second

Exercise Then generalise to n threads
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Advanced Exercise The following code might cause a
segmentation violation. Why?

int main(void)

{

int m1, m2;

pthread_t thr1, thr2;

m1 = 1;

pthread_create(&thr1, NULL, (void*(*)(void*))hello, (void*)&m1);

m2 = 2;

pthread_create(&thr2, NULL, (void*(*)(void*))hello, (void*)&m2);

return 0;

}
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It’s not just C that invites these kinds of racy bugs, but they are
common to all library-based parallelisms used in sequential
languages

And to sequential-trained programmers

There is nothing in the C language itself to stop parallel
stupidities as it was designed as a sequential language

As were many other languages in popular use today
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Back to primitives

The problem with updates is that there is more than one
operation involved: first read, then modify, then store

Another thread may access the shared resource in between the
read and store

This leads us to another approach to the update race condition
by having indivisible atomic update
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This where the hardware supplies a special instruction to, say,
increment an integer as a single atomic operation (read-add
1-store)

This must be in the hardware: the increment instruction must
prevent other modifications of that value while it is being
incremented

The hardware sorts out the sequentialisation in the case of
simultaneous (or near-simultaneous) update by different
threads

The operation is guaranteed not to be interrupted or interleaved
with other threads
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Note that “atomic” does not mean “fast”

Depending on the cpu architecture, a single atomic instruction
might take possibly hundreds of cpu cycles to execute

The hardware might need to sort out memory buses, or cache
coherence, or pausing other cores trying to do a simultaneous
update, or other low-level stuff
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Atomics are indeed a reasonable approach, used by many, but
they have limitations

• Atomic instructions are hard to build in the context of the
complexity of caching and so on in modern architectures
• you would need an atomic instruction for each kind of

update you might want to do
• getting a high-level language compiler to generate code

using that instruction will not be straightforward
• they can be slow to execute
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You do see machine instructions in modern CPUs to do some
selection of atomic increment and decrement of integers, add,
subtract, logical and, logical or, swap a value in a register with a
value in memory, swap two values in memory, and a couple of
conditional tests but usually nothing much more than those

Instead, the best approach is to use a more flexible machine
instruction that you can build on to make more generic
higher-level solutions (see “test and set” and friends, later)

Indeed, we shall soon see how a lock implementation might be
built from atomic operations
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Do not use atomics for the coursework

To use them effectively you need more more detail that we can’t
go into right now
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Exercise For hardware geeks: atomic operations often lock an
entire cache line, and can stall the CPU for hundreds of clock
cycles while the caches synchronise, so they can slow you
down more than you think. Read about this

Exercise For hardware geeks: compare the cost of using a lock
against the cost of using an atomic update (the answer can
depend on the pattern of access)

Exercise Effective use of atomics involves understanding
memory consistency orderings. Read about this

Exercise Some programming languages offer atomic
datatypes, e.g., Java, C++, Rust. These usually eventually just
call the machine instruction atomics. Read about this
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A little more to say about locks. . .

How are locks implemented?

They are a flag: say an integer, or even just one bit

We might use 1 to indicate locked, and 0 to indicate unlocked
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int lock = 0;

void get_lock()

{

while (lock == 1) {

deschedule();

}

lock = 1;

}

i.e., test the flag. If it is already 1, wait; else we can grab it by
setting the flag to 1

Spot the bug!
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There is another update race condition

1 2
test flag: OK test flag: OK

set flag set flag

And now both calls to get lock succeed and both threads
proceed to enter the critical region
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In between the testing of the flag and the setting of the flag all
kinds of other things might happen

Code lines that are textually next to each other like this are
widely separated in some sense: what we want is the testing
and setting to be atomic

That is the test and the set are inseparable: nothing can get
between them

This is another kind of critical region, so we could solve it by
using locks. . .
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Fortunately we don’t have to go into an infinite regression as
there are two kinds of solution: hardware and software

Hardware designers understand mutual exclusion, so the
instruction sets of all modern processors have an instruction
specifically designed for this

For example the compare and swap instruction
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Intel has cmpxchgb that atomically operates on a register and a
byte in memory

CMPXCHG r/m8, r8
Compare AL with r/m8. If equal, ZF is set and r8 is
loaded into r/m8. Else, clear ZF and load r/m8 into AL.
This instruction can be used with a LOCK prefix to al-
low the instruction to be executed atomically
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In C, its action is like

int compare_and_swap(int *reg, int *mem, int new)

{

if (*reg == *mem) {

*mem = new;

return 1; /* got lock */

}

*reg = *mem;

return 0; /* fail */

}

but the entire thing is done atomically



Concurrency Primitives
Implementation of Locks

Using this:

int flag = 0;

...

int reg = 0;

// try to set flag to 1

while (compare_and_swap(&reg, &flag, 1) == 0) {

reg = 0; // try again

}

<CR>

flag = 0;

This implements a busy wait

You should spend some time going through this!



Concurrency Primitives
Implementation of Locks

Instructions found in other architectures include test and set
and an atomic swap

Early architectures did not have such instructions, so software
versions were devised

These include: Dekker, Dijkstra and Lamport

They are very subtle as they must construct an atomic effect
from non-atomic code

Exercise Go and read about these
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Now we look at some other problems

Consider our original counting code with a shared variable
count. A simple solution might be to make count non-shared:

1 2
for (i = 0; i < 50; i++) { for (j = 50; j < 100; j++) {

if (val[i] > 0) if (val[j] > 0)

count1 = count1 + 1; count2 = count2 + 1;

} }

count = count1 + count2;

There is now another, different, problem with this code!
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The problem now is when is the count = count1 + count2
executed?

To be correct, it has to happen after both the loops have
finished: any earlier will give a wrong answer

It will definitely happen after loop 1 has finished, but what about
loop 2?

We can’t rely (in a MIMD architecture) on the two loops on
different cores running at the same time and finishing at the
same time

Timings in the system may have the two loops running in any
conceivable arrangement of before, after or overlapped
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1 2
for (i = 0; i < 50; i++) {

if (val[i] > 0)

count1 = count1 + 1;

} for (j = 50; j < 100; j++) {

count = count1 + count2; if (val[j] > 0)

count2 = count2 + 1;

}
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So we must explicitly write code to ensure the final sum only
happens when both loops are finished

This is a synchronisation between the two threads

It may mean thread 1 waiting for thread 2

Another sequentialisation!
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More subtly: if this code is executed more than once (perhaps
counting more than one array), thread 2 ought to wait for thread
1 before starting!

It is possible that 1 is slow or paused for some reason, when 2
might do its bit and come around again on the next call to the
count code, do the count on some other data, updating count2
as it goes

Finally 1 awakes and gets the wrong count2

This does happen and is a source of bugs
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Semaphores can be used for thread synchronisation

Typically, we might have some thread that can only continue its
work when one (or more) others have finished doing something,
maybe computing some inputs for the thread to process

It can wait on a semaphore, again a simple flag, until another
thread sets the flag. Then it knows it can continue

Note that even though both locks and semaphores are flags,
they are very different things! Beware it is common for people
to confuse the two
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Semaphores are manipulated by two atomic operations P and
V that symbolically act atomically as:

P(s): while (s == 0) { V(s): s = 1;

suspend(); if any process waiting on s

} unblock one

s = 0;
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On finding s = 0 a thread will suspend itself; when awoken it
will re-attempt to set the semaphore: and it will often succeed,
unless a third thread comes along and gets the semaphore first

Like locks, semaphores are not fair on which thread will be
awoken if more than one is waiting

Other names for P are: wait, up, lock, enter, open

Other names for V are: signal, down, unlock, exit, close

P stands for “proberen”, V for “verhogen”, which are Dutch for
“test” and “increase”
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Semaphores synchronise across threads:

do something

wait(s) prepare data

read data signal(s)

carry on

prepare data

do something signal(s)

wait(s) carry on

read data

Thread 1 waits until thread 2 has prepared some data before
reading it

The signal and wait might happen in any order



Concurrency Primitives
Counting Semaphores

The above are called binary semaphores as the idea can be
trivially extended into counting semaphores

P(s): while (s == 0) { V(s): s = s + 1;

suspend(); if any process waiting on s

} unblock one

s = s - 1;

When initialised with the value n, this will allow n threads to
open the semaphore before blocking
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Counting Semaphores

This allows region access control when there can be one than
one, but fewer than some limit in the region simultaneously

For example, if there are 5 places at a dining table we can allow
no more than 5 people in the room at a time

Or 4 if they are philosophers. . .
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Semaphores

Mutual exclusion with semaphores happens to be easy:

wait(s);

<CR>

signal(s);

Wait for the semaphore; signal it’s free when you are done

But don’t do this: it’s better to use locks here. Semaphores are
more general than locks: they allow a thread to suspend itself
and be awoken by another thread when some condition is true
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Semaphores

Mutexes: the thread that sets the flag must be the thread that
clears the flag

Semaphores: the thread that sets the flag will generally be
different from the thread that clears the flag

Semaphores should be used across threads, mutexes must not

The locking effect is in some sense incidental: more useful is
using semaphores to synchronise
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POSIX Semaphores

POSIX semaphores:

#include <semaphore.h>

sem_t sem;

int sem_init(sem_t *sem, int pshared, unsigned int value);

int sem_destroy(sem_t *sem);

int sem_wait(sem_t *sem);

int sem_post(sem_t *sem);

int sem_trywait(sem_t *sem);

“post” for signal
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POSIX Semaphores

Exercise Add a semaphore to the count1/count2 example to
get thread 1 to wait for thread 2 before doing the final sum

Exercise Then add another semaphore to get thread 2 to wait
for thread 1 before starting
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Barriers

Another synchronisation primitive is barriers (occasionally
called rendezvous)

A barrier stops threads from continuing until some required
number of threads have all hit the barrier; then they can all
continue together

This allows us to synchronise parts of the program: recall
supersteps
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Suppose we have a list of numbers we want to square then add
in pairs

for (i = 0; i < 100; i++) {

v[i] = v[i]*v[i];

}

for (i = 0; i < 100; i++) {

s[i] = v[i] + v[99-i];

}

We can parallelise this by having (say) 4 threads; each thread
squares a block of values; then they add a block of values
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Barriers

1 2 3 4

v[0]^2 v[25]^2 v[50]^2 v[75]^2

v[1]^2 v[26]^2 v[51]^2 v[76]^2

v[2]^2 v[27]^2 v[52]^2 v[77]^2

... ... ... ...

v[24]^2 v[49]^2 v[74]^2 v[99]^2

v[0]+v[99] v[25]+v[74] v[50]+v[49] v[75]+v[24]

v[1]+v[98] v[26]+v[73] v[51]+v[48] v[76]+v[25]

... ... ... ...

v[24]+v[75] v[49]+v[50] v[74]+v[25] v[99]+v[0]
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1 2 3...

for (i = 0; i < 25; i++) { for (j = 25; j < 50; j++) {

v[i] = v[i]*v[i]; v[j] = v[j]*v[j];

} }

for (i = 0; i < 25; i++) { for (j = 25; j < 50; j++) { ...

s[i] = v[i] + v[99-i]; s[j] = v[j] + v[99-j];

} }

Again, the above might work sometimes, or many times, but it
is buggy
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The problem here is again that the threads may not all be
running at the same speed: perhaps one thread is interrupted
and descheduled by the OS; or memory access is not uniform
speed; or many other factors

So we can’t rely on all the threads finishing their squares at
precisely the same time: one thread might finish its block and
start adding using values not yet finished squaring

Another synchronisation problem
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1 2 3 4

v[0]^2 v[25]^2 v[50]^2

v[1]^2 v[26]^2 v[51]^2

v[2]^2 v[27]^2 v[52]^2 v[75]^2

... ... ... v[76]^2

... ... ... ...

v[24]^2 v[49]^2 v[74]^2 v[97]^2

v[0]+ v[99] v[25]+v[74] v[50]+v[49] v[98]^2

v[1]+v[98] v[26]+v[73] v[51]+v[48] v[99]ˆ2
... ... ... v[75]+v[24]

... ... ... ...

v[24]+v[75] v[49]+v[50] v[74]+v[25] v[97]+v[2]

v[98]+v[1]

v[99]+v[0]

This is how we get the wrong answer: again just because the
lines of code for the adds follows the lines of code for the
squares make us believe every add happens after every square
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We need to synchronise all the threads at the end of the
squares before allowing them to continue with the adds

b = make_barrier(4);

<parallel squares> <parallel squares> <parallel squares> ...

barrier_wait(b); barrier_wait(b); barrier_wait(b); ...

<parallel adds> <parallel adds> <parallel adds> ...

Only when all 4 threads have reached the barrier can they all
proceed
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Barriers are good for the superstep style of programming

Supersteps

But beware: as a barrier synchronises many threads, there is
potentially a lot of waiting going on: we can’t progress faster
than the slowest thread

Thus barriers are best when all the threads are doing roughly
the same amount of work
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#include <pthread.h>

pthread_barrier_t barrier;

int pthread_barrier_init(

pthread_barrier_t *restrict barrier,

const pthread_barrierattr_t *restrict attr,

unsigned count);

int pthread_barrier_destroy(pthread_barrier_t *barrier);

int pthread_barrier_wait(pthread_barrier_t *barrier);

A barrier can be reused immediately after it has released its
threads; it has a fixed value of n set when it is initialised

Exercise Have a look at the return value from
pthread barrier wait
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POSIX Barriers

Exercise Fix the count1/count2 problem with barriers

Exercise Both semaphores and barriers are about
synchronisation. Think about how you might implement barriers
using semaphores

Exercise Think about how you might implement semaphores
using barriers
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Condition Variables

One last primitive we are going to look at is condition variables

As the name suggests, it is a way a thread can wait until some
condition is true

The idea is that one or more threads can wait on a condition
variable until another signals that the required condition is now
true

The signal can either let just one thread continue, or be a
broadcast that lets all waiting threads continue

Condition variables are normally associated with a mutex, and
are used inside a critical region protected by that mutex
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1 2
get_lock(mx); get_lock(mx);

<CR> <CR>

condvar_wait(cv, mx); condvar_signal(cv);

(wait) free_lock(mx);

<CR>

free_lock(mx);

condvar wait releases the mutex and waits on the condition
variable

When the other thread signal signals and releases the mutex,
the first thread regains the mutex and continues within the
critical region
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The condition variable allows thread 1 to “step outside” the
critical region, letting another thread to enter and do something

Conditions variables combine mutual exclusion and
synchronisation

Again, not fair on which thread gets to continue if more than
one is waiting

With a broadcast all other threads are marked as ready to
run, but only one will regain the lock; the others will blocked on
the lock as normal

One will get the lock when the first thread releases it; and so on
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POSIX Condition Variables

#include <pthread.h>

int pthread_cond_init(pthread_cond_t *restrict cond,

const pthread_condattr_t *restrict attr);

int pthread_cond_destroy(pthread_cond_t *cond);

int pthread_cond_wait(pthread_cond_t *restrict cond,

pthread_mutex_t *restrict mutex);

int pthread_cond_timedwait(pthread_cond_t *restrict cond,

pthread_mutex_t *restrict mutex,

const struct timespec *restrict abstime);

int pthread_cond_signal(pthread_cond_t *cond);

int pthread_cond_broadcast(pthread_cond_t *cond);
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POSIX Condition Variables

As an example of the kind of grungy detail that parallelism has
to address: POSIX recognises that there is a nasty
implementation detail that would otherwise make implementing
condition variables impractical

The specification for pthread cond signal says

The pthread cond signal() function shall unblock
at least one of the threads that are blocked on the spec-
ified condition variable cond

“at least one”: there is a (rare) problem of spurious wakeups
that is in general too expensive to avoid
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This just means you have to be a bit formulaic about the use of
condition variables and always have a condition to test before
continuing

1 2
iteration = 0;

get_lock(mx); get_lock(mx);

<CR> <CR>

it = iteration; iteration++;

while (it == iteration) condvar_signal(cv, mx);

condvar_wait(cv, mx); free_lock(mx);

<CR>

free_lock(mx);

Thread 1 might get awoken spuriously but it doesn’t want to
continue until the next iteration
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In general you would test for whatever condition you were
waiting for: thread 2 sets the condition, thread 1 should test for
it

Condition variables are very useful, but a bit of a pain to use
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Concurrency Primitives

We have called these things primitives, but we can implement
them in terms of each other

Exercise Do this

All eventually go back to the underlying hardware or software
support

“Primitive” is actually a good description as they are all very low
level
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Concurrency Primitives

And they do have a cost, thus their use does limit the speedup
available

Their overhead can be divided into two parts

(a) the time spent blocked as a necessary part of its function,
e.g., wait on a lock

(b) the time spent in executing the code of the primitive

Note part (a) isn’t really a limitation of the primitive: it’s
necessary if it is to work at all. It is (b) that the implementation
of a primitive seeks to minimise



Concurrency Control
Higher Level

Semaphores, locks, barriers, etc., and even threads are likened
to assembler: low-level, fast, fine control, but very likely to
encourage buggy programs

While many programmers are happy using them, others need
higher level solutions

These come in many forms
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Higher Level

Concurrency control can be supported in a high-level language
as

• added in to an existing language, in library support. We
have seen some of this already: the POSIX examples
• fudged into the syntax of an existing language
• part of the initial design of a new language

We shall be looking at all of these approaches
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Higher Level

There is a lot of sequential code out there that people would
like to run faster on parallel hardware

While there is a lot of effort being put into automatic analysis of
code to discover and exploit parallelism, the results are
sporadic

Functional languages offer a decent hope here, but not much
code is functional style

So code needs to be rewritten to make best advantage of
parallelism

The hope (and economics) is we can take existing code using
an existing language and modify it



Concurrency Control
Libraries

It’s not a good way of doing things, but rewriting from scratch is
just too expensive

Of course, new projects ought to be written with parallelism in
mind from their start

Also, there are lots of programmers with extensive expertise in
languages like C, Java and C++ — meaning such programmers
are cheaper to employ

So we are led to the approach of taking, say C, and adding
parallelism to it

The easiest way is to leave the language itself untouched, just
adding a library of functions that do parallelism
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For example, the POSIX pthread approach

Note: We have been using C and the POSIX library to illustrate
points, but this library technique applies to all sensible
languages

But you can’t just add a parallel library to a sequential language
and hope everything is OK
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Threads again

Modern compilers and modern hardware both try their best to
execute your code as fast as possible

But in doing so, they can break parallel code

For example, some compiler optimisations can break parallel
code

And some hardware optimisations can break parallel code
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Compiler Reordering

Modern compilers often reorder code to make things more
efficient

For example, main memory access is (relatively) slow, so if the
value of a variable is needed, the compiler might try to start
loading it earlier than the code might suggest
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Compiler Reordering

Given code

y = 2;

x = z;

x += y; // need to wait for z before we can do this

The compiler might spot it can start loading z earlier, so there is
less of a wait before it can do the increment:

x = z;

y = 2; // do this without waiting for z to be loaded

x += y;

The effect is the same, but it goes a little faster. The compiler in
effect rewrites your code
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Compiler Reordering

This could break things. Consider

A B

while (cont == 0) {/* nothing */} x = 42;

print x; cont = 1;

where the intent was to have thread A to wait for thread B to set
the cont flag before continuing to print 42

A compiler only seeing the code for B may conclude that the
variables cont and x are independent and so (perhaps for
whatever reason) it can rearrange the code as

cont = 1;

x = 42;
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Compiler Reordering

Similarly for A: it is possible that the read of x can done before
the loop

Note: never write code like this in the hope that it might work: it
is simply buggy code! Use a semaphore or equivalent

The problem is that there is a hidden relationship between the
variables x and cont that is in the mind of the programmer, but
is not expressed in the code
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Compiler Reordering

Example. Consider the code:

int a = 0;

int b = 0;

A B

a = 42; b = 42;

printf("%d\n", b); printf("%d\n", a);

Explain how it might print 0 twice, even though it appears we
always print after an update
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Compiler Reordering

Thus, to be correct, the programmer needs to inform the
compiler not to do these kinds of “optimisations”

Languages like C and Java have a volatile keyword:

volatile int cont;

tells the compiler not to mess around with such variables and
assume that external operations might change their value
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Compiler Reordering

But volatile was introduced for hardware/peripheral-related
reasons and is not a way of fixing concurrency issues as they
don’t solve the whole problem, as the hardware needs telling,
too

Summary: don’t use volatile to try to solve parallelism
problems, as is sometimes recommended
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Second problem: as it’s not just the compiler that reorders
things

Modern CPUs use out of order execution on machine
instructions to improve efficiency in superscalar architectures,
where the processor can reorder instructions as it sees fit

For example, in the machine code for

x = y + z;

w = 2*u;

Since loading from memory takes a long time the CPU might
decide to start loading u before doing the sum

Again, this reduces the overall time the code takes to run as the
multiply does not have to wait as long for u to arrive
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Hardware Reordering

So, even given un-reordered code or machine code equivalent
loading registers

cont = 1; load $r1, 1

x = 42; load $r2, 42

the CPU might while running decide the loads look
independent and load x ($r2) first

Out of order execution is common in modern architectures
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Thus we also need special code like

while (cont == 0) {/* nothing */} x = 42;

memory_fence(); memory_fence();

print x; cont = 1;

(details vary according to language and compiler) that tell the
compiler and processor not to reorder things

Firstly, the compiler will know not to try to move reads or writes
across the call to memory fence()

Secondly, the memory fence() would compile to a specific
special machine instruction that tells the CPU’s out of order
mechanism not to move read or writes across this boundary

The first fence says not to read x too early, while the other says
don’t assign cont before x
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Memory Consistency

In fact, in modern machine architectures you must use some
primitive like a fence, or something that uses a fence (e.g., a
semaphore), to ensure the intended behaviour

Memory fences work (when you remember to use them) but
prevent some correct optimisations. Thus more subtle
mechanisms are also used

Exercise The above stops both reads and writes from being
moved forward or back. Fences also come in variants that only
block movement forward; or only movement back. Read about
these
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Third problem: other memory effects

It is possible (in some machine architectures) for thread A to
read the wrong value of x, even if there is no out-of order
execution

It could be that B writes x and then writes cont; and A reads
cont before reading x

But, due to caching (or other weirdness) it can be that B’s write
to cont reaches A before its write to x

So A reads the new value of cont but the old value of x, as its
view of x has not yet been updated
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Memory Consistency

The specification for a parallel language needs a memory
model to describe how memory reads and writes are visible to
multiple processors

This involves the use of special language constructs and
special memory access operations to inform the compiler and
hardware about what kinds of reordering are allowable and
what kinds of memory consistency across processors are
needed
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Memory Consistency

And this is the problem: languages like C (and C++, and Java,
and . . . ) were conceived before memory models were
necessary

So they didn’t have them

Updates to the language standards are trying to retrofit
memory models, but sometimes it’s very difficult to fit new ideas
into an old language

Further, programmers need to be (re)trained to understand
these things
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So, for example, the programmer may decide that some reads
or some writes may be reordered, while others should not

Generally, the programmer must understand the issues
involved and use the right constructs in the right places

Allowing just enough flexibility for the compiler/hardware to be
efficient, while still correct code

Thus allowing the system to reduce synchronisation and
increase parallelism
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Memory Consistency

Fortunately for us, if we use primitives (locks, semaphores, and
so on) and higher-level constructs they will look after the details
for us

As long as we use them!

