
Message Passing Interface

James Davenport

University of Bath

16 September 2019

James Davenport Message Passing Interface 1 / 98

Modern HPC and Distributed Memory

An HPC isn’t a faster computer, it’s many computers (nodes).

Each node (which may have multiple CPUs (typically 1 or 2),
each with multiple cores) has its own memory.

In a distributed memory machine, each node holds all
variables in local memory – local addressing.

Hence, work shared across processes will require
communication.

Message passing is the context in which this communication
takes place.

So how are the nodes connected?

James Davenport Message Passing Interface 2 / 98

Interconnects Top 500 November 2018 [All19]

Infiniband: FDR = 14G, EDR=25G, but most people use four links
in parallel, so 56G or 100G.
Adapter latencies 0.7µs (FDR) or 0.5µs (EDR)

James Davenport Message Passing Interface 3 / 98

James Davenport Message Passing Interface 4 / 98

Top 3 from 500 June 2020

Computer Cores Rmax Rpeak Power
TFlop/sec kW

28MW is roughly 60 wind turbines; 7299072 = 48× 29 × 33 × 11
James Davenport Message Passing Interface 5 / 98

Latency/bandwidth examples

1 Tofu D: 1 double is 490ns, 1000 double is 790ns (based on
38.1 GB/sec [AKO+18])

2 4× EDR: latency 500ns, 80ps/byte, so 1 double is 500.64 ns;
1000 double is 1140 ns.

3 100GHz Ethernet: latency 1600ns (or more), 80ps/byte, so 1
double is 1600.64 ns; 1000 double is 2240 ns.

4 10GHz Ethernet: latency 5000ns (or more), 800ps/byte, so 1
double is 5006.4 ns; 1000 double is 11400 ns.

Note that these are “best case” figures, assuming the nodes are
neighbours in whatever physical topology underpins the
networking. If not, latency will certainly increase, and bandwidth
may decrease depending on congestion.
The fancier interconnects (Fujitsu’s Tofu; Cray’s Aries) have
fancier physical topology.

James Davenport Message Passing Interface 6 / 98

Message Passing Strategy

Problem must be decomposed (By domain or function: if your
problem is PDE, it’s generally domain decomposition)

Data distribution must be controlled.

Local addressing implies that each core knows nothing about
data on other cores. Information regarding local memory of
other cores must be obtained via message passing.

Accessing ‘remote’ data takes much longer than accessing
local data. Hence, a major objective of HPC is to distribute
data so as to minimise communication.

Bandwidth (amount of data being transferred)
Latency (time dependence on data being transferring)

James Davenport Message Passing Interface 7 / 98

Message Passing Basics

Fundamental requirements of message passing:

to send data to another process
to receive data from another process
to synchronise processes

There are a great variety of ways to do this, and substantial
flexibility to control data movement.

MPI (Message Passing Interface) [Mes15]

The de facto standard for writing message-passing codes.
Development involved virtually every parallel computing
vendor.
The library to use if you are starting message passing

Note that MPI and other methods (OpenMP etc.) are not
mutually exclusive [AAG+15], but MPI sometimes handles
multiple nodes better than PGAS (coarrays in Fortran)
[Ash14]; [BBH+19] claims the opposite for UPC++.

James Davenport Message Passing Interface 8 / 98

Why is MPI the library of choice?

Portable code

Implementations exist for most parallel platforms.
Free, portable, downloadable versions available.

Optimal performance

Considerable effort has been put into optimising the
performance of the library and tuning it to specific hardware
platforms and interconnects.
This development is ongoing.

The standard itself is also continually being refined and
updated (201/89 is in draft): 3.1 isn’t fully 64-bit clean.

3.1 [Mes15], the current version, is not fully 64-bit native.

� There may be multiple implementations of MPI available,
and, while functionally equivalent, performance varies
unpredictably (at least I can’t predict!)