So: if you have a cross-thread relationship, use a parallelism
mechanism, don’t just wing it
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Exercise Read about memory consistency. Including: memory
fences, strict consistency, strong consistency, causal
consistency, weak consistency, sequentially consistent,
acquire-release, relaxed, consume, etc.

Exercise Read about how modern C and C++ standards
address the memory consistency issue

Exercise Read about the difference between Java’s memory
model and C/C++’s model (and what volatile does in each)
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Exercise Read about the difference between the Intel (x86)
memory model and the Arm memory model

Exercise And read about the memory problems that Apple’s
Arm M1 and later chips have in trying to support old x86 code
via an instruction translator (Rosetta)
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So now you have the tools to hand: thread creation to run
things concurrently/in parallel, and primitives to control races

An important note on the cost of thread creation: they are not
free!

But, in a good OS implementation, they are relatively cheap

Depending on the operating system, it can take hundreds or
thousands of CPU instructions to create or destroy a thread

For the “hello” examples above it probably would not be worth
creating new threads, but be faster to run the printfs
sequentially

(But, remember, raw speed is not necessarily the target for
parallelism)



Concurrency Control
Threads

A rough test on my PC indicates that the overhead of creating
and joining one thread is about the same amount of time as
doing 2000 floating point operations

Exercise That is for a particular OS and a particular CPU. Find
out how long it takes to create a thread on your computer and
OS
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Threads

You have to judge whether it is worthwhile paying the creation
overhead

And there is the additional cost of context switching between
threads when there are more threads than processors

The thread model of parallelism leads one to write programs
with large numbers of threads

Probably more than there are processors in the system,
particularly when you take into account the threads in the other
processes running in the system
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Threads

This means that threads need to be scheduled, just like
processes

And this has a cost, just like processes

It is easy to make so many threads that the OS starts thrashing

You need to be careful about how many threads to create!

Typically, creating a (POSIX) thread when you need it, and then
destroying it when done is costly and not a good approach

The objective is to give a thread as much computation as
possible, perhaps repeated or multiple tasks
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Thread Pools

Trying to address the cost of thread creation and deletion leads
some people to the thread pool model of parallelism

Your program creates a pool of threads (not too many, not too
few!) once and reuses them multiple times

Each thread is given a task as is necessary; it does it and then
goes back for another task
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Thread Pools

You pay the cost of creation just once at the start (and
destruction just once at the end), rather than once per thread
use

Though there is a cost in the pool task management
mechanisms

But these threads have a long life, and do many things



Concurrency Control
Thread Pools

Apple’s Grand Central Dispatch (GCD) does thread pooling at a
higher level: system-wide

The OS manages threads across all processes running, not
just within each process

More on GCD later (in particular, its costs), but note this is in
contrast to the model of each program creating and destroying
threads as it needs them, as we were doing previously
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POSIX

As mentioned previously, POSIX pthreads are a very popular
library-based mechanism to support parallelism (actually:
concurrency)

We have just scratched the surface of POSIX

There are lots of other functions described by the POSIX
standard: try
man -k pthread
and
man 7 pthreads
on Linux for an overview
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Non-POSIX

Windows has something similar to POSIX threads: different
names for the functions, but similar enough to be confusing

They do provide an implementation of POSIX threads, but MS
would rather you use their own thread library: MS are not
interested in portability across OSs

Apple macOS, like Linux, has good POSIX coverage
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Other Threads

It is worthwhile mentioning that there are many other kinds of
threads, mostly invented to try to overcome the costs of
(a) thread creation/deletion and (b) context switching between
threads

They have names like fibres, coroutines, protothreads,
microthreads, light-weight processes and so on
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Other Threads

For example, some languages, e.g., Go (“goroutines”) and
Erlang (“processes”), have very lightweight threads as part of
the language

These are scheduled by the language runtime across system
threads

They are very cheap to create, and allow thousands or millions
of “threads” to be active

They encourage the use of massive threading at the cost of
overhead from a more complicated language runtime

More discussion of Go and Erlang later



More Libraries

We were discussing library-based parallelism

Taking a sequential language and using a parallel library

But this has the dangers of the sequential language not
understanding parallelism and mis-optimising

But library-based parallelism is very popular: particularly if we
avoid shared memory
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Another important library-based solution is the Message
Passing Interface (MPI) and we shall look at this later when we
talk about distributed memory systems

We shall just note here that MPI is an example of one
library-based technique that is quite popular: write code that is
sequential, or modestly parallel, but call library functions that do
what we want to achieve that are parallel—and written by
somebody else

Another example, the Basic Linear Algebra Subprograms
(BLAS)
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The BLAS are a (standard for a) collection of functions that
implement various algorithms in linear algebra: vector sums;
matrix multiplication; vector dot products; etc. for various
representations of these datatypes

Implementations are written by people who really understand
what they are doing in terms of making the best use of
hardware: in particular parallel hardware

If you write your application to use the BLAS your code will be
using this expertise

If someone comes out with an improved implementation of the
BLAS that goes twice as fast, your code will automatically go
twice as fast (in the BLAS bit)
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They really can be a factor of two difference on the same
hardware

BLAS libraries are typically tuned to the version of the
processor in your machine, taking into account cache sizes;
memory speeds and so on

The GotoBLAS, written by Goto, are recognised as being
particularly good

His implementation contains chunks of processor-specific
assembler and pays particular attention to the sizes of blocks of
data, matching them carefully to cache sizes
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Many other libraries exist: for example, the template approach

This is a standard header file with a library of code behind it that
introduces a bunch of new classes to aid parallel computation

For example, C++ AMP (Accelerated Massive Parallelism) from
Microsoft defines some parallel container types with methods
that act concurrently on them

E.g., concurrency::parallel for each(...)

The details are hidden from the programmer, who gets a fairly
simple API to work with
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There are many other template libraries for C++ (a language
very suited to this approach):

• Parallel Patterns Library (PPL) from Microsoft
• Thrust from Nividia
• Intel Threading Building Blocks (TBB)
• Boost
• Etc.

But you do need to be careful using them: they do make writing
parallel code simpler, but they don’t necessarily prevent you
from using them incorrectly!
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Monitors

The next approach to parallelism we shall look at is to have
constructs as part of the language

For example, a monitor is a language construct that combines
mutual exclusion and synchronisation in a way that can be
easier to use than the concurrency primitives

monitor Name

local variable declarations

func fun1(args) body

func fun2(args) body

...

end

The actual syntax will vary by language
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Monitors

Mutual exclusion is enforced by

only one thread at a time may be executing any function
inside a given monitor

So, if one thread is executing fun1 and another thread tries to
execute fun2, it will have to wait until the first thread exits the
monitor
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Monitors

So there is mutual exclusion on the local variables and within
the dynamic scope of the functions in the monitor, i.e., mutual
exclusion continues even if fun1 calls a function defined
outside the monitor

The mutual exclusion finishes when the thread of control exits
the (top level) monitor function

Clearly, monitors will be implemented with locks, but this
conveniently hidden from the programmer using them
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Monitors

Synchronisation is provided by the use of condition variables

wait(c); and signal(c);

The associated lock is the monitor mutual exclusion lock, and is
implicit

Just like the POSIX version, wait() will drop the monitor lock
to allow other threads access; and try to regain it when it
resumes
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Monitors

We can easily implement a lock using a monitor:

monitor Lock

int flag = 0;

condition c;

lock() { while (flag == 1) wait(c); flag = 1; }

unlock() { flag = 0; signal(c); }

end

The monitor lock provides the atomicity we need in the
definition of lock
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Monitors

Monitors help with management of mutual exclusion, but the
usual nesting deadlock is still possible. For monitors m1 and m2:

monitor m1 monitor m2

fun1() { ... fun2() ...} fun2() { ... fun1() ... }

... ...

end end

1 2
fun1 in monitor m1 calls fun2 in monitor m2 calls
fun2 in monitor m2 (waits) fun1 in monitor m1 (waits)
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Modularity might even encourage this error, though monitors
are high enough level to be easy to analyse automatically so
there are source code tools to spot this

They require careful use and are not a universal solution!
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Java Monitors

Monitors clearly fit well with object oriented languages: for
example, Java implements monitors on a per-object level:

class foo {

private int n = 0;

public synchronized int inc() { n++; }

public synchronized int dec() { n--; }

...

}

Methods with the synchronized keyword are within a
per-object monitor, i.e., one per instance of foo
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Java Monitors

Only one of inc and dec can be executing on a given instance
of foo at a time

Condition variables: wait(), notify() and notifyAll()

Class methods (static) can be synchronised, too, locking the
class but not its instances
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Monitors

Monitors are fairly easy to use, but are somewhat large grained:
the whole of each monitor, for example all methods marked
synchronized in a Java object

class foo {

private int n = 0, m = 0;

public synchronized int incn() { n++; }

public synchronized int decn() { n--; }

public synchronized int incm() { m++; }

public synchronized int decm() { m--; }

}



Concurrency Control
Monitors

To have separate locks on some of the methods requires code
refactoring (or see below): You can do this, but this is driving
the code towards complexity

Similarly, it is a bit fiddly to decide on what functionality goes
into which monitor: if you are not careful you end up with all
your code in one big monitor—sequential!
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Monitors

Exercise What about the following?

class foo {

private int n = 0, m = 0;

public synchronized int incn() { n++; }

public synchronized int decn() { n--; }

public synchronized int incm() { m++; }

public synchronized int decm() { m--; }

public synchronized int swap() { int s = m; m = n; n = s; }

}
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Java Monitors

Java recognises that monitors are sometimes too large, so it
allows synchronising of statements (rather than whole
methods) as a way of providing finer gain control

public class locket {

private Object nlock = new Object();

private int n = 0;

public void inc() {

synchronized(nlock) { n++; }

}

public void dec() {

synchronized(nlock) { n--; }

}

}
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Java Monitors

synchronized takes an arbitrary object as argument

A class can have as many of these as it likes in addition to the
implicit one provided by the class monitor

This is fine, but we have just reinvented mutexes!

But in a more convenient form: you can’t forget to lock or unlock
these
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Java Monitors

Incidentally, Java also has a library of atomic datatypes, e.g.,
AtomicInteger with a few methods, that does the obvious
thing

But these are tiresome to use as Java does not have operator
overloading, like C++: thus n.incrementAndGet() rather than
overloading ++ and using the simpler ++n



Concurrency Control
Conditional Critical Regions

Exercise A similar, but simpler, kind of idea is conditional
critical regions, where a semaphore is associated with blocks of
code (the critical regions)

let s = Semaphore::new(1);

...

region s { region s {

// critical region ...

... <set condition>

await <some condition> ...

... }

}

Read about this (e.g., in Ada).



Parallelism Languages

The logical approach to parallel programming is to use a
language that was designed from the start to support
parallelism

There have been very many attempts at creating new
languages with explicit support for parallelism

For example, Occam, Strand, Erlang, Linda, SALSA, SISAL,
Parlog, Charm++, NESL, Go, Rust as just a few from a huge list

We should have time to look at one or more of these towards
the end of the Unit

Some of these languages are quite difficult to learn and use
effectively
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A conservative approach to getting these kinds of parallel
support is to take an existing language, like C, and tweak the
language to add parallelism

Then, so the theory goes, you can tap into the existing
expertise in that language and extend it to parallel systems

This is true to a certain extent, but it still tries to layer parallel
ideas over a sequential foundation

Parallelism should not be an afterthought, but should really be
part of the foundation
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The main example we shall be looking at is OpenMP (Open
MultiProcessing)

This takes C (or C++) and add some new constructs to notate
parallel execution

By hiding the low-level primitive locking and synchronisation
they aim to provide an easier way of writing parallel programs

And minimise the kinds of errors the primitives invoke
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OpenMP fits nicely into the superstep model of computation

While you shall not be using OpenMP for the coursework,
some of you might want to use it for your FY Project
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Here is a simple loop

for (i = 0; i < 10; i++) {

sq[i] = n + i*i;

}

With OpenMP annotation

#pragma omp parallel for

for (i = 0; i < 10; i++) {

sq[i] = n + i*i;

}

The #pragma omp indicates that we want the loop to be run in
parallel

#pragma is a general C mechanism, not limited to OpenMP
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When this is run, the loop is split into some number of chunks,
running on some number of threads

The OpenMP runtime system determines the number of chunks
and number of threads

That is, it makes a choice when the code is run

And the numbers of chunks and threads may differ on different
runs
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Typically the number of chunks is the same as the number of
threads, which is the same as the number of processors in the
system, but it need not be

And each chunk typically iterates close to

size of loop
number of chunks

times
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Also important is that the runtime creates parallel code with a
private version of i per thread

Each thread wants its i to range, in parallel, over different
values, e.g., 0–2, 3–5, 6–8, 9

Or maybe 0–2, 3–5, 6–7, 8–9; or something else

The runtime decides, and potentially might choose a different
split in different runs

The parallel for construct knows the loop variable must be
private

But the variables n and sq are shared across the threads
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Note:

• we do not give a number of threads
• the creation and destruction of threads is all hidden from

us: it may create and destroy threads on each occurrence
of a #pragma omp; or it may use a thread pool
• the compiler determines we need a per-thread variable i

• by using the construct we are assuring the compiler that it
is safe to do the loop in parallel and there are no data (or
other) races.
If the loop was
av[i] = av[i] + av[i-1];
it would blindly do this in parallel
• so OpenMP provides a simple mechanism, but no analysis
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Exercise Convince yourself why the following is wrong:

Convert

for (i = 0; i < 10; i++) {

av[i] = av[i] + av[i-1];

}

to

#pragma omp parallel for

for (i = 0; i < 10; i++) {

av[i] = av[i] + av[i-1];

}
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Another example:

#include <stdio.h>

#include <omp.h>

int main(int argc, char* argv[])

{

#pragma omp parallel

printf("Hello world, I am thread %d\n",

omp_get_thread_num());

return 0;

}

Guesses for the output?
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Running on an 8 core machine:

Hello world, I am thread 0

Hello world, I am thread 6

Hello world, I am thread 5

Hello world, I am thread 4

Hello world, I am thread 3

Hello world, I am thread 1

Hello world, I am thread 7

Hello world, I am thread 2
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Note:

• the printfs are in no particular order; running the same
code again gives a different order output
• the printfs are separate, the outputs are not mixed. This

is because this implementation has internal locks on output
streams
• We see all of the printfs: OpenMP has an implicit barrier

at the end of each construct (superstep). This means the
main thread (or rather, the pragma parallel) waits for all
threads to finish before moving on and executing the next
line (return in this example)
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There are several OpenMP pragmas

#pragma omp parallel for

for (...) { }

The loop variable is made private per-thread; by default all
other variables are shared between the threads
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#pragma omp parallel sections

{

#pragma omp section

{

printf("Hello world, I am thread %d\n",

omp_get_thread_num());

}

#pragma omp section

{

printf("hi there, I am thread %d\n",

omp_get_thread_num());

}

}

This executes on (maybe) just two threads, one thread per
section
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The sections need not contain similar code

Exercise But ideally should contain codes that take roughly the
same time to execute. Why?
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#pragma omp parallel

{

#pragma omp for

#pragma omp sections

#pragma omp barrier

#pragma omp masked

#pragma omp critical

...

}

A general parallel section that contains more specific ways of
parallelising
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barrier is an explicit barrier

masked marks code that will only be executed by threads that
match the mask

critical marks a critical region that will be executed by
exactly one thread at a time (a monitor or mutex)
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#include <stdio.h>

int count = 0;

void inc() {

#pragma omp critical

count++;

}

int main(int argc, char* argv[])

{

#pragma omp parallel

inc();

printf("count = %d\n", count);

return 0;

}

Prints the number of threads (bad code!)
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Each parallel pragma can take extra arguments for fine control:

#pragma omp parallel for [shared(vars), private(vars),

firstprivate(vars),lastprivate(vars),

default(shared|none), reduction(op:vars), copyin(vars),

if(expr), ordered, schedule(type[,chunkSize])]

• shared a list of variables that are shared between the
threads (default: all variables except the loop variable)
• private a list of variables that are private to each thread;

default for a loop variable
• nowait remove the implicit barrier at the end of the section
• reduction(op:vars) private variables that are reduced

using the op at the end
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int i;

#pragma omp parallel reduction(+:i)

i = omp_get_thread_num();

printf("i = %d\n", i);

Each thread gets its own private i; at the end of the section all
copies are reduced to the single value of i by +

So, maybe, 0 + 6 + 5 + 4 + 3 + 1 + 7 + 2 = 28

Reductions turn out to be commonly needed in parallel
programs
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There are several useful functions

• int omp get num threads(void) returns the number of
threads in this parallel region
• int omp get thread num(void) returns a per-thread

unique number
• int omp get max threads(void) the maximum number

of threads available (often defaults to the number of cores)
• void omp set num threads(int) set the number of

threads OpenMP can use
• int omp get num procs(void) number of processors in

this system
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And lots more functionality

For example, setting the environment variable
OMP NUM THREADS before running the program sets the default
number of threads

OMP NUM THREADS=7 ./prog

OpenMP is widely supported. For example, to compile under
GCC:
cc -fopenmp -Wall -o prog prog.c
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OpenMP is clearly naturally associated with shared memory

There is a distributed memory version from Intel, called Cluster
OpenMP

There is an undercurrent of “if your program doesn’t work well
on normal OpenMP, then it won’t work well on Cluster OpenMP”
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OpenMP

• is an evolving standard
• is easy to use; you can modify existing programs

incrementally
• hides messy threads fiddling
• needs compiler support, unlike pthreads (but is supported

by the mainstream compilers, in particular GCC, Clang and
MSVC)
• is dependent on good implementation of the compiler: if

you pass control of the parallelism to a compiler you need
that compiler to be good at it
• is very large and complicated in scope
• still allows trivially buggy programs
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Exercise Would the coursework be easier using OpenMP?



Cilk Plus

Of course, OpenMP is not the only way of tweaking C

Cilk Plus is somewhat similar in that it adds annotations and is
based on fork and join

But as new keywords in C, not as pragmas (mostly)

Cilk Plus is intended as an extension to C++, but works for C,
too

You may come across other versions named “Cilk” and “Cilk++”

We may have time to talk about Cilk later
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This concludes our discussion of the shared memory world

For now
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We now turn to distributed memory programming

We could use interfaces like threads or OpenMP and have an
underlying or virtualising infrastructure that converts them to
message passing between processors over a network

Good programmers don’t like that as it hides the source of the
cost of distributed parallelism from the programmer, making it
harder to design and write efficient programs

So most distributed programs are explicitly message passing,
or have some other way of making the cost of an operation
more clear
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The big player in this field is Message Passing Interface (MPI)

You may hear about

• PVM: Parallel Virtual Machine, a predecessor to MPI
• SHMEM: SHared MEMory, only on Cray (SGI) machines
• UPC: Unified Parallel C, a supposed successor to MPI
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MPI is what Big Science uses, when terabytes of data
crunching is needed

And remember distributed systems are not good for small
programs due to the overhead of the messaging outweighing
the parallelism gained

MPI runs the same program on multiple processors (SPMD),
but definitely not in lockstep

The processes communicate via messages
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MPI is “simply” a library of functions to do messaging; you can
use it with normal (unmodified) C, Fortran, etc.

Even Java, Python and other languages less suited to high
performance systems

MPI is actually a standard with several competing
implementations

Code written to the standard should run on any implementation

But frequently doesn’t

The MPI standard specifies a huge number of functions,
covering a wide range of different types of messaging
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#include <stdio.h>

#include <mpi.h>

int main(int argc, char **argv)

{

int rc, myrank, nproc, namelen;

char name[MPI_MAX_PROCESSOR_NAME];

rc = MPI_Init(&argc, &argv);

if (rc != MPI_SUCCESS) {

printf ("Error starting MPI program\n");

MPI_Abort(MPI_COMM_WORLD, rc);

}

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

MPI_Comm_size(MPI_COMM_WORLD, &nproc);

continued
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if (myrank == 0) {

printf("main reports %d procs\n", nproc);

}

namelen = MPI_MAX_PROCESSOR_NAME;

MPI_Get_processor_name(name, &namelen);

printf("hello world %d from ’%s’\n", myrank, name);

MPI_Finalize();

return 0;

}
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Notes:

• MPI Init(&argc, &argv); Set up the system: you must
always do this. A batch processing system (e.g., SLURM)
starts the processes on all the processors, while MPI Init
sets up the connections between them
• Later versions of MPI allow MPI Init(NULL, NULL) but

the above is preferable as it provides more information to
the MPI system
• rc Always check to make sure it worked
• MPI COMM WORLD The system can be sub-divided into

subsets of processors called communicators. The WORLD
communicator is all processors; MPI COMM SELF refers to
just the calling processor
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• MPI Comm rank Each process in a communicator has a
unique rank within that communicator: this is just an
integer from 0 to size of the communicator −1. So, for
WORLD the rank ranges from 0 to total number of
processors −1
• MPI Comm size Get the size of the communicator
• if (myrank == 0) All processors run the same code

(SPMD). This is how we get different things happening on
different processors
• MPI Finalize All procs must always call this to tidy up

their MPI state
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Compile using mpicc:

mpicc -Wall -o hellompi hellompi.c
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Batch file runnit.slm:

#!/bin/sh

#SBATCH --account=cm30225

#SBATCH --partition=teaching

#SBATCH --job-name=HelloMPI

#SBATCH --nodes=2

#SBATCH --ntasks-per-node=8

mpirun ./hellompi
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The lines of note here are:

• --nodes=2 we want two nodes
• --ntasks-per-node=8 we will be using just 8 of the 44

cores on each node



Recall we had:

if (myrank == 0) {

printf("main reports %d procs\n", nproc);

}

namelen = MPI_MAX_PROCESSOR_NAME;

MPI_Get_processor_name(name, &namelen);

printf("hello world %d from ’%s’\n", myrank, name);
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Output:

hello world 3 from ’ip-AC125409’

hello world 5 from ’ip-AC125409’

hello world 4 from ’ip-AC125409’

hello world 11 from ’ip-AC125408’

hello world 6 from ’ip-AC125409’

hello world 9 from ’ip-AC125408’

hello world 1 from ’ip-AC125409’

hello world 15 from ’ip-AC125408’

hello world 7 from ’ip-AC125409’

hello world 12 from ’ip-AC125408’

hello world 2 from ’ip-AC125409’

hello world 10 from ’ip-AC125408’

main reports 16 procs

hello world 0 from ’ip-AC125409’

hello world 14 from ’ip-AC125408’

hello world 13 from ’ip-AC125408’

hello world 8 from ’ip-AC125408’
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Notes:

• ip-AC125408 and ip-AC125409 are the names of the two
nodes that happened to be allocated; the next run may well
get different nodes
• Processes 0–8 are on ip-AC125409 while processes 9-15

are on ip-AC125408, but it might happen the other way
around
• ntasks-per-node is important here as sometimes you

want fewer MPI tasks on a node than there are cores on
that node: an MPI task can itself be multithreaded (not
your coursework!)
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• Output in a random order, even for the “main reports 16
procs” which we might think happens first!
• We do see “main reports” before “hello world 0”, though!
• MPI has a mechanism for routing prints on any node back

via the network to a single point: this results in all kinds of
timing variations in output
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• MPI is SPMD, so this code is not synchronised across
processors
• For example, when proc 0 is doing its printf the other

processors may well already be doing
MPI Get processor name

• Or perhaps still MPI Comm size

• But many MPI function calls do have a built-in
synchronisation and block the calling processor until all
processors involved in that call are done
• Each MPI “task” is a separate process, not sharing

anything with any other task: in particular, not sharing any
variables (e.g., myrank), even if the tasks happen to be on
the same node
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Exercise Does adding a MPI Barrier after the “main reports”
conditional ensure the message comes out first?
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In the batch file, mpirun sets up the processors and processes
involved

Depending on the MPI implementation, this might be clever and
sort out the best transport between them, e.g., in memory for
processors on the same node and on the network for
processors on different nodes

Or it might simply use network connections, regardless

The programmer uses the same MPI functions to send
messages whatever the underlying mechanism
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One-to-one messaging

MPI is about sending messages between processes

A basic use scenario is when one processor wants to send a
message (some data) to another

send receive

A B

Simple message send

Processor A sends data (integers, floats, strings, etc.) to B

A can use a send function, while B uses a receive function
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One-to-one messaging

int n[5];

...

if (myrank == 0) {

MPI_Send(n, 5, MPI_INT, 1, 99, MPI_COMM_WORLD);

}

else if (myrank == 1) {

MPI_Status stat;

MPI_Recv(n, 5, MPI_INT, 0, 99, MPI_COMM_WORLD, &stat);

}

We suppose A has rank 0, B rank 1 in WORLD
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One-to-one messaging

MPI Send uses

• n A pointer to a memory location containing the data; can
be a single variable or (more likely) an array of values
• 5 The number of items to send
• MPI INT The type of the items
• 1 The rank of the destination
• 99 A tag As there can be many messages flying around

you can tag them with specific integers. This allows you
match up a particular send with a particular receive
• MPI COMM WORLD The rank is within this communicator
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One-to-one messaging

MPI Recv uses

• n A pointer to a memory location where to store the data: it
need not be the same place as A (n in our example) as B is
a separate process
• 5 The number of items to read
• MPI INT The type of the items
• 0 The rank of the source
• 99 The tag on the message you are waiting for: use
MPI ANY TAG if you don’t care
• MPI COMM WORLD The communicator
• stat A structure contains the status of the transfer, in

particular the source and tag; and the error type in case of
an error
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Messaging Types

Types include
MPI CHAR, MPI SHORT, MPI INT, MPI LONG, MPI FLOAT,
MPI DOUBLE, MPI BYTE
among several others
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Messaging Types

MPI Send and MPI Recv are blocking, meaning MPI Send waits
until the data has been copied out of the buffer n into the
messaging subsystem. The array n in A can be safely reused
immediately after the MPI Send call returns

Note the data itself may not yet have reached or have been
read by B

Or even sent yet by A; all we know is that is has been copied
out of n

Naturally, MPI Recv waits until the data is safely copied into its
buffer
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Messaging Types

This provides a weak synchronisation between A and B

All we know is that B has to wait for A: nothing more than that

B gets the data after A produced it

Beyond this synchronisation we can say little about what the
relationship between A and B is

For example, A won’t know when B actually gets the data; B
doesn’t know when A sent the data
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Asynchronous messaging

In a distributed system you have to be aware of the
asynchronous nature of communication

As messages take a significant time to be transmitted a send
and a receive are certainly non-simultaneous

In comparison, in a shared memory system, once a value is
written to a variable, that value is available essentially instantly
everywhere (ignoring caching and speed of light issues!)
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MPI also provides

• MPI Ssend Waits until the destination has started to
receive the message: a stronger synchronisation, not often
needed
• MPI Isend Send, but don’t wait and carry on processing.

A separate thread or DMA subsystem will asynchronously
copy out and send the data. You have to be careful about
reusing the buffer too soon (“I” for “immediate”)
• MPI Irecv Indicate a buffer where data should be read

into, but don’t wait for it; the data will be copied
asynchronously into the buffer at some point in the future
• MPI Wait Block until a given non-blocking send or recv

has completed

And lots more
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Synchronisation

Simple synchronisation can be achieved by
MPI Barrier(MPI Comm comm);

This blocks until all the processes in the communicator have
reached the barrier

Note that the processes involved in the barrier are specified by
the communicator; compare with pthread barriers that wait for
any n threads that happen to arrive

MPI Barrier is rarely needed as (a) many of the other MPI
functions (MPI Send, MPI Recv etc.) also synchronise already
and (b) SPMD programs generally have less of a need for
barriers anyway

If you find yourself using MPI Barrier, think again!
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A quick note on messages:

Messages in MPI are reliable, in order, but not fair

Reliable: messages don’t get lost in the network

In order: if A sends message 1 then message 2 to B, then B will
get message 1 before message 2: messages from one source
to the same destination do not overtake each other

However, a message from A to B may be overtaken by a later
message from C to B: there is no guarantee of order on
messages from different sources (e.g., A to B is over the
network, but C to B is in shared memory)
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As usual, “not fair” means “not guaranteed fair”. Mostly things
will happen in the expected orders, but you should not rely on it

If you need a specific order, use tags

A blocking receive with a tag will wait until a message with that
tag arrives, even if other messages are ready waiting
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Multiple participant messaging

The above send and receive are point-to-point messages,
namely one source and one destination

MPI provides many more general kinds of messaging

Point-to-point turns out to be much less useful than you might
think
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Broadcast:
MPI Bcast(void* buffer, int count, MPI Datatype datatype,

int root, MPI Comm comm);

The buffer of data is sent from the process with rank root to all
processes in the communicator

4223

4223 4223 4223 4223

root

before0 1 7 11 3 4

after

MPI broadcast
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Note: all processes, including the receivers, should call
MPI Bcast with the same value for root

The destination buffer can be different on each processor, but is
typically the “same” buffer (in an SPMD sense)
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int n[2];

if (myrank == 1) {

n[0] = 23;

n[1] = 42;

}

...

MPI_Bcast(n, 2, MPI_INT, 1, MPI_COMM_WORLD);

All processes will now have the same values for their versions
of n
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MPI Scatter(void* sendbuf,int sendcount, MPI Datatype

sendtype, void* recvbuf, int recvcount, MPI Datatype

recvtype, int root, MPI Comm comm);

This takes the data sendbuf, an array, in processor with rank
root, and sends sendcount items from the array to each other
processor (and to itself) to end up in recvbuf

3 1 4 1 9 2 7 1 8 4 1 4 1 4 6 6 2 0 0 8

root

3 1 4 1 2 7 1 8 1 4 1 4 6 2 0 0 82 7 1

before

after

Scattering single values
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The processor with rank 0 (in the specified communicator) gets
the first sendcount items from sendbuf; processor 1 gets the
next sendcount items; and so on

Just as in broadcast, every processor executes SCATTER with
the same root

Note: recvtype can be different from sendtype, but you had
better be sure you understand what you are doing

recvcount can be different from sendcount, but you had
better be sure you understand what you are doing

Don’t do that!
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MPI Gather(void* sendbuf, int sendcount, MPI Datatype

sendtype, void* recvbuf, int recvcount, MPI Datatype

recvtype, int root, MPI Comm comm);

Takes sendcount elements of data sendbuf from each
processor and puts them in the array recvbuf on processor
root

3 1 4 1 1 4 1 4 6 2 0 0 82 7 1

after

before

root

3 1 4 1 2 7 1 8 1 4 1 4 6 2 0 0 82 7 1

1 8 52

Gathering single values
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MPI Gather is the “opposite” of MPI Scatter

The recvbuf on the root processor is filled, in order, with the
specified number of items from processors rank 0, 1, etc.

Type and counts can vary across processors

But don’t do that



MPI

MPI Reduce(void* sendbuf, void* recvbuf, int count,

MPI Datatype datatype, MPI Op op, int root, MPI Comm comm);

Applies a reduction of operation op to each value in sendbuf,
putting the result(s) into recvbuf on processor root

MPI_SUM

MPI_MAX

1 23 117 3

33

9923

990 42

153

MPI reduce
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Operations include
MPI MAX, MPI MIN, MP SUM, MPI PROD, MPI LAND (logical
AND), MPI LOR (logical OR)
amongst others

You can also define your own reduction operators
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MPI Scan(void* sendbuf, void* recvbuf, int count,

MPI Datatype datatype, MPI Op op, MPI Comm comm);

A prefix scan of the source sendbuf. Processor of rank i gets
the reduction of values from processors 0 . . . i stored in its
recvbuf

MPI_MAX

MPI_SUM10

1 990

23 3354

23 42 42 23

117 990 42

43 30 153

23

23 31

MPI scan

Prefix scans turn out to be a very useful tool in parallel
algorithms
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As usual with MPI, there are many other combinations of
blocking and non-blocking messages possible

Note these functions are not cheap: they hide a lot of
messaging, which you should be aware of when you are using
them

For example, a MPI Bcast of a large datastructure can be very
slow
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For timing, MPI Wtime() returns a “high precision” elapsed
time in seconds on the calling processor

It returns a double, with precision as given by MPI Wtick()

This might be, say, 0.000001 (1 microsecond)
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MPI also provides

• defining new MPI datatypes including arrays and
structures;
• means of creating communicators;
• processor groups (communicators contain one or more

groups);
• processor topologies (ways of arranging processors into

particular geometric shapes that might fit a certain problem
or hardware);
• more kinds of scatter/gather/reduce/scan;
• all-to-all broadcasts;
• and so on
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MPI is used extensively out there in the big world of Real
Science

It is very well suited for when there is so much computation
needed that the overhead of a bunch of messages is well worth
paying

The large (100k core) clusters will be running jobs using MPI

MPI scales very well to large systems
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And, of course, you can mix shared and distributed memory:
running shared memory OpenMP tasks communicating across
nodes via MPI

Don’t use OpenMP in the coursework: that should be pure MPI
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MPI requires you to make sure all your MPI function calls are
coordinated across the processes: every processor must call
the appropriate same or matching functions at the appropriate
times

This the programmer’s problem: it’s a bug if you get it wrong
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For example, you can still easily deadlock. Suppose A and B
wish to exchange messages:

A B
MPI_Recv(...); MPI_Recv(...);

... ...

MPI_Send(...); MPI_Send(...);

This is slightly more obvious when it happens since MPI is
SPMD and has a single program source

Careful use of message tags helps structuring

As is common, MPI provides easy mechanism but no analysis
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In fact, for this case, MPI provides MPI Sendrecv which
combines a send with a receive that is guaranteed not to
deadlock

A B
MPI Sendrecv(...); MPI Sendrecv(...);

This function is recommended in cases of swapping data

And it can connect any pair of processes; is not limited to
simple swapping between two processes. For example, A
sends to B but receives from C; while B sends to C but receives
from A; etc.
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Using MPI requires careful thought about messages to get the
maximum efficiency out of the system

For example, we might be able to overcome message latency
by judicious use of non-blocking sends and receives

Rather than waiting for a receive to complete, we carry on
working on some other part of the computation: later, when the
receive has completed, we can go back to that part of the
computation
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This requires careful programming, but can give good results

Sometimes not

In general (not just distributed computing), overlapping
communication and computation is a good thing to do

But hard to program and easy to make errors

Exercise You wish to make a cup of tea and a sandwich. Do
you

(a) make the sandwich then start boiling the kettle; or
(b) start boiling the kettle then make the sandwich?
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Also:

• messaging has a high overhead, so MPI only really works
well on very large programs
• it is hard to program effectively: simple programs are easy

to write, but efficient programs usually need experienced
programmers
• there are a huge number of variations of messaging: quite

often you can replace several calls to MPI functions with
one, more complex, MPI function that is more efficient
overall
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• you need a careful balance of MPI function calls and data
movement: you would generally aim to use as few MPI
calls as possible, but sometimes moving less data with
more calls can be better than moving large amounts of
data with fewer calls
• it is not naturally dynamic: the number of processors is

effectively fixed and cannot vary during the execution of
the program. This excludes efficient execution of some
kinds of program (later versions of MPI do include
MPI Comm spawn but it’s not easy to use)
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MPI has succeeded for many reasons

• An open standard, inviting several competing
implementations
• Thus implementations tend to be optimised and efficient
• MPI is simple in concept, so straightforward to program

(not necessarily easy to program. . . )
• MPI is flexible as it contains lots of kinds of communication
• MPI is supported by many languages and environments
• MPI scales well to very large problems

The MPI standard is still being developed and updated



MPI

Exercise Read about UPC, a (not popular) alternative to MPI,
that presents a virtual shared NUMA architecture



Vector and Array Processors

Moving on from distributed: the next major architecture to
consider is SIMD

Recall: these have many processors all executing the same
thing on different data

First we need to recall the SIMD architecture and go through
the issues it brings
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ALU

memory

ALU

memory

ALU

memory

ALU

memory

ALU

memory

input output

Memory

Control

SIMD box model

All processors are controlled by just one Control unit, so are all
executing the same instruction

This is data parallelism
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There is a shared chunk of global memory and each processor
has its own chunk of private memory

Processors can be strung linearly in a vector or in a square
mesh as an array
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memmemmemmem

ALUALUALUALU

memmemmemmem

memory

memmem mem mem

memmemmemmem

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

control

Array processor

Of course, you can use an array as a vector or a vector as an
array, with a modest loss of efficiency
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Vector processors appeared quite early on in computer
architectures (1960s) and were a mainstay in 1980s
supercomputers (Crays), as they are a relatively simple
extension of the uniprocesor

Array processors have come into fashion and gone away again
several times

GPUs owe a lot to array processor design: more on this later
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The basic idea of SIMD is that we can parallelise loops like

for (i = 0; i < 1024; i++) {

c[i] = a[i] + b[i];

}

as

in parallel do c[i] = a[i] + b[i];

Exercise Go back and look at OpenMP
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The important points being

• all elements in the arrays are being treated identically
• there is no interference between any of the operations
• there are no dependencies across iterations of the loop

So no races, thus no serialisation of the operations is needed
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What if there are conflicts? For example

for (i = 1; i < 1024; i++) {

a[i] = a[i] + a[i-1];

}

Here, the new value of a[i] depends on the value of a[i-1];
which will have been updated in the previous iteration of the
loop

In comparison

in parallel do a[i] = a[i] + a[i-1];

takes the original value of a[i-1]
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Starting with a = 1, 1, 1, 1; the sequential loop gives
1 2 1 1
1 2 3 1
1 2 3 4

While the parallel version gives
1 1 1 1

1 1 1 +

1 2 2 2

This is due to the nature of the original loop: it is actually a
prefix scan operation

Prefix scans can be done SIMD, but when parallelising code
you have to be aware that is what is happening!
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Having given a warning, SIMD processing is very powerful

Vectors and arrays with thousands of processors are common

If your problem is data parallel, it can get huge speedups by
running SIMD

If you can get your data to the individual processors fast enough
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In SIMD the processing power is not the problem: it’s the data
movement

With thousands of processors, CPU is essentially free

The major way to lose efficiency is through data movement
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As usual, the bus bandwidths between the processors and
between the global memory and the processors is much less
than you might wish

The total aggregate bandwidth, adding together all the
individual bandwidths of all the buses can be huge, but this is a
useless statistic (thus is given by marketing)

Careful overlapping of communications and processing is the
way to make these systems work at their best efficiency

Thus, for example, rather than waiting for a read from memory
to return a value, go away and do some other computation
while the read is being processed

This kind of asynchronous programming improves efficiency
but is much harder to do and to get right



Vector and Array Processors

Back to the SIMD architecture: now is the point where need to
talk about an interesting feature of SIMD processing

The main feature of SIMD is that all processors are doing the
same thing. . .

. . . so how can conditionals work?

Here is an example, written using a fictional SIMD C
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Suppose we have a get proc() function (“get processor
number”) that returns the index of the processor:

int me;

me = get_proc();

...

This allows us to distinguish between processors; the value of
me is different on each processor

We could use me to index into a vector, so each processor
operates on a different element

v[me] = (v[me - 1] + v[me + 1])/2.0;
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So what does this code do?

int me, n;

me = get_proc();

if (me > 512) {

n = 1;

}

else {

n = -1;

}
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Instinctively you think it sets n in processors above 512 to 1 and
in the other processors n is set to -1

And this is what it does do

But a SIMD machine executes the same code in all processors,
so how can it execute the n = 1 assignment on some and the
n = -1 assignment on others?
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It doesn’t: at any point in time each processor is executing the
current instruction

or doing nothing at all

Processors can be inhibited, meaning not participating in the
current instruction

There is a per-processor inhibit flag to say whether this
processor is on or off

This is how we get different code paths on different processors
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We must modify our description of SIMD machines:

Each processor either executes the same instruction
as the others; or does nothing at all
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Returning to the code

if (me > 512) {

n = 1;

}

else {

n = -1;

}

This is executed as follows:

• All processors execute the test in the if

• In those processors for which the test fails, the inhibit flag
is set
• All processors move to the n = 1; the inhibited processors

do nothing while the others execute the assignment
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• All processors move to the else; all inhibit flags are
inverted
• All processors move to the n = -1; the inhibited

processors do nothing while the others execute the
assignment
• All inhibit flags are cleared
• All processors move on to after the if

Both branches of an if always taken by all processors!
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Overlay
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The time taken for an if is the sum of the times of both
branches

Quite different from sequential code

Reality is a little more complicated: think about nested ifs

There is actually a stack of inhibit flags!

Exercise Think this through for yourself!
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This seems like poor use of our processors if lots of them are
inhibited

True, so SIMD code should be written to minimise conditional
branches

But with thousands of CPUs, processing power is cheap, so
inhibiting some of them is not as bad as it seems, as long as it
is not overdone

if (me > 512) foo();

else bar();

is not good code: all of foo must be executed before bar can
start, so there is a large amount of inhibition
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Inhibition applies to all conditional code, like loops:

int i, n;

...

for (i = 0; i < n; i++) {

...

}

All processors start the loop

As i increases, some processors pass their exit test and are
inhibited; other processors continue executing; all processors
continue looping

Note no processor starts executing after the loop until all
processors have exited
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Loops must wait until all processors have completed: they take
time the maximum of the individual processors

SIMD loops are most efficient when all the loops are of the
same size

Similarly for all conditional constructs: if there is a choice all
processors will take all the choices, but some are appropriately
inhibited
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Connection Machines had a lightbulb per processor: initially
they set it so the light was on when the processor was active

After a while they fixed it so the light was on when the
processor was inhibited. . .

We shall return to SIMD programming with CUDA, later, when
we talk about parallel languages



End of Architectures

We have seen a variety of machine architectures, but primarily
people use:

• shared memory
• distributed memory
• SIMD

Quite often, all at once!

It is time to move from the machines to the code running on
them



Parallel Algorithms

We now turn to parallel algorithms

We shall approach them in two ways

• general principles
• specific examples

The first will look at a few general techniques and some classic
problems in parallelism

The second will be a couple of specific algorithms, such as a
parallel sort
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Divide and Conquer

Perhaps the simplest way to parallelise a problem is divide and
conquer

• subdivide the problem into smaller parts
• process the parts in parallel
• merge the results back together

Of course, this only applies if you have a problem that you can
subdivide!

And it works best if the parts are independent of each other:
less communication
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Divide and Conquer

For example, summing n values becomes

• subdivide the values into smaller chunks, sending the
chunks to separate processors
• each processor sums its chunk (process in parallel)
• return the results to the main processor and add the values

together (merge)
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Divide and Conquer

Question: how big should the chunks be?