�� Do not “mix and match”

James Davenport Message Passing Interface 9 / 98

MPI paradigm

The same program is launched on all the processors

SPMD Single Program, Multiple Data

But the program can do (very) different things depending on
which processor it’s running, so it is more general than SIMD

For example, in weather forecasting, some processors might be
modelling the ocean, and others the atmosphere

well-suited to multiple independent processors

James Davenport Message Passing Interface 10 / 98

Timings

if condition

{ code A } // takes time t_A

else { code B } // takes time t_B

One instance t ∈ {tA, tB}
SIMD t = tA + tB

! A processors idle during tB , vice versa

SPMD t = max(tA, tB)

So try to match tA, tB

Very conditional code and SIMD don’t go well together

James Davenport Message Passing Interface 11 / 98

MPI names

All MPI names have an MPI_ prefix

In Fortran, all characters in the name are capitals (although
the language is not case-sensitive).

In C/C++, which are case-sensitive, defined constants have
all capital letters and defined types and functions have one
capital letter after the prefix, with the rest being lower case.

The user program must not declare variables or functions with
names beginning with the prefix MPI_ or PMPI_, which is used
by the profiling interface

James Davenport Message Passing Interface 12 / 98

Errors in MPI operations

By default, if an MPI call detects an error then the program
will abort.

Although rarely done in practice, it is possible to change this
behaviour so that an MPI call just returns an error code,
which the programmer must then check and act upon in an
appropriate way.

� Many libraries and applications do not check for error codes,
and assume the default.

James Davenport Message Passing Interface 13 / 98

The MPI header file / module

/* In C or C++, include the header file. */

#include <mpi.h>

! In Fortran, always use the MPI module if one is

!available on your system. An MPI-2 compliant

! implementation should provide one.

USE MPI

! Otherwise, include the FORTRAN header file.

include ’mpif.h’

James Davenport Message Passing Interface 14 / 98

The MPI Environment

Exactly how a multiple processor job is initialized is
environment dependent (mpirun inside sbatch).

MPI provides two functions interfacing with start-up and
shutdown.
MPI_Init

MPI_Finalize

Note that these calls do not start up or shutdown the
processes themselves but the MPI environment which allows
them to communicate. All the processes start when the job is
launched.

James Davenport Message Passing Interface 15 / 98

Declarations

/* C and C++ startup/shutdown routines */

int MPI_Init(int *argc, char ***argv);

/* Note the extra * here */

int MPI_Finalize();

! FORTRAN startup and shutdown

SUBROUTINE MPI_INIT(IERROR)

INTEGER :: IERROR

SUBROUTINE MPI_FINALIZE(IERROR)

INTEGER :: IERROR

Fortan routines must always have ERROR, C doesn’t need it if
you’re not checking.

James Davenport Message Passing Interface 16 / 98

Rank and Size

These definitions are essential to any MPI code as the
mechanism by which the programmer gets different processes
to perform different tasks or work on different data.

The size is the number of processes. The number of processes
with which to run a job is normally specified at runtime
(sbatch or whatever).

The rank is a unique integer associated with each process:

0 ≤ rank ≤ size− 1

Strictly speaking, these definitions of rank and size should say
the rank within and size of the group of processes associated
with a given communicator.

James Davenport Message Passing Interface 17 / 98

Communicators

A communicator is an MPI variable which must be associated
with a group of processes for communication to take place
within that group. Of type INTEGER in Fortran and
MPI_Comm in C/C++.

There are two predefined communicators:

MPI_COMM_WORLD

Associated with all processes

MPI_COMM_SELF

Associated with an individual process only; rarely useful

James Davenport Message Passing Interface 18 / 98

Finding out the size/rank

The function MPI_Comm_size reports the size.

The first argument is the communicator.

In C/C++,

int MPI_Comm_size(MPI_Comm comm, int *size);

And in Fortran,

SUBROUTINE MPI_COMM_SIZE(COMM, SIZE, IERROR)

INTEGER :: COMM, SIZE, IERROR

The function MPI_Comm_rank is used to establish the rank of
a process

an integer in the range [0,size−1]

/* Could someone please tell me who I am? */

int MPI_Comm_rank(MPI_Comm comm, int *rank);

SUBROUTINE MPI_COMM_RANK(COMM, RANK, IERROR)