Too small and we spend all our time in communication
overhead; plus the merge step gets bigger

Too large, thus fewer chunks, and we might not get the
parallelism we want
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Granularity

This is the question of granularity, or “chunk size”

A big problem in programming parallelism is deciding on the
choice of granularity of a sub-problem, for exactly the reasons
given above

Computing a single sum is a small grain; while averaging a row
of a large matrix is a big grain

The former you might not want to parallelise; the latter you
would
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Granularity

Grain size: the size of a chunk

You will see “small grain” and “large grain”; alternatively “fine
grain” and “coarse grain”

Granularity: the ability of a problem (data or computation) to be
divided into fine or only coarse grains

Some programs may only admit a coarse granularity

Some may admit a fine grain, but should we split it up into small
grains?
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Granularity

Fine: more parallelism, more communications

Coarse: less parallelism, less communications
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Granularity

It’s the grey area in the middle that is the issue: how large
should a grain be before we consider running it in parallel?

The answer: it depends

On everything, but particularly the ratio of computation time to
communications speed on the particular hardware we have
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Granularity

For fast communications (shared memory, perhaps) we would
chop our problem up into relatively small grains

For slow communications (distributed memory, perhaps) the
sub-problems need to be larger before we benefit from
parallelising

Often, the best way of working it out is just to try some test
programs and measure the result
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Granularity

An example: adding together two large vectors, maybe on
shared memory, maybe on distributed memory

Proc 2

Proc 1

Proc 3

Proc 4

Proc 5

Proc 6

Proc 7

Proc 8

Proc 0

+ =

Adding vectors

The simple fine grain allocation of one add per processor might
not be the best if communications costs dictate otherwise
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Granularity

For example, if the time it takes to get the data to the individual
processors is large we would want to reduce the data
movement

And in current memory architectures, it could take roughly the
same amount of time to move one byte as it takes to move 10
or 100 or 1000 bytes

Time = fixed overhead in setting up the transfer +
variable overhead in doing the transfer
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Granularity

Thus: if we need to move data, move it in large chunks

So, typically, we would have each processor would take a
selection of elements and add them sequentially

Larger grains of computation
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Granularity

+ =

Proc 2

Proc 1

Proc 0

x

x

Adding contiguous blocks

+ =

Proc 2

Proc 1

Proc 0

x

x

Strided data

They might be in contiguous chunks or spread somehow
across the vectors, depending on the memory architecture

For example, CPUs like blocked data (0,1,2,3) (4,5,6,7) . . . ,
while GPUs like strided data (0,4,8,12) (1,5,9,13) . . .
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Divide and Conquer

The size of the grain we need will dictate the number of chunks
we chop the problem into

How many sub-problems should we have on each core?

It is sometimes recommended that you have a “few”
sub-problems per processor

This allows you to overlap communications with computation

While a sub-problem is waiting for some data, the processor
can continue computing on another sub-problem
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Divide and Conquer

How many is “a few”?

It depends

GPUs like to have very many many sub-problems per cores: as
graphics problems need to push a lot of data around the
processors would need to hang around doing nothing while
waiting for data a lot: unless they have lots of other
sub-problems to work on
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Divide and Conquer

Back to divide and conquer of adding numbers: isn’t the merge
step “add the values together” just another instance of the
original question?

Yes, so a lot of divide and conquer methods are deeply
recursive (not all, though)
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Divide and Conquer

This summation problem is usually regarded as

• if the number of values is small then
• add them directly, sequentially
• return the sum
• else divide them into two chunks
• recursively sum the parts in parallel
• add the two results
• return the sum
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Divide and Conquer

1 2 3 4 5 6 70

1 5 9 13

6 22

28

step 1
4 procs

step 2
2 procs

step 3
1 proc

Add pairs

1 2 3 4 5 6 70

1 5 9 13

6 22

28

step 1
4 procs

step 2
2 procs

step 3
1 proc

Add pairs of sums

1 2 3 4 5 6 70

1 5 9 13

6 22

28

step 1
4 procs

step 2
2 procs

step 3
1 proc

Add final pair
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Divide and Conquer

We can compute the speedup and efficiency of this. We ignore
communications overhead, so essentially we are using a PRAM
model

Time on a sequential processor: 7

Time on this parallel system: 3

Speedup = 7/3 = 2.33

Efficiency, using 4 processors: 2.33/4 = 58%

Note we are only using all the processors in the first step:
thereafter there is increasing amounts of idle hardware
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Divide and Conquer

Divide and conquer is a good approach as long as you use it
carefully

It is natural and easy to understand

It is fairly easy to program

It scales well to very large problems

But not all problems break up arbitrarily like this

And merging the parts can be as hard as the original problem
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Divide and Conquer

It is a good technique to use in sequential systems, too

Recall merge sort (divide and conquer) is much better than
bubble sort

Bubble sort isn’t parallelisable in any meaningful way (while still
remaining essentially a bubble sort)

The Fast Fourier Transform is a prime example of a good
sequential application of divide and conquer



Parallel Algorithms
Divide and Conquer

Of course splitting up isn’t always the best option when
you have a big problem. Counselling often works.
Anonymous. CM30225 exam, January 2011
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Provider/Consumer

Terminology: we shall describe a method that previously was
called “master/slave”: if you need to look it up, you will find it
under this name

Until a generally agreed replacement terminology is decided,
we shall be calling it “provider/consumer”
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Provider/Consumer

Divide and conquer is a way of arranging the problem. We now
look at a way of arranging the control of the processing

Provider/consumer is a technique where there is a single main
thread that determines what many consumer threads do

For example, to do a large matrix multiplication, the main thread
could get many consumer threads to do sub-parts of the
operation

When the consumers are done the main thread can continue
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Provider/Consumer

Provider/consumer aligns naturally with divide and conquer, but
usually not in a recursive way: in most uses the consumers
don’t use sub-consumers

Note: these ideas are not mutually exclusive, but they tend to
overlap somewhat
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Provider/Consumer

Provider/consumer is also related to the server farm, where a
(large) collection of machines waits for problems to be sent to
them

For example, to do a search Google might send out sub-parts
of the search to a collection of machines, and then collate the
results

In any case, in provider/consumer there is an asymmetry of
control: one thread controlling several others
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Manager/Worker

Provider/consumer is superficially quite similar to
manager/worker, also called bag of tasks

In this, there is a global set of problems to process held by the
manager and the workers request a problem from the manager
as they need

A different control than provider/consumer

This allows easy load balancing on the workers
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Load Balancing

Load balancing is one thing to do to approach a good efficiency

For example, if we have two big (time consuming) problems
and two small ones, and two processors it makes sense to give
each processor one big and one small

If we give one processor both big problems and the other both
the little ones it is clear our speedup and efficiency will both be
lower as the second processor will soon be idling while we wait
for the first to finish
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Load Balancing

Task1

Task3 Task4

Task2

Task3

Task4

time

time

Proc1

Proc2

Proc1

Proc2

balanced

unbalanced

idle
Task1

Task2

Balanced and unbalanced computations
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Load Balancing

Load balancing tries to spread out the workload in a sensible
fashion

It requires us to have some idea of how big each sub-problem
is, namely a good estimate of their granularity

Theory tells us that this is impossible in general, but for the
most part in practice we can make a decent guess

Many large problems are quite regular in structure and as so
fairly amenable to this kind of analysis, but there are many
irregular problems that are not so easy
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Load Balancing

And even if we have a good idea of the size of each task,
finding an even balance can be difficult (the multiprocessor
scheduling problem is NP-hard)

Note that load balancing applies to more than just CPU cycles:
there’s memory, network bandwidth and any other limited
resource

And these play off against each other: it may be worthwhile to
put two sub-problems on the same processor if they need to
swap data and this will reduce communications overheads

Load balancing is quite similar to process scheduling in
operating systems: but now we might be working with large
distributed systems
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Manager/Worker

The manager/worker model is good because it is somewhat
self-balancing on average

A worker that happens to get a small task will soon be back for
another task

Provider/consumer might have to take some care over which
tasks it supplies to where

Though this is not a problem if all sub-tasks are the same size.
Provider/consumer is good for this case and might be simpler
to implement than manager/worker
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Thread Pools

A way of implementing manager/worker is to use thread pools

We have a pool of threads that take tasks from one or more
managers

After each task, a thread goes back to the manager for a new
task

We mitigate the overhead of thread creation/deletion

The thread pool can be managed within the program, or
system-wide by the OS
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Thread Pools

If the pool is managed by the operating system it can have a
global view of how the entire system’s resources are being used

Threads can be passed to any program, again reducing the
overall overheads

And the OS can increase or decrease the number of threads
according to how the whole system is loaded

This requires OS support, of course: think of the issues of
access to the program’s address space by each thread
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Thread Pools: GCD

This is the idea of Apple’s “solution” to parallelism: Grand
Central Dispatch (GCD)

Rather than programs creating their own threads, e.g., using
pthreads, they use (and re-use) the OS’s threads from a global
thread pool

A program gets access to a pool thread by putting a task, e.g.,
a function call, on a queue

The worker threads pick tasks off the queues and execute them

Parallelism is obtained by having lots of worker threads taking
tasks
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Thread Pools: GCD

So GCD gets the automatic load balancing of manager/worker

GCD can also provide mutual exclusion

By creating and using a special queue called a serial queue a
program indicates it wants just one thread to service this new
queue

As only one thread executes tasks from this queue there can be
no issues of interference between threads on that queue
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Thread Pools: GCD

So, roughly speaking, code like

fblock = make_lock();

get_lock(fblock); get_lock(fblock);

foo(); bar();

free_lock(fblock); free_lock(fblock);

becomes

fbqueue = make serial queue();

enqueue(foo, fbqueue); enqueue(bar, fbqueue);
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Thread Pools: GCD

There is no loss of parallelism by using a single thread to
process the queue in this case, as the critical region has to be
serialised anyway

Though you do need to be careful about making the function
called as small as possible, for the usual reasons

Just as each critical resource needs its own lock, in GCD each
critical resource needs its own serial queue

If a resource would need two locks, then you need two queues
and put a function on the first queue that itself puts another
function on the second queue that actually executes the
required critical region

Somewhat fiddly
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Thread Pools: GCD

Rather than placing functions in queues, Apple’s
implementation makes extensive use of closures, a feature they
have added to their version of C

They call them blocks, but they are similar to lambdas in other
languages

Of course, closures were imported from the functional
programming style: as long as we have referential transparency
the individual tasks can run completely independently
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Thread Pools: GCD

Apple’s claim is that queues are cheap to create and use, while
threads and mutexes are expensive

They are less effusive on costs like mutual exclusion on the
queue itself; costs of the OS deciding on which thread services
which queue; costs of the virtual address mapping of the
threads as they get assigned to processes; cost of creation and
manipulation of closures; and so on

We are still waiting to see if the GCD paradigm is easy to use in
real programs or not!
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Thread Pools

While GCD uses thread pools at the OS level, the approach of
a program implementing its own pool is quite common

Again, and this is true for all these concurrency paradigms, this
only works well if your problem happens to fit well into the pool
or manager/worker patterns

One of the many issues encountered when designing parallel
programs is choosing the right parallelism pattern
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Thread Pools

Exercise There is a Linux library libdispatch that
implements (per process) GCD. Write some programs using it

Disadvantages include that it is managed by Apple. No
more needs to be said.
Anon, Jan 2023 CM30225 exam



Parallel Algorithms
Fork and Join

The next general structuring method to look at is fork and join

We have seen this before, as it is just the superstep

Superstep

Of course, we would like to make the sequential parts between
the forks as small as possible



Parallel Algorithms
Fork and Join

This is quite popular, as many problems decompose this way

For example, multiply two matrices together then add in a third
matrix

The processing forks to multiply the matrices using parallel
sub-tasks, then joins after that

We could use barriers between the two phases
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Fork and Join

Take care not to confuse the structure of fork and join with the
creation and joining of threads

“Fork and join” describes the concurrency in the execution, not
the mechanism for execution

We might want to do the sub-tasks provider/consumer, or
manager/worker or thread pool or whatever

It is very unlikely we would want to use pthread create and
pthread join every time
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Pipelines/Systolic

Another structuring method we have seen before is the
pipeline, also called systolic array

Pipeline

Input data is transformed by several separate stages by several
separate processors

A well-balanced pipeline (eventually) gives perfect speedup and
efficiency
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MapReduce

Finally, for now, we look at another concept imported from the
functional style: MapReduce

This is a combination of a map and a reduce, and is a kind of
divide and conquer

A map takes a function and a structure (a list or vector or tree
or whatever) of data, and applies that function to each element
in the structure

As long as there is no interference between the items of data,
this is trivially parallelisable: stick different items of data on
different processors and execute the function on each
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MapReduce

The reduce step then gathers together all the sub-results and
merges them together to produce the required answer

Depending on what kind of reduction we require, this can be
extensively parallelised, too

E.g., the merge in a parallel sum being done in a tree-like way

E.g., the merge of URLs that result from a Web search can be
done similarly, perhaps a sort in order of relevance

Other reductions might be less or more parallelisable
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MapReduce

For example, given a vector of numbers compute the sum of
the squares of the values

Map: do the squares in parallel

Reduce: add them together in parallel
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MapReduce

Another example: Web search. The data is distributed in
chunks across many machines

Map: a machine searches its own chunk

Reduce: merging and sorting the partial results

MapReduce is much used by Google for their various services,
not just searching
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MapReduce

This clearly scales well to huge systems!

This is helped a lot helped by the source data being stationary
and sending the map function to the machine that hosts the
data: a reversal of the way we normally think about things

MapReduce also copes well with less than 100% reliability of
the hardware
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Aside: Reliability

A quick word on reliability: modern machines are pretty reliable
and we are not used to them breaking down too often

Huge clusters are a different proposition entirely

When you have 100s of thousands of machines in your system,
you must plan for one to break down in the middle of your
computation!

So another issue large systems and the algorithms that run on
them have to contend with is machines failing
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For example, you might want to run the same sub-task on more
than one processor for reliability: if one breaks you’ll still get the
result

At one point Hector, a UK academic cluster, was having a
failure rate of one node per day
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We now turn to look at a few classical problems that are used to
illustrate the issues that arise in designing parallel programs

The first is readers/writers, which looks at synchronisation in
the shared use of data, in, for example, a database

Some processes may want to simply read data, a reader

Others might want to read and then update data, a writer

To ensure consistency in the data, a writer must have exclusive
access to the database

(A simplification of reality, if you know anything about
databases)
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When there is no writer using the database, any number of
readers can access it simultaneously

Note, as a consequence of exclusive access, a writer cannot
access the database while there is any reader using it

One solution is to use simple primitives
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int readers = 0;

rlock = make_lock(); // protect readers

wsem = make_semaphore(1);// sync writers

void reader() void writer()

{ {

lock(rlock); wait(wsem);

readers++; ... write ...

if (readers == 1) wait(wsem); signal(wsem);

unlock(rlock); }

... read ...

lock(rlock);

readers--;

if (readers == 0) signal(wsem);

unlock(rlock);

}
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The rlock is to protect the count of the number of readers

The wsem synchronises the readers and writers: a writer must
wait until all readers have left, and a reader must wait until a
writer has left

if (readers == 1) wait(wsem); the first reader in sets the
write semaphore

if (readers == 0) signal(wsem); the last reader out
releases the semaphore

This works, but has a problem



Parallel Algorithms
Readers/Writers

The problem is that this code is unfair in the way it treats
readers and writers

A writer can be excluded for an arbitrarily long time while
readers come and go

• reader 1 arrives and sets the wsem

• a writer arrives; it waits on wsem

• reader 2 arrives; it can continue
• reader 1 leaves
• reader 3 arrives; it can continue
• reader 2 leaves
• and so on
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This is called readers’ preference

The continuing stream of readers conspire to keep out the
writer: the readers never signal the wsem

With low probability, but it happens

This is starvation of the writer
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We might try to fix the writer starvation by having a writer
pending count, and have readers wait if there is a writer (or
some suitable number of writers) waiting

Exercise Do this

But now we have a writers’ preference and readers can be
starved
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Making this fair for both readers and writers is harder than you
think

Though having a readers’ preference is not as bad as you
might think, as typical code has more reads than writes

Exercise Go and read up on the many suggested solutions to
readers/writers

Exercise Read about the POSIX pthread rwlock

Exercise Read about read-copy-update (RCU) and its choice
of compromises

Exercise Think about how you might use GCD queues
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The next classical problem looks at how two or more processes
can communicate: passing data between processes

For example, how a manager might feed data to a worker

Producer Consumer

Producer/Consumer

If the producer sends directly to the consumer, this would
require a synchronisation between them for every data item

And it would require the consumer to process data at the same
rate as the producer produces it (as in a pipeline)

Exercise Compare with MPI
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So, typically, there is a buffer between them

Producer Consumerbuffer

Buffered Producer/Consumer

This is just some area of memory in a shared memory system;
or a message queue for a distributed memory system
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The advantage is that we can decouple the producer and
consumer

• each can work at their own rate, until the buffer fills or
empties
• there is less synchronisation, thus less waiting around
• the producer and consumer are now working

asynchronously : not synchronising on every message
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When the producer produces data, it writes it into the next free
place in the buffer

Unless the buffer is full, when the producer must wait until a
place becomes free by the consumer reading some data

Symmetrically, when the consumer want to consume data, it
reads it from the next position in the buffer

Unless the buffer is empty, when the consumer must wait until
some data arrives by the producer writing it

So there is synchronisation, but only when necessary, dictated
by the size of the buffer

We need to see how to manage this synchronisation
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For example, a buffer of size 1, using two semaphores, called
empty and full

empty = make_semaphore(1);

full = make_semaphore(0);

producer() { consumer() {

produce data wait(full);

wait(empty); take from buffer

insert in buffer signal(empty);

signal(full); consume data

} }
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A simple extension to a buffer of size n is to use counting
semaphores data and free with free initialised to n

free = make_counting_semaphore(n);

data = make_counting_semaphore(0);

producer() { consumer() {

produce data wait(data);

wait(free); remove from buffer

append to buffer signal(free);

signal(data); consume data

} }
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But this works only if appending to and reading from the buffer
are independent operations

In this code as written, the producer and consumer might be
acting simultaneously on the buffer: we need to make sure the
update does not have a data race

So, for example, might want a lock on the buffer, or make sure
the buffer can otherwise safely support a simultaneous read
and write (e.g., for a hash table this might be difficult)
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And things get more interesting when there is more than more
producer, or more than one consumer

buffer

Producers Consumers

Multiple Produces/Consumers
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Now concurrent access to the buffer is really a problem

We might use a lock to do this

free = make semaphore(1);

data = make semaphore(0);

buffy = make lock();

producer() { consumer() {

produce data wait(data);

wait(free); get lock(buffy);

get lock(buffy); take from buffer

insert in buffer free lock(buffy)

free lock(buffy); signal(free);

signal(data); consume data

} }
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Exercise Prove that this cannot deadlock

Using one lock means that we cannot insert into the buffer at
the same time as reading from it

This is often an unnecessary restriction, e.g., the buffer is an
area of memory where we can read one element at the same
time as writing a different one

Again, this might not be possible if the buffer was some more
sophisticated kind of datastructure
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So, often we have two locks, one for the insert position and one
for the remove position

And we have to be careful when they coincide, e.g., when the
buffer is full or empty
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Implementations of buffers tend to be either

• linked lists (unbounded size)
• fixed arrays, used circularly

In any case, the buffers are usually actually queues, namely
first in first out
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More advanced use of queues is possible

If you have just one producer, you can implement a lockless
insert into the queue: namely the insert end does not need a
lock (or other synchronisation mechanism)

The “gap” between testing for a space in the buffer and
inserting is not a problem as no-one else is inserting data

You still have to think carefully about the interaction of this with
the removal of data
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Symmetrically, if there is just one consumer, it is possible to
have a lockless read

These require extremely careful programming, but can be
useful in reducing overheads

Consequently, it is possible to implement a single
producer/single consumer entirely lock-free

Exercise Find out how to do this (it involves memory barriers!)
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Another old and famous problem: the Dining Philosophers

Often used to illustrate problems of resource contention in
operating systems, it can be used to help understand problems
in concurrency, too
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Dining Philosophers

We have five philosophers wanting to eat spaghetti, but there
are only five chopsticks to go round
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The life of a philosopher is

• think
• sit
• take chopsticks
• eat
• drop chopsticks
• leave
• repeat
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A philosopher sits at any free position, but can only use the two
neighbouring chopsticks

They require two chopsticks to be able to eat!

If a chopstick is already in use, the philosopher must wait until it
is free
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This problem shows

• mutual exclusion of the chopsticks
• deadlock if all the philosophers sit down simultaneously

and grab the left chopstick: they will all then have to wait
on their right chopstick
• starvation, as four of the philosophers might conspire to

keep out the fifth
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Mutual exclusion of the chopsticks is easily provided by having
a mutex for each chopstick

lock chopstick[5];

Then philosopher i grabbing and dropping the chopsticks is

lock(chopstick[i]);

lock(chopstick[(i+1)%5]);

eat();

unlock(chopstick[(i+1)%5]);

unlock(chopstick[i]);
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But, as we know, this can deadlock if all philosophers grab
(say) the left chopstick simultaneously

Simply alternating left-then-right grab with right-then-left grab
won’t fix it; neither will picking a random chopstick first

The classical solution is to have a counting semaphore,
initialised to 4, to limit the number of simultaneously sitting
philosophers
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lock chopstick[5];

place = make_counting_semaphore(4);

...

philosopher(int i) {

while (1) {

think();

wait(place);

lock(chopstick[i]);

lock(chopstick[(i+1)%5]);

eat();

unlock(chopstick[(i+1)%5]);

unlock(chopstick[i]);}

signal(place);

}

}
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Exercise Prove this cannot deadlock

Exercise Think about fixing starvation

Exercise Solve the Dining Philosophers using monitors

Exercise Solve the Dining Philosophers using GCD
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We now turn to some concrete examples of parallel algorithms,
beginning with sorting

Clearly, a merge sort is amenable to divide and conquer

• divide data into two equal chunks
• recursively merge sort each half in parallel
• merge the two sorted lists together
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For example, n = 8. The division is trivial, so we concentrate on
the merge:

t p
3 1 4 1 5 9 2 6
1 3 1 4 5 9 2 6 2 4
1 1 3 4 2 5 6 9 4 2
1 1 2 3 4 5 6 9 8 1

Total: 14

t is the time to merge sort that line; p the number of processors
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It is easy to calculate the time this takes on n values (PRAM:
assume we have enough processors and ignore
communications costs)

• The last merge takes time n
• The step before takes time n/2 (twice, in parallel)
• The step before takes time n/4 (four times, in parallel)
• etc.

Total time is T (n) = n + n/2 + n/4 + · · ·+ 2 = 2n − 2 = O(n)
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The sequential merge sort takes time O(n log n), giving a
speedup of

S = O(n log n/n) = O(log n)

using O(n) processors (n/2 in this case)

This increases with n, but not very quickly, and is a lot smaller
than n

It uses O(n) processors, for an efficiency of

E = O(log n/n)

The efficiency drops to 0 as n gets large
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If we have just p processors, this becomes

Tp(n) = O
(

n +
n
p
log

n
p

)
as we have sequential merge sorts of p chunks of size n/p,
plus (n/p)O(p) = O(n) steps to merge them in parallel

We get
Sp(n) ≈ p
Ep(n) ≈ 1

for large n and fixed p

Exercise Work this example through for yourself
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So: for a fixed number of processors we can get good a
speedup, but if we let the number of processors get large our
relative speedup gets quite poor

Seems counterintuitive until you think about it, but it means we
have to have lots of data relative to the number of processors to
get a good speedup

Alternatively: if we have a lot of processors, most of them are
going to be idle most of the time: we only use all of them in the
first step; and even fewer in subsequent steps

Exercise Think about this result in the context of Amdahl and
Gustafson
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The most famous sequential sort (after bubble) is quicksort

Similar to mergesort, in that it is a divide and conquer method,
but different in how it divides

• pick a value, the pivot, from the data
• partition the data into two chunks: values bigger than the

pivot; values less than the pivot
• recursively quicksort the two chunks
• return the sorted lower chunk; the pivot; the sorted higher

chunk
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The partition phase is a bit fiddly to parallelise, but the recursive
sorts are clearly parallelisable

It works well with manager/worker: as each sub-partition is
created it becomes a new task

Also, the tasks are entirely independent with no
communications between them once created

Though we do need to join the sorted partitions back together
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Parallel quicksort is very similar in time complexity to
mergesort: it takes time O(n) with O(n) processors in the
average case

And time O(n + (n/p) log(n/p)) with p processors

As usual, quicksort relies on decent pivots: this translates
directly to the need to get good load balancing of the sub-tasks
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Heapsort: another O(n log n) (sequential) sort, is valued as it
has very stable behaviour: no bad cases

But there doesn’t seem to be a good way of parallelising it as
the swaps in the heap creations and destructions need to pass
in unpredictable ways through the entire dataset
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Bucket sort parallelises well: this splits the data into several
buckets, then recursively sorts the buckets

Example. Sorting CDs. Have one bucket per letter of the
alphabet. It is quick to put CDs in the correct buckets

Clearly, an extension of the merge sort, it has very similar
properties
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Parallel sorting algorithms exist that take parallel time O(log n),
but require O(n2/ log n) processors: very inefficient

Other sorts exist that take time O(log n) time and O(n)
processors: sounds better?

Some of these you need to be sorting upwards of 1022 items to
be faster than simpler sorts with apparently worse complexities,
like the bitonic sort, with time O(log2 n)
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The bitonic sort, a divide and conquer method somewhat
related to merge sort and shell sort, takes time O(log2 n) on
O(n) processors

It takes O(n log2 n) sequentially, so having a speedup of O(n)

This sounds good, until you realise this is a parallelisation of a
slightly sub-optimal sequential sort

Comparing against a O(n log n) fast sort, we see bitonic has
speedup O(n/ log n); still not too bad

But the important thing is that it is practical for realistic sizes
of n

Exercise Go and read up on bitonic sort
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And there are many other sorts

The literature for parallel sorts is huge, as it is a problem that is
easy to understand, but hard to solve

Particularly when you start to factor communications costs into
your time complexities
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Exercise It has been claimed that MapReduce can sort “a
petabyte of data in a few hours”. Find out about how it does this

Exercise Related to sorting is the problem of finding the
maximum value in a dataset. Discuss how this might be
parallelised and its time complexity

Exercise Then find the middle value in a dataset



Parallel Algorithms
Searching

The other classical problem is searching

This is very datastructure dependent, but can parallelise very
well

For example, if the data are spread over many machines,
searching for an item is as simple as getting each machine to
search its chunk

When any machine finds the item, they can all stop

Or, if multiple results are wanted, there can be a reduce step
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If the data is distributed sensibly over p processors, the chunks
will be of size n/p and take n/p time to search for a naı̈ve linear
search

Thus parallel searching can give perfect speedup n/(n/p) = p

But linear search is far from a good sequential search

Again, we get a good speedup since we start from a poor place
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Searching in a tree takes time O(log n), so if we can perfectly
distribute sub-trees across p processors, we can search them
in parallel time O(log(n/p)) for a speedup O(log n/ log(n/p))

Sounds good? Well, consider the speedup for large n:

O(log n/ log(n/p)) = O(log n/(log n − log p))
= O(1/(1− log p/ log n))
→ 1 as n→∞

Here the problem is that tree search is so good that the benefit
you get from spreading it across p processors is small, and
gets smaller as the dataset increases in size
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And these algorithms rely on everything being nice and uniform
and randomly accessible and ignoring communications costs

For example, if the searches cluster around the data on a single
machine, we could write a sequential search that takes
advantage of that fact, and our parallel search would not be
much faster
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Also, the datastructure must be able to be evenly spread

Lists and trees, that have restrictions on the order you access
their elements, are harder to access in this random manner

Of course, Google does this in a big way, using MapReduce,
showing that searching petabytes of data can be done in
fractions of a second

Again, we find that parallelism allows us to go bigger, rather
than faster
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Next: parallel reduction

Reduction has a natural parallelisation using a tree

1 2 3 4 5 6 70

1 5 9 13

6 22

28
+

+ +

+ + + +

Tree reduction sum

Reducing a list of values using summation (read bottom up)

3 6250 7 14

4 5 7 6

5 7

7

Tree reduction maximum

Reducing a list of values using maximum
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This takes O(log n) steps to reduce n values, using O(n)
processors

Sequential time: n − 1 operations, giving speedup

S = O(n/ log n) using O(n) processors

This is not much less than n, as log n grows only slowly with n
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Efficiency
E = O(1/ log n)

which slowly drops as n increases



Parallel Algorithms
Reduction

For p processors, divide the data into p chunks of size n/p

Time to reduce a chunk (sequential): O(n/p)
Time to reduce the chunks: O(log p)

Total

O
(

n
p
+ log p

)
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Speedup
Sp =

n
n/p + log p

=
p

1 + (p log p)/n

which approaches p as n gets large

Likewise, the efficiency approaches 1 for large n

Similar to previous examples, if you allow yourself an indefinite
number of processors, the speedup will be greater, but at a
high cost, i.e., low efficiency

For a fixed number of processors, you get a fixed bound on the
speedup, but you will be using the hardware very efficiently as
the dataset get large
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There are a couple of issues, however

In real implementations we need to worry about the cost of data
movement between processors: reduction inherently needs to
move data around

Probably a small cost for a shared memory system, but it can
easily be much larger than the cost of the reduction operation if
you are not careful

So parallel reduction on, say, a distributed memory machine, is
only worthwhile for large datasets

Or a very costly reduction operation

This is grain size, again
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The other issue is about reduction in general, not just in
parallel. Reduction relies on the associativity of the reduction
operation

Reduce the list (1,2,3,4) using −

Do we mean
((1− 2)− 3)− 4 = −8

a left reduction

Or
1− (2− (3− 4)) = −2

a right reduction?
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And a tree reduction will give

− −

−

1 2 3 4

−1 −1

0

Tree Reduction

Or something else entirely depending on where the data ended
up in the tree
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The simple answer is not to do reductions using
non-associative operations, even sequentially

However, there are many useful reduction operations, including
+, ∗, max, min, left(a,b) = a and so on
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Reduction appears as an operation in many languages, e.g.,
JavaScript array.reduce(op) to reduce the array with the
op:
((array[0] op array[1]) op array[2]) op ...

Thus amenable to automatic parallelisation, if the operation is
associative and independent of the array (e.g., not if the op
updates the array)
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Closely related to reduction is the prefix scan: (1,2,3,4) with +
returns

(1,3,6,10)

So: (array[0], array[0] op array[1], array[0] op
array[1] op array[2], ...)

The partial reductions, usually left associated
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This can also be done in O(log n) steps (on n processors)

Even though it seems you need to compute 1 + 2 before
computing 1 + 2 + 3 before computing 1 + 2 + 3 + 4, thus
serialising the whole thing

But this is sequential thinking!

For example, you can compute 3 + 4 at the same time as 1 + 2;
and then (1 + 2) + 3 in parallel with (1 + 2) + (3 + 4)

We can proceed in a tree-like sequence of combination of pairs
of values
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1 2 3 4

3 7

10

1 5

1 3 5

pairs 1
apart

apart
pairs 2

Prefix Scan 1 apart

1 2 3 4

3 7

10

1 5

1 3

pairs 1
apart

apart
pairs 26

Prefix Scan 2 apart
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First step is to sum array[i] = array[i] + array[i-1] in
parallel

Then double the distances:
array[i] = array[i] + array[i-2]

Then double the distances:
array[i] = array[i] + array[i-4]

And so on, for log n steps on O(n) processors: this gives us all
the prefix sums, including the total reduction as the last element
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When limited to p processors we can produce a scan in time

O
(

n
p
+ log p

)

Scan has the same issues as reduce, namely data travel and
associativity
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Scan appears to give us more answers than reduce for the
same amount of work!

It’s not: for a start, reduce uses at most n/2 processors, while
scan uses up to n − 1
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But more importantly, reduce halves the number of active
processors in each step, while scan uses more processors
more of the time. It uses n− 2r active processors in step r , so it
ends with about n/2 active processors

They both complete in the same amount of time so they have
the same speedup, but scan is more efficient

Meaning scan uses more hardware more of the time (and
therefore takes more energy)

We can see that reduce has quite a lot of slack in parallel!
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Note that both scan and reduce work well on a SIMD
architecture

They work on distributed memory, too, but we have to watch the
cost of the messaging

MPI includes several scan operations including
MPI MAX, MPI MIN, MP SUM, MPI PROD, MPI LAND (logical
AND), MPI LOR (logical OR)
amongst others

Exercise Write a parallel prefix scan in OpenMP

Exercise In fact there is a better, work efficient, more
complicated algorithm that only needs n/2 processors. Look it
up
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The Fast Fourier Transform (FFT) is one of the basic algorithms
in CS, known by everybody who knows anything about CS

The Discrete Fourier Transform (DFT) takes a sequence of n
(complex) numbers and returns a sequence of n numbers

If the input numbers represent a signal, the DFT values
represent the constituent frequencies of that signal

yk =
n−1∑
j=0

xje−2πijk/n, for 0 ≤ k < n

The n values xi are input; the n values yi are output
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This has two obvious elements of parallelism:

• each yk can be computed independently, for a n-way
parallelism
• each summation can be done as a tree, for a log n-way

parallelism
• taking total time O(log n) on O(n2) processors

But, instead let us look at a sequential divide and conquer
version
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This sum can be computed as presented: summing n values for
each of n values yk , thus taking time O(n2)

However, if n is even, then we get a nice recursive presentation
by splitting the sum into evens and odds
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yk =
n−1∑
j=0

xje−2πijk/n

=

n/2−1∑
j=0

x2je−2πi(2j)k/n +

n/2−1∑
j=0

x2j+1e−2πi(2j+1)k/n

=

n/2−1∑
j=0

x2je−2πijk/(n/2) + e−2πik/n
n/2−1∑

j=0

x2j+1e−2πijk/(n/2)

Decomposition of Fourier Transform

This is just two half-size DFTs
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For n a power of 2 we can repeat recursively, leading to the
Fast Fourier Transform, a way to implement the DFT

In fact, the FFT is an unwinding of the recursion into an iteration
that runs slightly faster, but is harder to understand

The FFT takes sequential time O(n log n), which is a huge
improvement over O(n2); e.g., for n = 1,000,000, this is about
20,000,000 against 1,000,000,000,000

But, for our purposes, we can see this as a simple divide and
conquer, thus easily parallelisable
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The parallelisation of the FFT works in a way very similar to
what we have seen before and has complexity O(log n) on O(n)
processors, and O(log p + (n/p) log(n/p)) on p processors

As the FFT is such an important algorithm, much has been
written about it and its parallel variants, in particular matching it
to the various kinds of hardware (SIMD, pipeline, shared
memory, etc.)
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There are very many other parallel algorithms: just think of the
large literature on sequential algorithms that exists

We have just looked at a couple, but everything that you have
done in the past sequentially will probably have a parallel
counterpart

Some algorithms will map best to shared memory, some
distributed, some SIMD, and so on

Some will be sensitive to the topology of the architecture (full
connect, torus, etc.), others work well regardless

Still more will not work well in parallel at all

Exercise Look some up!
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We now look at a few topics in parallel computing

Each year this unit is given may cover different topics so don’t
be too worried if past exam papers ask questions on things that
were not covered this year



Hardware

We have seen that there are many kinds of parallelism

But there has been hardware support for parallelism for much
longer than you might think

Even in sequential CPUs!
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Bit level

Recall from the 1st Year Architecture unit about adders: adding
together two binary words

Serial Adders work one bit at a time, propagating the carry up
the words as they do

Simple hardware, simple to implement

Parallel Adders work on all the bits in parallel

More complex and expensive hardware, but faster

A simple example, but this illustrates how parallelism trades
complexity for speed
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Pipelines

Again from Architecture: instructions are executed faster by
using a pipeline

This is parallelism by overlapping the
fetch→decode→fetch arguments→execute→store result
cycle
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fetch→decode→args→exec→store→fetch→decode→args
→exec→store→fetch→decode→args→exec→store→fetch
→decode→args→exec→store. . .

becomes

fetch→decode→ args → exec → store
fetch →decode→ args → exec →store

fetch →decode→ args →exec→store
fetch →decode→args→exec→store

. . .

Again, more complexity for speed

It also shows how simple CPU clock speed is not a good
indicator of speed of processing

A pipelined CPU will produce results faster than a
non-pipelined CPU of the same clock speed



Hardware
Coprocessors

Early chips were too small to fit everything on them

So some operations were offloaded to a separate chip, a
coprocessor

At one point, a popular design was to put floating point
operations on a coprocessor and only have integer arithmetic
on the main processor chip

The coprocessor was specialised for floating point and could do
little else

This allowed a weak form of parallelism: ship an operation (say
a square root) off to the coprocessor, and while it is chewing on
that, the main processor can carry on with something else in
parallel



Hardware

Coprocessors

Floating point eventually migrated onto the main chip (using lots
of transistors!), but coprocessors are still hugely popular

Graphics cards (GPUs) are coprocessors, originally specialised
to pixel crunching

And now they are commonly used as general purpose GPUs
(GPGPU) and are turning out to be important in highly parallel
computation

We shall return to GPGPUs

Exercise Read about Tensor Processing Units (TPUs)



Hardware

Superscalar

To employ those extra transistors, engineers starting putting
multiple arithmetic units on the chip

For example, two add units

The processor can now do two adds at the same time

Simultaneous execution of whole instructions is called
superscalar

Pipelining is parallel execution of parts of the instruction cycle



Hardware

For example, the two adds in

x1 = y1 + z1;

x2 = y2 + z2;

can be done at the same time

However, the two adds in

x1 = y1 + z1;

x2 = x1 + z2;

cannot be done at the same time

The CPU needs to sort out the dependencies to determine if it
can do simultaneous multiple operations



Hardware
Out of Order

This can be improved with careful instruction scheduling by the
processor, to let it do out of order execution

For example, the code

x1 = y1 + z1;

a1 = x1*y1;

x2 = y2 + z2;

is equivalent in results to

x1 = y1 + z1;

x2 = y2 + z2;

a1 = x1*y1;

but on a CPU with two add units the latter can do the two adds
in parallel



Hardware
Out of Order

A processor that does out of order execution will scan the
instruction stream, analyse the upcoming operations and their
dependencies, and reorder them suitably

Implementing this in the hardware uses a lots of transistors,
and so keeps the engineers happy

Compiler writers can help somewhat by generating machine
code that is easier for the hardware to analyse

But, mostly, this is a hardware feature



Hardware
Out of Order

But we have already seen how out of order execution can break
parallel code if we are not careful



Hardware
Out of Order

Hard Exercise (come back to this later). Suppose we have
initial values x = 0 and y = 1. Two parallel threads on
hardware that does out of order execution:

Thread 1 Thread 2
y = 3; if (x == 1) {
x = 1; y = 2*y;

}

What are the possible final values of y?

Example taken from the Rust website; also see
https://en.wikipedia.org/wiki/Memory_ordering

https://en.wikipedia.org/wiki/Memory_ordering


Hardware

Hyperthreading

The next stage is to duplicate the state-bearing parts of the
processor, namely the program counter, the registers and other
related stuff

This allows two (generally two, sometimes more) simultaneous
threads (streams of instructions) to share the available
hardware

There will be some conflicts between the threads if they both try
to use a computational unit (say a division) when there is only
one unit of that type on the chip

In that case one thread will have to pause and wait



Hardware

The main argument for hyperthreading is that if one
hyperthread has to wait for something (e.g., a memory access)
the other can run and keep the core busy

The idea of having more threads of execution than hardware so
that there is always a thread ready to run becomes very
important later

Hyperthreading gives the illusion of a multicore system, but is
not truly multicore

The amount of repetition in the architecture will imply some
limits on how effective this is and how much parallelism can be
gained, as will the pattern of memory accesses by the code



Hardware

Some say that two hyperthreads are worth about 1.5 cores, due
to the amount of interference between the threads

Downsides are that the hyperthreads can fight over the core’s
cache memory

For some tasks hyperthreading can reduce overall performance

And there are security issues where information can leak (via
the cache) from one hyperthread to its pair

Most High Performance systems turn off hyperthreading (a
bigger share of the memory cache is more important than more
threads)



Hardware
SWAR

Next: the idea of SIMD/vector processing has been adopted in
a small way in the instruction sets of some processors

It arose from multimedia processing, graphics in particular

Some operations (e.g., computing pixel colours) are data
parallel

Now we can regard a 64 bit register as

• a 64 bit register
• two 32 bit registers
• four 16 bit registers
• eight 8 bit registers



Hardware
SWAR

An instruction is provided to (for example) add together eight 8
bit values in those registers in parallel

Another to add four 16 bit values in parallel, etc.

+ +

= =
or

SIMD Within A Word



Hardware
SWAR

This is SIMD within a register (SWAR)

We are treating the register as a (small) vector processor

This was found to be very effective for data parallel graphics
processing

Intel provide these instructions in their MMX (Multi Media
Extensions), SSE (Streaming SIMD Extensions), SSE2, SSE3,
SS4, AVX (Advanced Vector Extensions, 128 bit registers),
AVX2 (256 bit registers) extensions

Similarly others from other manufacturers (AMD, Arm, etc.)



Hardware
SWAR

Now, most code is written in a sequential fashion, e.g., looping
over 8 values rather than code to add 8 values simultaneously

In fact, few languages support SWAR operations directly, so
there has to be some mechanism for getting to SWAR from
conventional code

The process of converting sequential operations to SWAR is
called vectorisation



Hardware
SWAR

We need compiler support to generate these SWAR
instructions: it needs to spot that rather than generating eight
instructions to add eight 8-bit numbers, it should generate one
instruction to add them in SWAR

Compilers have always been far behind hardware: an
architecture might provide an eight-way multiply instruction, but
that is only useful if you can get a compiler to generate code to
use it

Or get the programmer to writer the assembler by hand

For a compiler spotting that a loop can be converted into SWAR
vector instructions is very hard



Hardware
SWAR

For example, the multiplies in the code

char x[20], y[20];

for (i = 0; i < 20; i++) {

y[i] = x[i]*x[i];

}

might be compiled as three (8 + 8 + 4) 8-way SWAR multiply
instructions

Plus a bunch of other stuff to get the values in and out of the
right places in the register



Hardware
SWAR

Making good compilers is harder than you think and has been a
major drag on the effective use of modern hardware

A lot of code to use these kinds of instructions still has to be
written by hand, in assembler



Hardware
SWAR

In procedural code, we tend to write loops: the compiler would
have to analyse it carefully to determine if SWAR would be
useful (e.g., no value depends on an earlier value in the loop)

In contrast, in the functional style we write code like “do this
operation on these data” (map), which is much easier to
analyse as the operation is explicitly separate from the iteration



Hardware
SWAR

Exercise Think about the code

char x[], y[];

for (i = 0; i < n; i++) {

y[i] = x[i]*x[i];

}

where the loop limit is variable

Exercise Then think about the functional version

y = x.map(square);



Hardware
VLIW

The transition of CPUs from complex instruction set computer
(CISC) to reduced instruction set computer (RISC)
architectures was based on advances in compiler technology

The idea was to move complexity out of the hardware and into
the software

Rather than using complicated instructions poorly, we use
simple instructions effectively: by streamlining the instruction
set we can run things faster

This is strongly reliant on the compiler being good enough to
understand and exploit the details of the RISC architecture

But this is easier than a compiler trying to make best use of a
complicated CISC architecture



Hardware
VLIW

The same idea was touted for the very long instruction word
(VLIW)

Design a processor with many repeated arithmetic units—lots
of add units, lots of multiply units and so on

Have instructions that are very long, e.g., 128 bits or more

The instructions are composites of the simple operations, e.g.,
two adds, a subtract and a multiply could be bundled together
in a single instruction



Hardware
VLIW

The compiler composes these instructions and makes sure
there are no nasty interactions between the sub-instructions,
e.g., none of the inputs to the sub-instructions are the outputs
of any others of the sub-instructions

The compiler does the hard work of sorting out interactions,
leaving the hardware to blast on at full speed without checking
or doing any reordering

The compiler is promising to the hardware that nothing bad is
going to happen if the hardware blindly executes the
instructions as given



Hardware
VLIW

Moreover, the chip uses less energy as it does not have the
silicon to do instruction dependency analysis and reordering
and the like

The analysis and reordering was done by the compiler

This appeared in the Bulldog compiler (early 1980s) and the
Multiflow computer (late 1980s)

It didn’t turn out to be terribly practical or popular

Compilers were not sufficiently clever to untangle enough
instruction dependencies to get good hardware utilisation



Hardware
VLIW

VLIW was briefly revived by Intel in their Itanium processor
(2001)

They called it Explicitly Parallel Instruction Computing (EPIC), a
limited form of VLIW

It, too has flopped

Possibly due to their classic x86 chips being too entrenched,
but also their compiler was never quite up to the job



Hardware
VLIW

It still pops up here and there: some AMD Radeon graphics
chips have a VLIW architecture, though their newer
architectures reverted to more traditional RISC

VLIW may well re-emerge in the future when compilers have
progressed further: though more likely it will be overtaken by
other kinds of hardware parallelism



Hardware
VLIW

Exercise Think about the

char x[], y[];

for (i = 0; i < n; i++) {

y[i] = x[i]*x[i];

}

example with VLIW



Hardware
Multicore

Next we have full replication of arithmetic units, control and
registers: true multicore

Two or more full CPUs on the same chip

Often regarded as the first emergence of hardware parallelism

But, as we have seen, it’s not



Hardware

Early multiprocessor machines were unicore chips side by side
on the same motherboard

Modern multicore processors, having cores on the same chip,
can share things like on-chip cache memory and other chip
infrastructure

Also there is faster inter-core data transfer: no need to go
off-chip. Off-chip transfers run at the bus speed, much slower
than the chip speed



Hardware
Multicore

Large machines tend to be multiple multicores: e.g., two
24-core chips on a motherboard; a total of 48 threads of
execution

Or 96 if 2-way hyperthreading is enabled

This is slightly asymmetric: some cores are a little “closer” to
each other than the others



Hardware
All of the above

These things are not mutually exclusive

A typical large installation these days is a CLUMP

• a cluster
• of multiple processors
• each having multiple cores
• which might have hyperthreads
• and SWAR instructions
• on a pipelined architecture
• with parallel instructions
• sometimes with a coprocessor or two on the side

It is very hard to make efficient use of all that!