INTEGER :: COMM, RANK, IERROR

James Davenport Message Passing Interface 19 / 98

Basic MPI code checklist

1 Include the appropriate header file or module

2 Initialise the MPI environment using MPI_Init

3 Each MPI process must find out the total number of processes
using MPI_Comm_size

4 Each MPI process must find out its own unique rank using
MPI_Comm_rank

* Now we can do the actual work

5 Shutdown the MPI environment using MPI_Finalize

James Davenport Message Passing Interface 20 / 98

Basic MPI code C template

#include <mpi.h>

int main(int argc, char ** argv){

int size, rank;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

/* the body of the code goes here */

MPI_Finalize();

}

James Davenport Message Passing Interface 21 / 98

Basic MPI code Fortran template

PROGRAM basic_MPI_template

USE MPI

IMPLICIT NONE

INTEGER :: ierr, rank, size

CALL MPI_INIT(ierr)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)

! the body of the code goes here

CALL MPI_FINALIZE(ierr)

END PROGRAM basic_MPI_template

James Davenport Message Passing Interface 22 / 98

Hello, world (abbreviated) I

include <cstdlib>

include <ctime>

include <iomanip>

include <iostream>

include <mpi.h>

int main (int argc, char *argv[]);

{ int id, ierr, p;

double wtime;

ierr = MPI_Init (&argc, &argv);

if (ierr != 0)

{ cout << "HELLO_MPI - Fatal error!\n";

cout << " MPI_Init returned nonzero ierr.\n";

exit (1); }

ierr = MPI_Comm_size (MPI_COMM_WORLD, &p);

ierr = MPI_Comm_rank (MPI_COMM_WORLD, &id);

James Davenport Message Passing Interface 23 / 98

Hello, world (abbreviated) II

if (id == 0)

{ cout << "P" << id << ": HELLO_MPI - Master process:\n";

cout << "P" << id << ": The number of processes is " << p << "\n"; }

if (id == 0)

{ wtime = MPI_Wtime (); }

cout << "P" << id << ": ’Hello, world!’\n";

if (id == 0)

{ wtime = MPI_Wtime () - wtime;

cout << "P" << id << ": Elapsed wall clock time = " << wtime << " seconds.\n"; }

MPI_Finalize ();

if (id == 0)

{ cout << "P" << id << ": HELLO_MPI:\n";

cout << "P" << id << ": Normal end of execution.\n"; }

return 0;

}

James Davenport Message Passing Interface 24 / 98

James Davenport Message Passing Interface 25 / 98

Two-sided communication

The standard type of point-to-point communication in MPI is
two-sided communication.

This means that both the sender and receiver of the data
need to call MPI routines, a send call and a receive call
respectively, for the data to be transferred.

For every send call, there must be a matching receive call.

The basic calls for doing this are MPI_Send and MPI_Recv.

An MPI message can be many items, but all of same data
type.

James Davenport Message Passing Interface 26 / 98

MPI P2P Analogy

There’s a large office block. Every worker has her own office,
which she can’t leave. There are also some (telepathic) messengers
rushing round the building. Messengers never disturb workers.

To Send a message, a worker writes an envelope (who to,
data type and subject — tag in MPI-speak), and stands at
the door of her office, waiting for a messenger to come and
take the envelope.

� A messenger doesn’t have to take a message if there is no
receiver waiting for it.

To Recv a message, a worker stands at the door of her office,
waiting for a messenger to come and deliver the sort of
message she is expecting.

She can say “from any” etc.

Workers standing at the door don’t do any useful work!

Workers might stand at the door until they starve to death.
[deadlock]

James Davenport Message Passing Interface 27 / 98

An MPI message

In MPI, a message consists of:

a data buffer

! of a certain size — must specify

a data type

a sender (source)

a receiver (destination)

a tag

This information must be given to the corresponding send and
receive calls.

James Davenport Message Passing Interface 28 / 98

MPI Send

The basic MPI routine for sending a message is MPI_Send.

int MPI_Send(void *buf, int count,

MPI_Datatype datatype, int dest, int tag,

MPI_Comm comm);

SUBROUTINE MPI_SEND(BUF, COUNT, DATATYPE, DEST, TAG,

COMM, IERROR)

<type> :: BUF(*)

INTEGER :: COUNT, DATATYPE, DEST, TAG, COMM, IERROR

James Davenport Message Passing Interface 29 / 98

MPI Recv

The basic MPI routine for receiving a message is MPI_Recv.

int MPI_Recv(void *buf, int count,

MPI_Datatype datatype, int source, int tag,

MPI_Comm comm, MPI_Status *status);

SUBROUTINE MPI_RECV(BUF, COUNT, DATATYPE, SOURCE,

TAG, COMM, STATUS, IERROR)

<type> :: BUF(*)

INTEGER :: COUNT, DATATYPE, SOURCE, TAG, COMM

INTEGER :: STATUS(MPI_STATUS_SIZE), IERROR

James Davenport Message Passing Interface 30 / 98

MPI Message — C example

int rank;

MPI_Status status;

float a[10], b[10];

...

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

...

if (rank == 0){

MPI_Send(a, 10, MPI_FLOAT, 1, 0, MPI_COMM_WORLD);

}

else if (rank == 1){

MPI_Recv(b, 10, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status);

}

...

You can use MPI_STATUS_IGNORE for status (more efficient, if
that’s what you want).

James Davenport Message Passing Interface 31 / 98

MPI Message — Fortran example

INTEGER :: rank, ierr

INTEGER :: status(MPI_STATUS_SIZE)

REAL, DIMENSION(10) :: a, b

...

CALL MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)

...

IF (rank .EQ. 0) THEN

CALL MPI_SEND(a(1), 10, MPI_REAL, 1, 0, MPI_COMM_WORLD, &

ierr)

ELSE IF (rank .EQ. 1) THEN

CALL MPI_RECV(b(1), 10, MPI_REAL, 0, 0, MPI_COMM_WORLD, &

status, ierr)

END IF

...

You can use MPI_STATUS_IGNORE for status (more efficient, if
that’s what you want).

James Davenport Message Passing Interface 32 / 98

The data component

The data buffer, buf, tells MPI where to find the first item of
data to be sent and where to start writing the received data,
i.e. the appropriate variable name.

This argument is passed by reference in C so must be a
pointer to the data.

MPI_Send sends count data elements starting at buf.

count may be zero, in which case no data is sent.

MPI_Recv receives up to count data elements and places
them at buf.

The receive data buffer must be at least big enough to hold
all the incoming data

The length of a received message can be found from status

with a call to MPI_Get_count.

James Davenport Message Passing Interface 33 / 98

The source and dest arguments

In a call to MPI_Send, the dest argument is the rank of the
process to which the data is to be transmitted.

Similarly, the source argument in the call to MPI_Recv is the
rank of the process from which data is to be received.

receivers can use MPI_ANY_SOURCE

status.MPI_SOURCE is the actual source, and
status.MPI_TAG the actual tag.

James Davenport Message Passing Interface 34 / 98

Datatypes in MPI

As MPI does not require communicating processes to use the
same representation of a datatype, it needs to keep track of
possible datatypes. This facilitates:

parallel computations in heterogeneous environments
porting of parallel programs between machines using different
representations of basic datatypes.

MPI requires that all basic datatypes in FORTRAN and C
have a corresponding MPI datatype.

The programmer can construct data types for struct/type
etc.

James Davenport Message Passing Interface 35 / 98

C MPI Datatypes

Note that whether char is signed is implementation-dependent for
C/C++, not for MPI.

James Davenport Message Passing Interface 36 / 98

Fortran MPI Datatypes

In a FORTRAN program, there might be complications if your
program uses variables of non-standard size: see
MPI_TYPE_CREATE_F90_REAL

James Davenport Message Passing Interface 37 / 98

MPI BYTE and MPI PACKED

MPI_BYTE and MPI_PACKED are the only elementary datatypes
common to Fortran and C.

A value of type MPI_BYTE consists of a byte (i.e. 8 bits).

A byte is NOT interpreted and is different from a character.

Different machines may have different representations for
characters, or may use more than one byte to represent
characters (UTF-8; Chinese etc.)

James Davenport Message Passing Interface 38 / 98

Datatypes convert representations, not types

The MPI datatype specified in the send and receive calls must
be the same.

MPI Datatypes selected using the MPI_TYPE_CREATE_F90_*

calls must have identical p and r values —- it is not enough
that the selected variable has the same KIND value.

MPI communication never entails type conversions, e.g. from
INTEGER to REAL.

If you need to convert the data, you can always do so before
sending it.