More on Threads

We return to the idea of threads

POSIX threads is just one example of many different
approaches to threads

And just one example of the many different kinds of threads



TBB

We shall look briefly at Threading Building Blocks (TBB) as it
contains some interesting ideas

It is a standard C++ template library, needing no specific
compiler support

It provides things like concurrent containers and concurrent
operations as well as the usual atomics and synchronisations



TBB Concurrent Operations

#include <tbb/tbb.h>

#include <iostream>

using namespace tbb;

using namespace std;

void hi(int n) {

cout << "hello: " << n << endl;

}

int main() {

parallel_for<int>(0, 10, hi);

return 0;

}



TBB Concurrent Operations

Though you quickly realise you should have written

std::mutex m;

void hi(int n) {

m.lock();

cout << "hello: " << n << endl;

m.unlock();

}

But not a single pthread create in sight!



TBB Concurrent Containers

Containers are things like vectors, queues and hash tables

You have to take care over concurrent access to these as
pushing value to a stack at the same time as another thread is
popping a value is an easy route to races

Thus TBB provides safe datastructures that get the details right
(we hope!)



TBB Work Stealing

The interesting thing about TBB is that is uses work stealing to
manage parallelism

In something like a parallel for there are a lot of tasks to be
scheduled across the available threads

Each thread has a queue of tasks that are ready to be run
(actually a double ended queue, or deque)

When a new task is spawned it is pushed onto the end of the
spawning thread’s queue

(“Spawn” is the terminology for creating a new task)



TBB Work Stealing

When a thread completes a task it pops a task off the end of its
queue and runs that next

That is, the most recently created task for that thread

If its queue is empty, the thread steals a task off the start of
another thread’s queue and runs that

That is, the oldest created task for that thread

Thus keeping all threads busy as long as there are tasks to do



TBB Work Stealing

Note that pushing and popping a task off your own queue is a
relatively cheap operation, so the overhead is kept small for this
case, which you hope is the common case

In other words, when there is no opportunity for more
parallelism as every thread is already busy doing its own tasks,
the overhead is minimal

The overhead of stealing a task is greater, but this only happens
when a thread would otherwise be idle and has time to spare



TBB Work Stealing

So: if a thread has work to do it does its most recently created
task first, thus preserving locality of execution: the next task
executed is “nearest” to one just finished

And if a thread has nothing to do it takes the oldest task off
another thread, thus disrupting its locality as little as possible

Exercise It’s much more complicated than this, of course.
Read about the details

Exercise Work though how work stealing might execute the
parallel for example



TBB

Benefits of TBB:

• easy-to-write parallelism (for a good C++ programmer)
• is very flexible and extensible (e.g., parallel for works

for any type that you can iterate over)
• purely a library, so you can use a standard compiler
• and is easy to update with new versions of the library
• it provides sophisticated constructs like pipelines and

general graph parallelism
• contains a large number of features



TBB

Drawbacks:

• the code needs some reasonably advanced C++
constructs (e.g., functors) get the most benefit
• little checking on the correctness of your use of the

constructs: it provides mechanism but no analysis
• it is tied to C++
• and thus not easily interoperable with other languages
• contains a large number of features

Exercise Read about the large number of other features that
TBB provides, particularly ranges for load balancing



Cilk Plus

Cilk Plus also has a task-based view of computation (like TBB),
rather than thread based

This means the programmer thinks about what tasks need to
be done, and Cilk Plus thinks about the best way of assigning
those tasks to threads

It targets roughly the same area as OpenMP

And similar to OpenMP, the number of threads used and the
threading mechanisms are mostly hidden from the programmer



Cilk Plus

int fib (int n) {

if (n < 2) return n;

int x, y;

x = cilk_spawn fib(n-1);// fork

y = fib(n-2);

cilk_sync; // join

return x+y;

}

(from the Cilk Plus website)



Cilk Plus

• Cilk Plus has just three main keywords: cilk spawn,
cilk sync and cilk for

• So is much simpler than OpenMP
• And more lightweight to use
• And seemingly less flexible: but Cilk Plus provides other

mechanisms for more advanced control
• Ignoring the keywords leaves a valid equivalent sequential

C program

A cilk for indicates a parallelisable for loop

There is an implicit cilk sync at the exit of every function that
contains a spawn



Cilk Plus

Cilk Plus also employs work stealing of tasks, but in a more
subtle way than TBB

In the code
cilk spawn fun1();
fun2();
the current thread actually starts executing fun1()



Cilk Plus

In more detail:

• when the current thread reaches the cilk spawn it saves
the current continuation (i.e., the point in the code just
before the fun2()) on its continuation stack
• it then starts executing fun1()

• when done with that, it pops the continuation stack and
starts executing what it finds there: fun2() in this example



Cilk Plus

An idle other thread can steal a continuation and start
executing it

Thus leading to the initially surprising behaviour that fun2()
might get stolen, not fun1()

In contrast with TBB, where the current thread pushes fun1()
and so it is that that can be stolen

TBB implements child stealing;
Cilk Plus has continuation stealing



Cilk Plus

Manipulating continuations is why Cilk Plus needs compiler
support. Child stealing as implemented by TBB is
implementable in C++ directly as it is essentially just pushing
and popping functions on a queue

The difference is that continuation stealing has better memory
use patterns than the child stealing and so tends to give more
efficient parallelism

Exercise Child stealing can have unlimited memory use, while
continuation stealing does not. Read about this



Cilk Plus

Whatever the relative merits, OpenMP and Thread Building
Blocks have wide recognition while Cilk Plus is quite niche

In fact, Intel now has deprecated Cilk Plus in favour of their
TBB, which being a purely library-based mechanism is easier
to support, despite being potentially worse in runtime behaviour

Exercise Read about the many other parts of Cilk Plus, such
as vector sections

Exercise Work through how continuation stealing might
execute the parallel for example

Exercise Compare Cilk Plus, OpenMP, and TBB



Cilk Plus and OpenMP

Exercise Later versions of OpenMP supports tasks, which are
quite similar in use to Cilk Plus:

int fib(int n) {

if (n < 2) return n;

int x, y;

#pragma omp task shared(x)

x = fib(n-1);

y = fib(n-2);

#pragma omp taskwait

return x+y;

}

Read about tasks, and compare with Cilk Plus



Yet More Threads

We now give, as an alternative view to POSIX, a sketch of how
threads are natively supported in a few languages, though this
could be argued to be more properly in the “design of a
language” part of the unit

First, C++



C++ Threads

While C++ can use POSIX threads it has defined — as part of
the language specification — its own threads

Which are often implemented on top of POSIX threads, but are
more C++ in the way they are used

The C++ specification replicates the usual primitives, including
thread creation, mutexes, condition variables and so on, but
tidying things up a bit to make them more ergonomic and
C++-like

Described as “a restricted/simplified subset of POSIX
functionality”



C++ Threads
#include <iostream>

#include <thread>

#include <mutex>

#include <string>

std::mutex mut;

void show(const std::string msg, int *n) {

std::cout << msg << " ";

// create a lock guard object on the mutex; ownership of

// the guard is the lock

std::lock_guard<std::mutex> lock(mut);

*n += 1; // protected critical region

}

// lock guard deleted at end of scope by

// normal C++ destructor method; thus releasing lock



C++ Threads

int main() {

int m = 0;

std::thread thr1(show, "hello", &m);

std::thread thr2(show, "world", &m);

thr1.join();

thr2.join();

std::cout << "\nm = " << m << "\n";

return 0;

}



C++ Threads

Producing

hello world

m = 2

or

world hello

m = 2



C++ Threads

C++ threads, while mostly similar to POSIX, are closely tied
into the rest of the design of C++, thus certain behaviours are
better defined

For example, it is not clear how C++’s exception mechanism
interacts with POSIX threads, while C++ threads specify a
behaviour

And they are portable even if there is no (or poor) POSIX
support, e.g., Windows



C Threads

In a similar way, the C11 standard for C also has some
language support for threads, though it is optional and not
universally supported, e.g., not supported by MS at the moment

It defines types thrd t, mtx t, cnd t and so on

It is essentially pthreads with everything that might be
non-portable across all architectures removed

C++ threads are widely used, but C11 threads are not, even
though they are supported by gcc and clang

Perhaps ingrained use of pthreads, or lack of perception of
benefit of using C11 threads?

Exercise Read about threads.h and stdatomic.h

threads.h
stdatomic.h


Java Threads

Next: Java. It’s all based on objects, of course

There are two basic ways to create threads in Java:

• as an instance of a subclass of the Thread class
• by providing a method for the Runnable interface



Java Threads
public class Hello extends Thread {

public void run() {

System.out.println("Hello world!");

}

public static void main(String args[]) {

Hello t = new Hello();

t.start();

}

}

Your classes need to be subclasses of the Thread class

The initial function is the run method, which will be called when
we execute start inherited from Thread

A thread can be created, but won’t start running until we invoke
its start method: sometimes separating creation from
execution is useful



Java Threads

This way is somewhat constricting in use, as it requires you to
design your classes around the Thread class

So Java gives an alternative way by providing a Runnable
interface, which you can add to your existing classes



Java Threads

public class Hello implements Runnable {

...

public void run() {

System.out.println("Hello world!");

}

public static void main(String args[]) {

Thread t = new Thread(new Hello());

t.start();

}

}

Runnable requires a run method

The new instance of our class is passed to the Thread
constructor, which has a start method as before



Java Threads

There are join methods on Thread that wait for thread
completion: join() and join(long ms) and join(long ms,
int ns)

Simply returning from main waits for threads (actually:
non-daemon threads)

Explicitly calling System.exit does not wait



Java

Java also has higher-level support for parallelism in constructs
like parallel streams that run concurrently

These fall into the class of “sequential code using parallel
operations written by someone else”

Though they still have the problem of being non-trivial to use
correctly

Exercise Read about Akka, a Scala/Java framework for
concurrency based on actors



Python

And Python. . .

Python was designed without parallel support, and typical
implementations of the Python interpreter are strongly
not-parallel

Python supports concurrency, but not parallelism



Python

From the docs:

The Python interpreter is not fully thread-safe. In or-
der to support multi-threaded Python programs, there’s
a global lock, called the global interpreter lock or
GIL, that must be held by the current thread before it
can safely access Python objects. Without the lock,
even the simplest operations could cause problems
in a multi-threaded program: for example, when two
threads simultaneously increment the reference count
of the same object, the reference count could end up
being incremented only once instead of twice.



Python

So, practically speaking, doing anything in Python is
necessarily wrapped by a lock

You can get some benefit from using process-based parallelism
(import multiprocessing), where each process has its own
separate Python interpreter, but this is quite heavyweight

The best approach is to call parallel library code written in C, for
example



JavaScript

JavaScript is another language that has single threaded
interpreters

Exercise Read about how it uses Web Workers to provide
parallelism



Go

Go (Golang) has its own kind of threads

Here threads are called goroutines, and are very lightweight
(minimal creation overhead) and are managed by the Go
runtime

Note the management is by the Go runtime, not the OS

The Go runtime gets parallelism by scheduling the goroutines
across OS threads

Creating new goroutines is very easy — actually encouraged —
and you can create “1000s” of goroutines

And it is OK for them to be short lived



Go

Creating a new goroutine:

go fun(x+y, x-y)

evaluates the arguments and then creates a new asynchronous
goroutine running fun with the values of those arguments



Go

However:

• Go provides no particular protection against races; it does
provide mutexes and so on, but the programmer must
remember to use them (or avoid sharing mutable state)
• the runtime that manages the goroutines is quite complex,

so Go is less amenable to small or embedded systems
• Go is a garbage collected language, so has that complexity

in the runtime, too, e.g., having to stop all threads during a
GC

Exercise Find out about the current state of Go with regards to
GC and parallelism



Go

Go is a well-designed, popular language, but in terms of
parallelism is stuck in the mindset of taking a sequential
language and adding parallelism and hoping things will be OK

Parallelism is not an add-on!

All these languages (Go, C++, Java, C, etc.) provide
mechanism, but no (or insufficient) analysis for concurrency



Topics: Linda

Linda: an adaption of the thread pool/worker idea

Like these, it is task based, with threads choosing tasks and
executing them

However, now, the tasks have extra structure to guide the
choice

And the view of the system is flipped from thinking of it as a
thread pool to thinking of it as a task pool



Linda

The world is based around tuples: these are simple (short)
ordered sequences of values

E.g., [1, "hello"] and [2, "goodbye"]

And there is a global pool or tuplespace containing these tuples

Threads communicate via the pool by putting tuples in and
taking tuples out



Linda

Tuple Pool

Worker
Threads

Linda pool

All communications via the pool



Linda

There are four operations the threads can execute:

• out send a tuple to the pool
• in get and remove a tuple from the pool
• read get but don’t remove a tuple from the pool
• eval create a new thread



Linda

The important bit is how in and read work

The arguments to these are either (a) a literal constant (e.g.,
string, integer) or (b) a pattern variable, e.g., ?s, or something
suitable for the language you are using

A matching tuple is returned from the pool where a match is
defined by

• the tuple is the same length and
• the contant literals match

Then the pattern variables are set to the corresponding values
in the chosen tuple



Linda

For example, if the pool contains

[1, "hello"], [2, "goodbye"], [1, "world"]

then there are two matches for [1, ?s], namely [1,
"hello"] and [1, "world"]

One of these will be chosen, non-deterministically

If the former is chosen, then the variable s will be given the
value "hello"



Linda

Note that the matching and choosing done by the pool: a
possible bottleneck if the implementation of the Linda library is
not careful

Of course, the pool might itself be a multithreaded system

If no matching tuple exists, the call will block until one arrives

If more than one thread simultaneously matches a tuple using
in, exactly one will get the tuple

The action of match and removal for an in is atomic



Linda

If both threads use read, there is no problem, they both get a
copy

If one uses an in and the other a read, it can go either way:

• read before in: they both get the tuple
• in before read: the in gets the tuple, the read doesn’t

This non-deterministic outcome would normally be considered
a programmer error



Linda

These subtleties mean you must be quite careful with Linda

A common paradigm is to use an initial tag, often an integer, as
in [1, "hello"], to impose some structure on the tuples



Linda

Dining Philosophers in Linda

We have five philosophers and shall prevent deadlock by only
letting four sit at a time

Initial conditions:
out("place ticket") four times;
out("chopstick", i) for i = 0 . . . 4
eval(phil, i) for i = 0 . . . 4



Linda
defun phil(i) {

while true {

think()

in("place ticket")

in("chopstick", i)

in("chopstick", i+1 mod 5)

eat()

out("chopstick", i)

out("chopstick", i+1 mod 5)

out("place ticket")

}

}

This example contains no patterns, only constant literals

Note Linda does not eliminate the possibility of deadlock in
badly written programs: just put the (in "place ticket")
after the in of the chopsticks



Linda

Producers/Consumers is just as easy

defun producer(n) {

out(n, make-product())

producer(n + 1)

}

defun consumer(n) {

var prod

in(n, (? prod)) ; pattern

consume-product(prod)

consumer(n + 1)

}

We use a tag to ensure we consume values in the same order
as they are produced (if that is important)



Linda

Exercise Think about the assessed coursework using Linda

Questions of granularity are just as important in Linda as
elsewhere



Linda

Linda is easy to add to existing languages, usually as a library,
occasionally with a minor tweak to the syntax for the patterns

Versions exist for C, Perl, Java and Prolog and others



Linda

Also

• the blocking semantics lead to unwanted non-determinism:
see the in vying against the read above
• some implementations have non-blocking variants of in

and read, but this just adds to the uncertainty
• the low-level, unstructured nature of Linda can lead to

awkward code: every application needs some mechanism
to structure the tuples (tags being the simplest)
• there is no fairness on selecting tuples: a tuple can be

ignored indefinitely if there are others that can be chosen
• junk can collect in the pool: tuples put in but never taken

out. This can slow down the matching
• the pool can be a bottleneck



Linda

Further

• detecting when the program needs to terminate is a
problem: this could be done by putting a special “end of
program” tuple in the pool; but then threads have the
overhead of constantly checking for that tuple (and you
need an non-blocking read to do so). Or have an extra
field in every tuple that is a status flag, etc.
• aliasing is a problem: careful constructions of name

schemes (tags, usually) are needed to ensure that tuples
are not accidentally picked up by the wrong threads
• related is temporal aliasing, where information about the

order tuples were put into the pool is lost: again an
enumeration tag can fix this, but it has to be coded



Linda

So extensions of Linda exist, e.g., using multiple pools to
structure, thus avoiding the first kind of aliasing

Now pools become first-class objects, and you can pass pools
via pools to other threads

But, as always, this moves away from the initial simplicity of the
Linda concept



Linda

Linda

• is a simple abstract model of parallelism
• can map reasonably well to different kinds of hardware

(shared and distributed)
• is explicitly non-deterministic, with the non-determinism

mostly well delineated
• is not suited for all kinds of problem
• is not widely used, but you do see Linda being mentioned

now and again, mostly for coordination between other
systems



Linda

For example, the computational chemistry (molecule
simulation) package Gaussian uses OpenMP on a node and
uses Linda between nodes



Topics: Parallel Languages

We now have a look at some languages that were designed
specifically with parallelism in mind

• Occam (channels)
• Erlang (explicit parallelism)
• Go (explicit parallelism)
• Rust (explicit parallelism)
• SISAL (implicit parallelism)
• Strand (declarative)

Picked pretty much at random: by no means an exhaustive or
even comprehensive list, many other languages exist



Occam

Occam was a language that was based on Communicating
Sequential Processes (CSP) a theoretical model of parallel
computation: a process algebra (c.f., Lambda Calculus)

CSP models processes that communicate by passing
messages between themselves along channels

In the algebra there are various rules on combining processes
and descriptions on how these combined objects behave

Then theoreticians get busy on proving that behaviours of
various systems are equivalent (or not)



A note on channels

The channel concept is quite simple and so appears in many
languages and systems

You put data in one end, it comes out the other end

The simplicity is probably why it appears in so many guises

They are good for structuring your code

But channels are as fast or slow as the underlying mechanism,
e.g., network messages in MPI or shared memory in shared
memory machines. They can’t magic away the cost of
communications



Occam

Occam was a realisation of CSP, designed hand-in-hand with
the hardware it would run on: the transputer

The transputer (early 1980s) was going to be the future of
parallel processing: a new hardware architecture explicitly
supporting message passing between cores

Unfortunately, the level of technology of the time was not really
up to the task: they had problems with clock speeds and heat
management

There was no real advantage to using a transputer over
existing, classical processors (like Intel), so it never managed to
sell in numbers large enough to be successful

But the transputer was designed primarily to run Occam



Occam
Occam has explicit parallelism of tasks:

PAR

f(x)

g(y)

runs f and g concurrently

More unusually, Occam has explicit sequentiality:

SEQ

f(x)

g(y)

runs f, then g

This is because in CSP sequential composition of code is of
equal note to parallel composition of code



Occam

Communication between processes is via channels

ch ! x

writes the value of x down the channel named ch

ch ? y

reads a value into y from the channel named ch

Both are blocking: the write will wait for the corresponding read;
the read will wait for the corresponding write



Occam

Thus we get communication and synchronisation between
threads

INT x:

CHAN INT ch:

PAR

SEQ

print("hello")

ch ! 42

SEQ

ch ? x

print(" world")

will print "hello world"



Occam
There is also non-deterministic choice

ALT

in1 ? x

SEQ

x := x+1

out1 ! x

in2 ? x

SEQ

x := x-1

out2 ! x

will wait until data arrives on channel in1 or in2 and will then
execute the relevant section of code

If data arrives on both simultaneously, one branch will be taken
non-deterministically



Occam

The only way for tasks to communicate is via channels

There is no concept of shared or distributed, so a program
should work equally on shared or distributed memory

This is a bit like MPI messaging: it provides independence from
the hardware



Occam

Plus loads more features: boolean guards (on ALT); timeouts
on guards; priority ordered ALTs; functions; procedures; arrays;
while loops; etc.