MPI communication is guaranteed to handle representation
conversions in a (machine) heterogeneous environment
correctly.

James Davenport Message Passing Interface 39 / 98

The tag and communicator

The message tag can be used to distinguish various message
types (like sorting interesting mail from junk).

The tag is an integer in the range 0,...,UB, where the value of
UB can be found by querying the predefined constant
MPI_TAG_UB.

The standard states that UB must be at least 32,767.

The communicator is a handle to the group of processes
involved in the communication. E.g. MPI_COMM_WORLD

James Davenport Message Passing Interface 40 / 98

Message matching rules

When a message posted by a send has been collected by a
receive, the message is said to have completed.

The entire envelope (dest/source, datatype, tag and
communicator) must match between the send and receive for
the message to complete.

The count and the data buffer, buf, are allowed to differ

James Davenport Message Passing Interface 41 / 98

Wildcards in receives

If a message from any source is acceptable to a receiver, the
wildcard source MPI_ANY_SOURCE can be used in a call to
MPI_Recv.

Similarly, the receive can specify the wildcard tag
MPI_ANY_TAG to match any tag.

Although sometimes very useful, they can lead to mistakes —
the programmer needs to consider whether the receive could
potentially make any undesired matches with send calls.

If a wildcard is used for the source or tag argument, their
actual values can be found from the status argument.

James Davenport Message Passing Interface 42 / 98

Blocking communication

MPI_Send and MPI_Recv are blocking calls. This means that

MPI_Send does not return until the data in the send buffer
(i.e. the variable in the user program) can be safely changed.

� This does not necessarily mean that it’s arrived at its
destination. It may be in an internal system buffer used by
MPI (especially with offload adaptors).

MPI_Recv does not return until the receive buffer (i.e. the
variable in the user program) contains all the requested data.

� i.e. the complete message that was sent, which may have
fewer items than the count value the receiver specified.

James Davenport Message Passing Interface 43 / 98

Deadlocks, a new type of bug

When a process makes a call to MPI_Recv, it will wait
patiently until a matching send is posted.

If the matching send is never posted, the receive will wait
forever

* or, in practice, until the system crashes or some time-limit on
the job is exceeded.

� Hence advice to use a 1-minute job limit when debugging this!

This introduces a new type of bug that the programmer needs
to be aware of.

� Deadlocks!

James Davenport Message Passing Interface 44 / 98

Did your program work?

My program’s kernel was

MPI_Send(send,strlen(send)+1, //+1 to send the terminator

MPI_CHAR,1-id, // 0 talks to 1, 1 talks to 0

0,MPI_COMM_WORLD);

MPI_Recv(receive,20,MPI_CHAR,1-id,0,MPI_COMM_WORLD,&status);

MPI_Get_count(&status,MPI_CHAR,&receive_len);

It worked at Cambridge, but just hung at Bath.
0 and 1 are standing at the doors of their offices, waiting for
messengers to take envelopes.

If a messenger decides to take 0’s envelope for 1

Then 0 will wait for a message from 1, which happens

And when 1’s message is taken she will receive 0’s message

But The messengers could sit in their room, as there are no
receives pending

Depends on the MPI implementation (and length of messages . . .)
James Davenport Message Passing Interface 45 / 98

Guaranteed deadlock example (C++)

#include <mpi.h>

extern int rank, size;

int talk_to_neighbour(char *sdat, char *rdat, int n){

int talk_to;

MPI_Status status;

talk_to = (rank%2) ? rank-1 : rank+1;

if (talk_to < size) {

MPI_Recv(rdat, n, MPI_CHAR, talk_to, 0,

MPI_COMM_WORLD, &status);

cout<<"Proc "<<rank<<" heard"<<rdat<<" from "<<talk_to;

MPI_Send(sdat, n, MPI_CHAR, talk_to, 0,

MPI_COMM_WORLD);

}

return;

}

James Davenport Message Passing Interface 46 / 98

Guaranteed deadlock example (Fortran)

SUBROUTINE talk_to_neighbour(rank, size, sdat, rdat, n)