A program is a bunch of processes (threads in modern terms),
joined by PARs, that send data along channels to each other

By being closely related to CSP, there were opportunities to do
proofs on Occam programs

Thus Occam can be said to provide both mechanism and
analysis for concurrency



Occam

Occam never took off as transputers were not really up to it

Programmers never got the hang of it, either

It has, however had a long-lasting influence on the design of
other modern languages

There was an extension: Occam-π. This was a realisation of
the π-calculus, which is itself a generalisation of CSP, where
channels and processes are first class objects, e.g., pass a
channel down a channel

A good model to revisit in light of the current obsession with
mobile processes

Big Exercise Implement Occam on top of MPI, or OpenMP



Occam

Exercise Read about the Xc language that is like C with distinct
Occam flavour:

int main() {

par {

foo(0);

bar(1);

baz(3);

}

return 0;

}



Erlang

Erlang is a single assignment functional language, with explicit
support for MIMD parallelism

A program can contain a large number of very lightweight
threads: 20 million is possible they claim

Thus these threads do not correspond directly to OS threads,
but are managed by the Erlang runtime (a VM; c.f. Go)

Having no shared state, the threads act more like OS
processes than normal threads



Erlang

They do not share state because the processes (they call their
threads “processes”) may be on distributed memory

Or two processes might be on the same local shared memory,
but you cannot assume that

Also, this fits in nicely with the functional style: everything is
local to the process and everything is referentially transparent

An important consideration is that the overheads of creation,
destruction and context switching are very small: thus
encouraging many small, short-lived, single-use processes



Erlang

An Erlang runtime will typically run one OS-style thread per
core; each running an Erlang scheduler

These schedulers will choose and run the Erlang-style
processes in a manager/worker fashion

Thus it avoids the overhead of OS thread creation/deletion

In one Erlang implementation, a process requires
approximately 600 bytes of state

Thus enabling a large number of processes

Exercise Find out the memory overhead of a normal pthread in
your favourite operating system



Erlang

Erlang threads communicate via messages like Occam/CSP,
but they are asynchronous, unlike Occam/CSP

Again, messages works equally over shared and distributed
memory

Also, Erlang does not have named channels, but each process
has a “mailbox” where it receives all its messages

Alternative point of view: the process “name” is the name of the
(only) channel to a process



Erlang

The messages can be values, tuples of values, or any other
datatype, including closures (functions)

And there is pattern matching to fetch messages from the
mailbox (a bit like MPI tags, but more general matching, so
more like Linda)



Erlang

Otherproc ! { hello, 99 }

sends a tuple with atom (like a Lisp symbol) hello and the
integer 99 to the process named by Otherproc (variables start
with capital letters)

receive

{ hello, X } -> io:format("x was ~B~n", [X]);

{ bye, X } -> io:format("time to go~n", []);

_ -> io:format("eh?~n", [])

end.

an underscore matches any message; this is like an ALT in
Occam



Erlang
Creation of processes is via spawn

factrec(0) -> 1;

factrec(N) when N > 0 -> N*factrec(N-1).

fact(N, Ans) -> Ans ! factrec(N).

FactPid = spawn(fact, [5, self()]).

receive

F -> io:format("factorial is ~B~n", [F])

end.

is clumsy code to make a new process running fact with
arguments 5 and the process identifier (PID) of the current
process

The receive causes the current process (self()) to wait for a
message (from anyone), and stores it in F



Erlang

A PID is the way you refer to a process, in particular for sending
a message to it

N.B. some liberties taken with Erlang modules here



Erlang

Erlang is quite popular in real systems as it has lots of useful
features

For example, Process Restart , where a process is immediately
restarted by the runtime if it crashes for any reason

This allows Erlang to cope with hardware failure and buggy
code

In fact, Erlang has hot swap of code: code can be changed
(fixed or updated) while the main program is running

Load balancing of processes is done by the runtime VM



Erlang

Originally designed by Ericsson to support (soft) realtime
systems that can’t be taken down for maintenance (like
telephone exchanges), it has found use in other areas

Companies like Yahoo, Facebook, WhatsApp, Bet365, etc. use
it for some element of their products

Somewhat an under-appreciated language

Exercise Have a look at
http://learnyousomeerlang.com/content

http://learnyousomeerlang.com/content


Go

Go we have seen before, so here’s just a short discussion (in
the context of these other parallel-aware languages)

It has goroutines, communicating via channels, similar to
Occam and Erlang

Channels are type safe (“channel of int”) and blocking

There is a select that acts like Occam’s ALT waiting on
multiple channels



Go

Synchronisation and communication are provided by channels

Libraries provide condition variables, mutexes, atomics and a
variety of other low-level functionality

Channels are the recommended ways of passing data between
threads; though you can also use shared variables

Though shared variables are not recommended as Go provides
no inherent protection against the usual data races (if you don’t
remember to use mutexes and the like)



Go

From the Go website (worth repeating!):

Share memory by communicating; don’t communicate
by sharing memory.



Go

Go has a race detector tool: compiling with -race checks
memory accesses and spots unsynchronised accesses

This

• is run time detection
• slows the execution by an order of magnitude
• only finds races that actually happen in a run



Go

Go is used widely, with some vocal proponents

It was designed by people with a considerable amount of
expertise, but doesn’t bring anything new to the table in terms
of tackling parallelism

. . . in fact, there isn’t much to Go other than channels
and goroutines!

Stjepan Glavina



Rust

A language originally designed and developed by the Mozilla
team, with the eventual aim of reimplementing the Firefox
browser in Rust, but now a general-purpose language in its
own right

A lot of the problems in many applications (including browsers)
are to do with bad memory management

Around 70 percent of all the vulnerabilities in Microsoft
products addressed through a security update each
year are memory safety issues
Matt Miller, Microsoft security engineer, Feb 2019



Rust

So Rust is a memory safe language, meaning it can not have
problems like dangling pointers (null pointers), uninitialised
variables, use after free errors, or buffer overflows

Or, at least, it makes it very hard for the programmer to produce
such bad code

Unlike many languages, such as C and C++, that make it very
easy



Rust

Memory safety is not new: many memory safe (or nearly safe)
languages have been devised, with various trade-offs to get this
safety

For example, runtime checks on accesses to buffers; garbage
collectors; and so on

A lot of these have runtime overhead, i.e., your program is
safer, but runs more slowly

And they are not always completely successful, e.g., Java can
have null pointers



Rust

Rust takes a different approach and tries to put as much
checking as possible into the compiler: your code is safe, and
fast

But the trade-off is this: it does this by having a concept of the
owner of a memory location and tracking that ownership in the
compiler



Rust

In an assignment y = x; the ownership of the memory
referred to by x is transferred to y. It is now illegal/impossible to
use the variable x in subsequent code

The compiler would flag any later reference to x as an error
and refuse to compile

This helps with memory management, as the compiler can
precisely track the lifetime of a value and so its memory can be
deallocated automatically when the compiler can prove it is not
longer accessible and without the need for a garbage collector

Thus avoiding the programming errors common to C-like
languages and the runtime complexities of GC languages



Rust

Memory safety is a good thing in that you can’t accidentally use
a value that has been deallocated: but even better is that
ownership also helps with data races

A data race can happen when one memory location is
accessed by two threads, at least one doing a write

A read-only (const) value can be shared; a writable (mutable)
value shouldn’t be shared (c.f., RW locks)

The Rust compiler can use ownership to track a value and will
spot an attempt to modify a shared value and refuse to compile



Rust

Thus making the programmer face up to the problem and fix it
before the code will even compile

Rust developers call this “Fearless Concurrency” as the
language itself prevents these kinds of data-race

Rust provides both mechanism and analysis for concurrency

This fixes data races: unfortunately the Rust compiler is not
(yet?) able to spot non-data-race race conditions, like deadlock



Rust

Rust has a classical heavyweight thread approach, with a
thread module that contains functions like thread::spawn()

This takes a closure as argument as the thing to execute

let threadid = thread::spawn(|| foo(x+1,y-1));

...
let val = threadid.join().unwrap();



Rust

What do we do if we need to mutate a shared value in different
threads?

We can use a mutex to sequentialise the accesses

Mutexes can be shared across threads



Rust

A Mutex can be used to wrap any data:
let mtx = Mutex::new(v);

And now the only way of accessing the data that used to be in
v is via the mutex: let mut data = mtx.lock().unwrap();

An important thing here is that the ownership of the value has
passed to within the mutex mtx, and so is no longer available
from the variable v

This prevents accidental direct access to the data, and this is
checked and enforced by the compiler: we can’t accidentally
use v

And we can get mutable access to the data only when locked



Rust

There is no unlock method: the mutex automatically unlocks
when the holder goes out of scope

Thus the programmer can’t forget to unlock a mutex, or access
the data without using the mutex



Rust

Rust also has barriers, condition variables, channels, etc.

As always, channels are still an excellent way for threads to
communicate, but Rust’s ownership model means sharing
variables is no longer dangerous: the compiler simply won’t let
you share things unsafely



Rust

Rust is still being developed, but has already been taken up by
many big companies and projects (e.g., by Google for Android,
alongside Java and Kotlin; Microsoft are rewriting parts of
Windows in Rust)

The ownership mechanism is a stumbling block to many
programmers coming from other languages

Mostly those programmers who don’t like the compiler telling
them their code is broken: you need to get more things correct
before you can compile code

But the learning curve is worth it for the safety achieved



Rust

Exercise For C++ geeks. The idea of tracking ownership
(“move semantics”) has recently been adopted by C++, though
its use is optional and not the default. Read about this

Exercise The Rust compiler guarantees that a mutable
(writable) memory location can never be accessed by more
than one thread at a time. How might the compiler use this
knowledge to optimise operations on that memory location?



Rust

Shared mutable state is the root of all evil. Most lan-
guages attempt to deal with this problem through the
’mutable’ part, but Rust deals with it by solving the
’shared’ part.
From the Rust website

It may be harder to write Rust code than Java code,
but it’s a lot harder to write incorrect Rust code than
incorrect Java code
“Llogiq on stuff” Feb 2016



SISAL

Another single assignment, functional language, this time with
implicit parallelism

Streams and Iteration in a Single Assignment Language, as its
name suggests has special regard for streams and iterations

It distinguishes carefully between loops where the
computations in the loop body are independent (thus
parallelisable, they call them for-loops) and those where they
are not independent (they call these iterations)



SISAL

The for-loop looks like

for <range>

<optional body>

returns <returns clause>

end for

All expressions in SISAL return one or more values



SISAL

An example:

for i in 1, n

sqs := vals[i]*vals[i]

returns array of sqs

end for

returns an array of the squares of the values

The effect is like a new instance of sqs is made for each value
of i, then the array of operator collects (a reduce operation)
them into an array



SISAL

Other reductions are possible

for i in 1, n

sqs := vals[i]*vals[i]

returns array of sqs,

value of sum sqs

end for

returns two things: the array as before, and the sum of the
squares; sum is another reduction operation



SISAL

The point here is that each squaring is independent

SISAL makes us write the loop in such a way to make this
simple and evident

So it may choose to run this in parallel: automatic parallelisation



SISAL

SISAL was briefly popular in the mid-1980s when people were
looking for ways for extracting parallelism automatically

It is an example of a dataflow language

These work on the idea that it is the data that should direct the
processing

A spreadsheet is a simple example of the dataflow concept:
change the value in a cell and this triggers various
(re)computations, possibly running in parallel

SISAL is of academic interest, but is not used widely



Strand

A single assignment language reminiscent of Prolog with
dataflow (again, mid to late 1980s), declarative

There is a single, shared global namespace and threads
communicate by writing and reading variables

If a thread tries to read a variable before it is set, that thread will
block

Thus we get both message passing and synchronisation

And so variables are also a bit like single-use channels



Strand

Strand only supports parallel composition: i.e., you cannot write
sequentially

The dataflow between the variables is all the sequencing we get

And, conversely, if one expression does not depend on another,
that can be run in parallel

Again allowing automatic parallelism



Strand

Code is a list of rules rather like Prolog:

clause :- guard, guard, ... | body

A program consists of many rules



Strand

All rules are eligible for execution at all times as long as all their
guard conditions are satisfied

Guards can be evaluated in parallel

If a rule is selected, then a new process evaluates the body

If no rules match, then it’s an error in your program



Strand

Rules:

consumer(X) :- X | eat(X).

producer(Y) :- Y := "food".

with program:

producer(Z), consumer(Z).

the variable Z acts as a shared “channel” between the producer
and consumer



Strand

As always, there’s much more to Strand than this: streams,
foreign language interface (to call C, etc.), garbage collection,
and so on

And, just like Prolog, not widely used

It’s just not the way most programmers think!



Parallel Languages

Thus there are several ways a language design can avoid
races:

• have no shared variables (e.g., Erlang)
• have no mutable shared variables (e.g., Rust)
• have no mutation (e.g., Haskell)
• have no parallelism! (e.g., JavaScript, Python)

Allowing unrestricted access to shared values (as we are used
to in sequential programming) is a sure route to creating races

But having any the above restrictions in a language is
guaranteed to irritate some programmers — they don’t like
being forced to write correct programs!



Parallel Languages

And so on. See Wikipedia!

• C∗. Connection Machine, SIMD
• Cω. Cray, modified C, like data parallel Fortran
• Concurrent Euclid. Functional influenced descendant of

Pascal
• Data Parallel Haskell.
• E. Secure distributed programming
• Ease. A CSP language
• Fortress. Secure Fortran, implicit parallelism
• Janus. “bag channels” pool-like communications



Parallel Languages

• Joule. Dataflow, like E
• Joyce. Pascal syntax, CSP
• Limbo. Channels
• Lucid. Dataflow
• MultiLisp. Scheme extension, arguments to function calls

explicitly evaluated in parallel, lazy evaluation
• NESL. Precursor to Data Parallel Haskell
• Orc. Concurrent, non-deterministic
• Oz. Multiparadigm: dataflow and declarative
• Parlog. Parallel Prolog



Parallel Languages

• SALSA. Actor, runs on Java machine
• Sing#. Extension of C#. Message passing
• SPARK. Based on Ada
• SR. Message passing
• ∗Lisp. Connection Machine
• Turing+. Monitors
• XC. Explicit parallelism
• ZPL. Like C/C++, implicit parallelism.



Parallel Languages

Exercise Swift, Rust and Go are all “modern” languages,
designed in the current era of parallel hardware. Compare their
approaches to parallelism

Exercise Think about using all of OpenMP, MPI (and
CUDA/OpenCl on GPUs) in a single program

Redo Assignment 1 using Swift, Rust, Go, CUDA, etc.



Topics: Time Warp

Time Warp is another way of parallelising programs, mostly
applied in the area of discrete event simulation, using
distributed architectures

For example, simulating the movement of molecules in a fluid;
or packets in a network; or tanks on a battlefield

“Discrete Event” means we simulate the system for discrete
ticks of time, t = 0, t = 1, etc., where each tick might be a
second or a microsecond; even a nano- or picosecond for some
physics and chemistry simulations

The objects in the system interact via events, e.g., one
molecule hitting another or a packet entering a router



Time Warp

On the face of it, simulation should be good to parallelise, as it
comprises objects (molecules, packets, tanks) that are mostly
independent, but require the occasional interaction (molecules
bounce off each other; packets overload a router; tanks fire
missiles at each other)

As long as there isn’t too much interaction (lots of missiles?)



Time Warp

Simulations can have millions of objects, and so must be done
on a distributed memory machine: they simply won’t fit on a
shared memory machine

This is parallelism for reasons of size, not speed

So the events must be messages

Now the problem turns out to be synchronisation, but in
simulation time



Time Warp

Two molecules A and B might be on separate processors; each
moving through their simulated ticks of time

Molecule A might be trundling along, simulated at time t = 100,
t = 101, etc., only to find it should have bounced off molecule B
at time t = 90

The “collision” message may simply have taken ages to get
from B to A across the cluster’s network

Or B’s processor is slower than A’s; or more heavily loaded; etc.



Time Warp

So, we could just synchronise at every time step?

Yes, but this would be very slow: just think of the
synchronisation messaging needed

The secret is to let each processor work at its own pace and
only synchronise when necessary

There are several ways of doing this, but the weirdest is the
Time Warp

This is an optimistic method



Time Warp

Invented by Jefferson in the 1980s, it tries to extract as much
parallelism as possible by each object optimistically simulating
forward in time, only going back to fix things if they went too far

For the most part, most objects do not interact, so waiting
(synchronising) on other objects is usually a waste of time

Every processor simulates at its own speed, under the
optimistic assumption that there would have been no interaction
or synchronising



Time Warp

So molecule A is simulated as fast as its processor permits, its
time progressing t = 100, t = 101, etc.

Similarly for B on its processor t = 89, t = 90, etc.

Each molecule lives in its own bubble of time, independent of
other molecules

Each object in the system has an input queue of messages yet
to be processed from other objects: these messages will have
timestamps in the future of the object

An object will repeatedly read the next message from its queue
and act upon it. The object’s current time is set to the
timestamp on the message



Time Warp

Now sometimes, and we hope this is rare, there is interaction
and we might have gone too far: molecule A is at time 102 but
then receives a message with timestamp t = 98, so A should
have bounced then

The bounce message simply didn’t reach A soon enough

In this case the Time Warp mechanism says we should locally
reverse time and roll A back to time 98, do the computation for
the bounce, then continue forward



Time Warp

To do this rollback we either need reversible computations, or
we keep a record of the past states of A and revert it to its state
at time 98

A then can continue forward, after bouncing appropriately

If rollbacks do not happen too often, we get improved speedup
as each processor can compute at full speed with no
synchronisation



Time Warp

But there is a problem

Suppose A is optimistically computing forward and decides it
hits molecule C at time t = 101

So it sends a message to C, saying “A hits C at t = 101”

Then B’s message arrives, saying “B hits A at t = 98”

This bounce will probably divert A so that it would not have hit C

But the message has already been sent!



Time Warp

A’s message to C is now an error

Time Warp fixes this with anti-messages

As part of the rollback process, if an object finds it sent a
message in error it now sends a corresponding anti-message

A sends the anti-“A hits C at t = 101” message to C



Time Warp

Two things can happen in C:

• If the message arrives in C’s future (C is still processing at
time t = 100, say), the positive message is still waiting for
C to read it. Thus the positive message can simply be
removed from C’s input queue of messages
• If the message arrives in C’s present or past (C is

processing at time t = 104, say), this triggers a rollback of
C: it unwinds to time t = 101, and then proceeds forward,
this time without the bounce off A



Time Warp

C’s rollback might require anti-messages from C; which might
trigger more rollbacks from other objects; and so on

In the worst case, there can be an anti-message cascade
where more and more objects trigger rollbacks of other objects

The hope is that this is rare, and outweighed by the general
forward progress from the optimistic computation



Time Warp

For the right kind of simulation, Time Warp is very effective

However, there are so many important details of implementation
that it is hard to find a good implementation of Time Warp

For example, the management of past states. These are
required for the rollbacks, but you can’t keep them forever as
they will eat up more and more memory as the computation
proceeds

So implementations include a garbage collection of old,
inaccessible states



Time Warp

If all objects and all unread messages are beyond time t = 100,
then there cannot be a rollback to earlier times

So states older than t = 100 can then be discarded (garbage
collected) across the entire system

So now we have the problem of finding the earliest timestamp
in the system: another problem in its own right as this is
information that is distributed across the entire system

We have to be careful that the messaging needed to find the
earliest timestamp plus the time spent garbage collecting is not
too large in itself



Time Warp

Time Warp is effective if

• interactions are rare
• the cost of rollback is low

But

• the cost of storing state can be high
• the overheads of garbage collection can be high

Other distributed simulation methods are more popular, e.g.,
conservative simulation: you only progress as far as you can
prove is safe, which may be more appropriate than Time Warp
where there is a moderate amount of interaction



Time Warp

There is a big literature on parallel discrete event simulation
(PDES) as it is used by various large organisation, e.g., the US
Army

Much research into Time Warp was funded by the US Army

They have very large battlefield simulations

Researchers were worried when explaining Time Warp to the
Generals that, by talking about missiles and anti-missiles
instead of messages and anti-messages that the Generals
might get the wrong idea and require the invention of
anti-missiles. . .