USE MPI

IMPLICIT NONE

INTEGER, INTENT(IN) :: rank, size, n

CHARACTER(LEN=*), INTENT(IN) :: sdat, rdat

INTEGER :: talk_to, ierr

INTEGER, DIMENSION(MPI_STATUS_SIZE) :: status

IF (MOD(rank,2) == 0) THEN

talk_to = rank+1

ELSE

talk_to = rank-1

END IF

IF (talk_to < size) THEN

CALL MPI_RECV(rdat, n, MPI_CHARACTER, talk_to, 0, &

MPI_COMM_WORLD, status, ierr)

WRITE(*,*) ’Proc ’, rank,’ heard ’, rdat, ’ from ’, talk_to

CALL MPI_SEND(sdat, n, MPI_CHARACTER, talk_to, 0, &

MPI_COMM_WORLD, ierr)

END IF

RETURN

END SUBROUTINE talk_to_neighbour
James Davenport Message Passing Interface 47 / 98

Deadlock Illustrated

James Davenport Message Passing Interface 48 / 98

Deadlock avoidance example (C++)

if (talk_to < size) {

if (rank%2 == 0){

MPI_Recv(rdat, n, MPI_CHAR, talk_to, 0,

MPI_COMM_WORLD, &status);

MPI_Send(sdat, n, MPI_CHAR, talk_to, 1,

MPI_COMM_WORLD);

}

else {

MPI_Send(sdat, n, MPI_CHAR, talk_to, 0,

MPI_COMM_WORLD);

MPI_Recv(rdat, n, MPI_CHAR, talk_to, 1,

MPI_COMM_WORLD, &status);

}

cout<<"Proc "<<rank<<" heard"<<rdat<<" from "<<talk_to;

}

...

James Davenport Message Passing Interface 49 / 98

Deadlock avoidance example (Fortran)

...

IF (talk_to < size) THEN

IF (MOD(rank,2) == 0) THEN

CALL MPI_RECV(rdat, n, MPI_CHARACTER, talk_to, &

0, MPI_COMM_WORLD, status, ierr)

CALL MPI_SEND(sdat, n, MPI_CHARACTER, talk_to, &

1, MPI_COMM_WORLD, ierr)

ELSE

CALL MPI_SEND(sdat, n, MPI_CHARACTER, talk_to, &

0, MPI_COMM_WORLD, ierr)

CALL MPI_RECV(rdat, n, MPI_CHARACTER, talk_to, &

1, MPI_COMM_WORLD, status, ierr)

END IF

WRITE(*,*) ’Proc ’, rank,’ heard ’, rdat,’ from ’, talk_to

END IF

...

James Davenport Message Passing Interface 50 / 98

Combined send and receive

In this example, MPI_Send and MPI_Recv could be carefully
ordered to avoid deadlocks. This can be difficult.

MPI provides a very useful combined send and receive
function, MPI_Sendrecv, which is “guaranteed not to
deadlock”.

� If you read the spec. §3.10 näıvely. JHD isn’t convinced (for
N > 2). See [Squ09] for an example (using multiple tags)
that can deadlock with N = 2.

This routine sends a message and posts a receive, then blocks
until the send data buffer is free and the receive data buffer
has received its data.

The analogy is the office worker with an envelope to send in
one hand and a free hand ready to receive: these must both
happen, but in either order.

Other ways to avoid deadlocks include using buffered sends
and non-blocking communication, both described later

James Davenport Message Passing Interface 51 / 98

Different types of blocking send

Standard send: MPI_Send may or may not use a system buffer
according to implementation and message length

Buffered send: MPI_Bsend message is buffered using
application buffer space, supplied by the user using
MPI_Buffer_attach. May complete before matching receive
is posted

Synchronous send: MPI_Ssend won’t complete until a
matching receive is posted and the send buffer can be re-used.
Completion implies that the receive has started.

Ready send: MPI_Rsend should only be used if the matching
receive has already been posted. The programmer needs to be
certain that this is the case. Rarely useful. Always correct to
replace with a standard send

James Davenport Message Passing Interface 52 / 98

Non-overtaking but (potentially) unfair

Messages are dealt with in order but not necessarily fairly.

Non-overtaking: If a sender posts two messages to the same
receiver and a receive operation matches both messages, the
message posted first will be chosen.

Unfair: No matter how long a send has been pending, it can
always be overtaken by a message sent from another process.