Topics: GPUs

Graphics co-processors have grown immensely in power in the
last few years

Originally intended to offload graphical work from the main
CPU they have become recognised as powerful processors in
their own right and people have tried to tap into their potential

General-Purpose computing on Graphics Processing Units
(GPGPU) has emerged as an important example of parallel
processing

So hardware, originally intended to support gamers, is now
being used in general purpose computations

GPU-based computing appears strongly in the Top 500 largest
computers in the world
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GPUs naturally do certain things very well: in particular
data-parallel pixel rendering (colouring, shading and so on)

The computations you typically do on pixels can be quite
intensive, but are fairly restricted in nature

And the data-parallel nature of the computations on the millions
of pixels on your screen is very relevant

Over time GPUs became more and more programmable as
they needed to do more and more complex manipulations

Graphics libraries (like OpenGL and DirectX) that were
originally developed to draw pictures eventually supported
programmable sequences of operations via shader languages
such as GLSL and HLSL (aka Cg)
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So people soon realised that GPUs are powerful multicore
SIMD processors, but just tuned for certain intensive
data-parallel computations

GPU companies like NVIDIA and AMD/ATI have seen the
possibilities of using this power and now put hardware into their
GPUs specifically to help GPGPU computations

This means putting in hardware to support generic
computation, not just graphics oriented stuff
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And NVIDIA have also produced a language, Compute Unified
Device Architecture (CUDA), to aid in the general programming
of these devices

There is also an open standard, Open Computing Language
(OpenCL), that is not vendor based

CUDA is quite popular right now, but only runs on NVIDIA cards

OpenCL is strong, and is supported by NVIDIA, AMD, Intel and
ARM amongst others
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CUDA looks a lot like C and C++

Dangerously close, as there are several important differences
between CUDA and these languages

CUDA is a modified C/C++ with a syntactic addition to notate
parallel execution and various semantic additions to support
parallelism

It requires a special compiler, provided by Nvidia

In contrast, OpenCL is a library that runs on plain C or C++
(and any other language that can call C functions)
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The language reflects the hardware architecture

A GPU has several multiprocessors each containing a bunch of
SIMD cores: thus a GPU is a MIMD of SIMD

It works best when there are thousands of threads, even if there
are only hundreds of cores

This is to overlap communications with computation: a core that
would be waiting for some data can pick up another thread and
work on it instead on doing nothing

Memory access in GPUs is relatively very slow, so there would
be a lot of waiting otherwise
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Threads in a GPU are hardware managed and extremely
lightweight, meaning they have tiny creation and scheduling
overhead

Thus there is no need to worry about making and destroying
large numbers of threads

Very different from normal CPU threads

Exercise Why don’t normal CPUs do the same: have hardware
support for threads?
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GPUs have very complicated architectures, both for threading
and memory

We shall describe them using CUDA terminology

OpenCL has a separate set of words for the same things
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There is a hierarchical management of the threads

• A kernel is some code running on the device (GPU)
• A grid is the collection of all threads in a kernel
• A grid contains one or more thread blocks
• A thread block contains a number of threads: all blocks in a

grid contain the same number of threads

All threads in a grid execute the same kernel

These are not all SIMD, but are arranged in bunches, called
warps, of SIMD threads within the blocks

NVIDIA calls this “Single Instruction Multiple Thread” (SIMT)
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For example, threads 0–31 are in one warp and 32–63 are in
another warp

Warps are the basic SIMD chunk

This means it is better to gather threads that take the same
branches of an if or loop as they will be processed together:

if (threadid < 32) {...} else {...}

is better than

if (threadid % 2 == 0) {...} else {...}
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A block (of multiple warps) is the basic chunk that gets
scheduled on a multiprocessor; the multiprocessor then
executes the warps, as many as it can at a time as the
hardware permits

While threads within a warp are SIMD, separate blocks of
threads might be executed at different times: a kind of SPMD of
SIMD, though the SPMD nature is generally not really usable

Warps within a block might be executed at the same time or at
different times depending on the number of cores per
multiprocessor and the number of schedulers per
multiprocessor
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Having many warps and many blocks means the system can
adapt at runtime to the number of multiprocessors available in
the hardware

Suppose we have 8 blocks in our grid
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T
im

e

2 multiprocessors

4 multiprocessors

Processing CUDA blocks

This naturally and automatically obtains more parallelism when
there are more multiprocessors. So it makes sense to have lots
more blocks than multiprocessors
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All the blocks in a given grid have the same number of threads

Blocks are indexed in the grid in one, two or three dimensions
(programmer’s choice)

blockIdx.x returns the block index for a 1D arrangement

blockIdx.x and blockIdx.y return the block indices for a 2D
arrangement

blockIdx.x, blockIdx.y and blockIdx.z return the block
indices for a 3D arrangement

You specify the size and number of dimensions when creating
the grid
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The threads within a block are indexed in one, two or three
dimensions

• threadIdx.x

• threadIdx.x, threadIdx.y
• threadIdx.x, threadIdx.y, threadIdx.z

You specify the size and number of dimensions of the blocks
when creating the grid
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Each thread has its own CPU-style state and registers used in
the normal way for function local variables and temporary
results; the hardware has a fixed number of registers (32768,
say) which are shared amongst the threads in a block

Each thread has a chunk of slow local memory ( local )

This is accessible only by the thread

Registers are what you need to use if you want fast access, but
registers are limited in number, and local memory might
be needed if the compiler can’t fit the data into registers
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Each block has a chunk of fast shared memory ( shared )

This is accessible by all the threads in the block and can be
used to communicate between threads in a block
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A grid has a big chunk of slow global shared memory

This is accessible to all the threads in all the blocks and is the
way to communicate between threads in different blocks

Importantly, access to each of these areas of memory is at
radically different speeds

Access to registers is a bit faster than block shared memory (a
few cycles to access); both are much faster than global shared
and thread local memory (hundreds of cycles to access)

So you need to take care on where you place data
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A typical CUDA source program contains a mix of code to be
run on the CPU and code to be run on the GPU

This can be in the same source file: GPU kernels are marked
by global

The code is pretty much normal C/C++, but with some
restrictions

Note, when executing, code and data on the GPU are separate
from code and data on the CPU

Values are passed from CPU to GPU as arguments of CUDA
kernel calls; or as explicit cpu-memory-to-gpu-memory copies
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CUDA has dimension types that are used to specify sizes and
shapes of grids and blocks

dim3 B(w, h, d) defines B to be a 3D w × h× d shape object

dim3 G(n, m) defines G to be a 2D n ×m shape object

Just use an integer for 1D
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If fun is a kernel (i.e., GPU function), we can call it from the
CPU code by

fun<<<G,B>>>(arg1, arg2, ...);

to run fun on a grid containing blocks arranged as G; the blocks
containing threads arranged as B

This creates n ×m × w × h × d threads, each running fun

(And copies the code for the kernel to the GPU; copies the
argument values to the GPU; starts the GPU scheduler; and so
on)
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Each thread is uniquely indexed by threadIdx and blockIdx
and can use these values to decide what to do

You can choose dimensions and sizes of grids and blocks to
suit your problem: you should not be shy of 1000s of threads

In fact, one of the issues when writing a CUDA program is
figuring how to choose your blocks and distribute your data
amongst them

For example, the amount of shared memory per block is very
limited, so this may affect how you choose blocks
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Properties of a typical gamer’s card (2020):

name ’GeForce RTX 3080’
totalGlobalMem 10GB
maxThreadsPerBlock 1024
maxRegistersPerBlock 65536
clockRate 1.44 GHz
multiProcessorCount 68 processors
CoreCount 8704 (128 per multiprocessor)
warp size 32 threads
processing: 25 TFlop single

783 GFlop double (1/32)
power 320W
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Properties of a compute oriented GPU card (2015):

name ’GeForce GTX K20X’
totalGlobalMem 6039339008
sharedMemPerBlock 49152
maxThreadsPerBlock 1024
maxRegistersPerBlock 65536
maxThreadsDim 1024 x 1024 x 64
maxGridSize 2147483647 x 65535 x 65535
clockRate 0.73 GHz
multiProcessorCount 14 processors
CoreCount 2688 (192 per multiprocessor)
warp size 32 threads
processing: 3935 GFlop single

1310 GFlop double (1/3)
power 235W



GPUs

December 2017: NVIDIA Titan V

CUDA Cores 5120
Tensor Cores 640
Transistors 21.1 billion
Power 250W
Single precision 12.4 TFLOPS
Double precision 6.1 TFLOPS
Half precision 24.6 TFLOPS

Half precision they call “deep learning FLOPS”

Tensor cores are specialised to 4× 4 matrix half-precision
fused multiply add (AB + C) computations, also for AI
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The main point of GPUs is they have a large number of cores:
the RTX 3080 above has 8704 cores in 68 multiprocessors
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There is a lot of global memory, but this is substantially slower
(100s of cycles to access) than the block shared memory
(maybe 2 cycles)

Though modern GPUs do cache global shared memory:
access time is a couple of cycles for a cache hit (though the
cache is of limited size, of course)

There is also a chunk of global constant memory
( constant ), which is read-only but faster to access than the
read-write global memory

And some read-only texture memory, whose development
arose from the needs of graphics
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Constant memory is actually a different way of accessing global
memory, but the mechanism (to make it fast access) limits the
amount of constant memory available, e.g., to 64K bytes

Similarly texture memory is global memory accessed in a
strange way, via a texture reference object

A texture reference can be associated with an area of global
memory and then that memory is read via the reference
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The weird stuff:

• the index into the texture memory is a floating point
number: the value at index 3.14142, say, is interpolated
appropriately by the hardware between the values for
indices 3 and 4
• the index can be normalised to the interval 0.0 to 1.0.

Then the index 0.5 corresponds to the index half-way along
the array
• this can be done for 1, 2 or 3 dimensional arrays

It is possible to ignore the clever stuff and just use textures as a
fast(er) way to read global memory
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Speed Access Scope Size Lifetime
register v fast r/w thread 10s thread
local slow r/w thread GBs thread
shared fast r/w block KBs block
global slow r/w grid GBs application
constant cached r grid KBs application
texture cached r grid KBs application

N.B. the thread, block and grid/kernel lifetimes are typically all
the same; a typical application will have many kernel calls
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Memory affects the execution of threads

Thread blocks are scheduled by the hardware on
multiprocessors and more than one block can be
simultaneously scheduled on a multiprocessor, thus sharing its
resources, particularly shared memory and registers

So the pattern of use of shared memory can put a limit on the
number of blocks in the grid, thus a limit on the rate of execution

Similarly, there is a limit on the number of threads per block: up
to 65536 in one of the above GPUs
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GPUs offers a huge amount of processing power at low cost,
but in a way that is extremely sensitive to memory access

It is easy to get started with CUDA as it is basically C, but you
do have to be very aware of the properties of memory
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Modern GPUs support unified memory spaces

This allows you to use a single virtual address space for both
host and device memory and not worry which is which (a bit like
VSM)

A hidden mechanism copies data between CPU and GPU as
necessary

Exercise Is this a good idea?

(Shortly we will see some systems that have physically shared
memory)
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Next, there is the extra problem shared by all coprocessors:
memory bandwidth between the main CPU and the
coprocessor

Copying data in and out of the GPU is significantly time
consuming

So we need to worry about data movement between the GPU
and the main CPU

And, if possible, overlap data transfers with GPU and CPU
computation

And overlap CPU and GPU computations
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We often forget that the system also has to copy the code, ie.,
the kernels, to the GPU memory, too

The cost of this is usually small relative to the cost of copying
data, but it’s another reminder that the GPU’s memory is
separate from the CPU’s

But a recent trend is to integrate the GPU onto the same
package as the CPU (or vice-versa!)

Using lots of transistors!
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For example, AMD’s Kaveri is a CPU+GPU on the one chip

4 CPU cores and 512 GPU cores that share cache and main
memory

Of course, this changes all the memory access vs. compute
balances, so needing you to revise your code

This is an example of a Heterogeneous System Architecture
(HSA)
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The idea is more of a symmetry between the CPU and GPU:
the GPU is not just a coprocessor

The GPU can now pass tasks back to the CPU to do

Accompanying this is a new low-level virtual architecture HSA
Intermediate Layer (HSAIL) that will be used to implement
higher-level abstractions like OpenCL

In a similar way, Apple’s M1 architecture has CPU and GPU
and memory on the same chip, further confusing the memory
vs. compute costs question
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Back to CUDA

Here is an example of trivial CUDA code, prog.cu

(Checking return values and tidying up omitted for brevity)



CUDA
#include <stdio.h>

__global__ void setarray(int p[])

{

int k = blockIdx.x * blockDim.x + threadIdx.x;

p[k] = k*k;

}

int main(void)

{

int i, *dm, m[1024];

cudaMalloc(&dm, 1024*sizeof(int));

setarray<<<16,64>>>(dm);

cudaMemcpy(m, dm, 1024*sizeof(int),

cudaMemcpyDeviceToHost);

for (i = 0; i < 1024; i++)

printf("m[%d] = %d\n", i, m[i]);

return 0;

}
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This starts 16 blocks, each containing 64 threads, each thread
runs the kernel setarray

Each invocation of setarray gets the same pointer to some
global memory allocated on the GPU

Each computes a different value for the index k, and each sets
a different element of the array

This assignment is a memory bottleneck that will take a
relatively long time to complete
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CUDA programmers try to mitigate the memory bottleneck by
ensuring there are lots of threads

Within a block, a warp of 32 threads is scheduled to run

These run (in SIMD) until they would have to wait for a lengthy
memory access to complete: the assignment to p in the
example

Rather than simply waiting for the memory, this warp is put
aside while the memory access is still progressing and another
warp (from this block or another block on the same
multiprocessor) is scheduled to run instead
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Thus keeping the multiprocessor busy computing

When the memory access has completed, the original warp
can be run again

All these scheduling decisions and actions are done by the
hardware!

Exercise Compare with hyperthreading as a way of keeping
CPUs busy
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Thus we want a lot of threads to schedule between as they run
then wait for memory

If we don’t have enough threads the cores will be idle during
their wait for memory

Ideally each block should have a multiple of 32 threads,
whenever possible, to get the most from the multiprocessor

For example, running just 16 threads means half of the warp is
lying idle
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Additionally, multiprocessors are given whole blocks to execute

So we want at least as many blocks as multiprocessors, to keep
all the hardware busy

Thus it’s good to have lots of threads per block and lots of
blocks per multiprocessor to provide lots of choice of warps to
schedule
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How many blocks and how many threads per block?

It depends on how the program accesses memory: e.g., the use
of shared resources like block shared memory might be a factor
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From the NVIDIA documentation:

• How many blocks?
• At least one block per SM to keep every SM occupied
• At least two blocks per SM so something can run if block is

waiting for a synchronization to complete
• Many blocks for scalability to larger and future GPUs

• How many threads?
• At least 192 threads per SM to hide read after write latency

of 11 cycles (not necessarily in same block)
• Use many threads to hide global memory latency
• Too many threads exhausts registers and shared memory
• Thread count a multiple of warp size
• Typically, between 64 and 256 threads per block
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The programmer might want to experiment to find the best
combination of numbers of blocks and threads per block for the
particular GPU they are running on

There are profiling tools and spreadsheets available to help you
make this decision

And to add to the complexity: later versions of CUDA allow
multiple different kernels to run concurrently (i.e., it schedules
between kernels), so supplying more blocks and more threads
to keep the hardware busy

CUDA kernels run asynchronously from the CPU
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And the pattern of global memory access is vital, too

The memory bus has a high latency, but a large bandwidth

We have to wait a long time for bytes to arrive; but then they
arrive in large chunks

Memory is set up to deliver, say, 64 bytes at a time (512 bit bus)

And programs often ask for large chunks of data in parallel,
e.g., working in parallel on an array

64 bytes is 16 (half-warp) four-byte integers or 16 single
precision floats

So a warp could be satisfied by just two reads
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core core core corecore

p

x=p[0] x=p[1] x=p[2] x=p[3] x=p[4]

x = p[me]

If the reads are nicely arranged, a single read supplies many
cores simultaneously: this is memory access coalescence (as
discussed earlier in vector architectures)
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As long as your code can do this

There are many rules imposed by the hardware to make this
kind of memory access coalescence work

Such as alignments of areas of memory; the order in which
neighbouring cores access memory; and so on

If you get it right, reading 16 integers in parallel is as fast as
reading a single integer

If you get it wrong, it can be 16 times as slow
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core core core corecore

x=p[0]

p

x = p[16*me]

core core core corecore

p

x=p[16]

x = p[16*me]

core core core corecore

p

x=p[32]

x = p[16*me]
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In this case, it might be faster to read coalesced chunks of
memory into the block shared memory, and then have cores
read their values from there

Awkward coding, but this is how you can get good performance
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#include <stdio.h>

__global__ void setarray(int p[])

{

int k = blockIdx.x * blockDim.x + threadIdx.x;

p[k] = k*k;

}

int main(void)

{

int i, *dm, m[1024];

cudaMalloc(&dm, 1024*sizeof(int));

setarray<<<16,64>>>(dm);

cudaMemcpy(m, dm, 1024*sizeof(int),

cudaMemcpyDeviceToHost);

for (i = 0; i < 1024; i++)

printf("m[%d] = %d\n", i, m[i]);

return 0;

}
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Back to the example: dm is the address of a chunk of memory
on the device

The device memory is separate from the CPU memory, so we
need special functions to allocate memory on the device

And we need explicit copies to get the data in and out of the
coprocessor



GPUs
Memory

As always, data copies are time consuming, so we want to
minimise them relative to computation time

We are used to the idea that the overhead can be so large that
it is faster to do a computation sequentially on the CPU rather
than send it to the GPU

The reverse is also true: if the data are on the GPU, it can be
faster overall to use one of the wimpy GPU cores for a
computation rather than copy back and forth to the CPU

This kind of computation vs. data movement judgement
happens a lot when programming GPUs
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In this example, we have only 16 blocks, so this would not be so
good for a coprocessor with, say, 20 streaming multiprocessors

Real code would either simply have more blocks, or would
interrogate the device to see how many multiprocessors it has
and adjust accordingly

Exercise but you wouldn’t want more than 32 blocks in our
small example. Why?
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GPUs are becoming an ever more important method of
computation

Even in phones: ARM’s Mali GPU now has OpenCL support

GPUs are good for phones as they give a good amount of
processing power for only a small amount of energy used
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OpenCL takes a wider view of computation than CUDA

While CUDA is explicitly about GPU computation, OpenCL tries
to abstract away from the hardware and provide the
programmer with a generic programming interface,
independent of the underlying hardware

It tries hard not to assume there is a GPU coprocessor
specifically, but just some “compute resource” coprocessor

OpenCL is provided as a library that is callable from standard C
(and other languages), thus not needing a special compiler
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Things that CUDA has special syntax for (in particular kernel
setup and launch) are done via normal function calls in OpenCL

OpenCL kernel code is kept in separate files from the C/C++
CPU code

Kernel code is read, compiled and executed by calling functions
in the CPU code

Much like the shader code in OpenGL and the like
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In being generic, it is harder to use than CUDA, which does one
thing well

CUDA can produce fast code, particularly if tuned to the
specific hardware

But the hardware must be an NVIDIA card

Current OpenCL compilers produce code that runs universally
but at sometimes uninspiring speeds (so code still needs the
machine-specific tuning that OpenCL was supposed to avoid)

And there are features in the OpenCL programming model that
reveal that the designers were still thinking of GPUs
underneath the supposed genericity
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And there are many others. For example AMD have their
Radeon Open Compute platform (ROCm) infrastructure

They have a language Heterogeneous-Compute Interface for
Portability (HIP) that is very similar to CUDA and runs on AMD
and NVIDIA hardware

In fact, they have a CUDA to HIP translator to aid porting code
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And Intel have OneAPI, with Data Parallel C++, (DPC++) also
intended to be multi-architectural

They also have CUDA code migration tools

But it is clear each of CUDA, HIP and OneAPI are “best used”
with the hardware of their respective developers
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In development is WebGPU, a JavaScript API for graphics and
compute, providing a uniform Web interface to whatever is
running underneath

Exercise Read about these
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Microsoft have their own versions of everything, of course

Their DirectCompute is not a million miles from CUDA, but is
based on their DirectX suite

It runs on NVIDIA and AMD cards

But the portability to other operating systems is an open
question

They also have C++ Accelerated Massive Parallelism (C++
AMP), an annotated version of C++ that is reputedly much
easier to write code for

This is more like an OpenMP for GPUs
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In fact, there is also OpenACC, which is essentially OpenMP for
GPUs

pragma annotations indicate code can be run on a GPU

#pragma acc parallel loop

for (int i = 0; i < n; ++i) {

z[i] = x[i] + y[i];

}

runs the loop on the GPU. The programmer does not have to
think about copying data back and forth or writing and calling
kernels

Exercise Is that a good or a bad thing?
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Similar to other systems, simply ignoring the pragma and
running on the CPU will produce equivalent results

OpenACC does for accelerators (co-processors) what OpenMP
does for multi-core

OpenMP and OpenACC pragmas can sit side-by-side in the
same code

In fact, OpenACC is supposed to merge with OpenMP at some
point, but progress seems slow

A freely available version of OpenACC for NVIDIA GPUs is
available and GCC also supports it (but only on Nvidia and
AMD): this may help OpenACC to become more popular
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GPUs have a great future ahead of them as they are excellent
at certain kinds of problem, when programmed by really good
programmers

There are CUDA bindings for Python and Java (of course), so
you don’t have to use C

Another item to note is that GPUs use (relatively) very little
energy for the amount of processing they deliver

In a world where supercomputer centres spend more on
electricity than they do on the computers themselves, the
operations per watt that GPUs provide turns out to be very
attractive

See the current Top 500
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If we were starting from scratch, we probably wouldn’t design a
GPU in the way it is

Just like the original CPU was based on existing integrated
circuits that engineers noticed could be made programmable,
the GPU is based on graphics co-processors that engineers
noticed could be made programmable

So the accidents of history brought us to where we are today
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As previously mentioned, we are currently seeing multicore
processors merging with GPUs

This is repeating the historical precedents of coprocessors
merging with main processors

One processor that has had a lot of attention recently is the
Apple M1
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Apple M1

The Apple M1 is a 4CPU+4CPU+GPU+NPU+memory ARM
architecture system on a chip (SoC), using 16 billion transistors

• 4 fast CPU cores
• 4 energy efficient CPU cores
• 8 GPU cores (24,576 threads)
• up to 16GB memory in a unified memory architecture
• 16 core neural processing unit (NPU) (11 trillion ops/sec)
• a digital signal processor (DSP)
• an image processing unit (ISP)
• a video encoder/decoder

This takes coprocessing to new levels!
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Apple M1

The various units share memory in the unified memory
architecture

This is 16GB memory, on the same chip

Note that on-chip memory is fast(er), but not expandable

Advanced Exercise Read about the memory consistency
features used by the M1 to support compatability with x86 code
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Incidentally, Intel has its Gaussian and Neural Accelerator
(GNA) integrated into the main CPU chip

Initially for support of speech recognition, it could probably be
used for more general deep learning



ARM Mali

At the low-power end of the scale, ARM have their Mali core

“Core” in the sense of a chunk of silicon design that can be
incorporated into other system chips

With current generations having up to 32 processing cores, this
is a GPU you will find in your phone

It supports OpenCL and 64-bit floating point

As well as doing some graphics. . .



The End

End of Lectures

Future sessions will be problems classes, and going through
past papers