James Davenport Message Passing Interface 53 / 98

Blocking and Non-blocking Calls

So far we have only dealt with blocking MPI.

Blocking return from the call indicates that resources
(primarily, the variables containing the data being
sent/received) can safely be re-used.

Non-blocking the call may return before the operation completes,
and before the user can safely re-use the resources
specified in the call.

Note that non-blocking doesn’t speed up the message, rather it
just lets one use the latency/overheads

James Davenport Message Passing Interface 54 / 98

Non-blocking communications

Each type of send and receive has a non-blocking counterpart:

standard: MPI_Send ⇒ MPI_Isend

buffered: MPI_Bsend ⇒ MPI_Ibsend

synchronous: MPI_Ssend ⇒ MPI_Issend

ready: MPI_Rsend ⇒ MPI_Irsend

receive: MPI_Recv ⇒ MPI_Irecv

The additional ‘I’ in the name stands for ‘immediate’ (as in
immediate return).

These calls may return before the operation has completed.
You cannot safely reuse resources (such as the data buffer)
until you know that it has completed.

Need to test for completion using, for example, MPI_WAIT or
MPI_TEST.

Any type of send routine can be paired with any type of
receive routine

� but mixing may cause programmer confusion!

James Davenport Message Passing Interface 55 / 98

Analogy

We likened MPI_Send to an office worker having to stand at the
door waiting for a messenger to collect the envelope. By analogy,
MPI_Isend is rather like having an out-tray: the worker puts the
envelope in the out tray and carries on working.
Similarly, MPI_Irecv is rather like having an in-tray: the worker
puts a post-it saying “happy to receive messages about X from Y”,
and then the messenger can leave an envelope in the tray.
Unsolicited messages are not delivered.

James Davenport Message Passing Interface 56 / 98

Bindings of MPI Isend/MPI Irecv

We need to be able to refer to a call that’s not completed

MPI_Isend is identical to MPI_Send, except for one additional
argument, request.

Same for the variants

MPI_Irecv does not have the status argument that MPI_recv
has but does have a new argument, request.

In both cases, the request argument returns a handle to the
MPI_Isend/MPI_Irecv call and so provides a way to test
whether that call has completed

Is of type MPI_Request in C/C++ and INTEGER in Fortran.

James Davenport Message Passing Interface 57 / 98

Waiting for a call to complete

MPI_WAIT – waits until the call has completed.

int MPI_Wait(MPI_Request *request, MPI_Status *status);

SUBROUTINE MPI_WAIT(request, status, ierror)

INTEGER :: request

INTEGER :: status(MPI_STATUS_SIZE), ierror

A non-blocking send immediately followed by MPI_Wait is
functionally equivalent to a blocking send: it’s the ability to
do things between send and wait that’s the difference with
non-blocking

James Davenport Message Passing Interface 58 / 98

Testing for completion of a call

MPI_TEST — tests for completion of a call and returns
straight away.

int MPI_Test(MPI_Request *request, int *flag,

MPI_Status *status);

SUBROUTINE MPI_TEST(request, flag, status, ierror)

INTEGER :: request

LOGICAL :: flag

INTEGER :: status(MPI_STATUS_SIZE), ierror

James Davenport Message Passing Interface 59 / 98

Multiple Completions

When a number of non-blocking messages have been posted,
it is often useful to wait/test for the completion of a number
of these at a time.

MPI_Waitall/MPI_Testall — waits/tests for the
completion of all listed pending operations.

MPI_Waitany/MPI_Testany — waits/tests for the
completion of any one of the listed pending operations,
returning the index to the handle of one completed message.

MPI_Waitsome/MPI_Testsome — waits/tests for the
completion of at least one of the listed pending operations,
returning the indices to the handles of all completed messages.

� “Any” can be dangerous in that you can miss completions.

James Davenport Message Passing Interface 60 / 98

Timing

C++ (double) MPI_Wtime()

Fortran DOUBLE PRECISION MPI_WTIME()

� These really are functions, unlike practically
everything else in MPI

Returns number of (elapsed) seconds since a time in the past
(which is guaranteed not to change during the life of the process).
Standard operation:

old=MPI_Wtime();

<code>

t=MPI_Wtime();

std.cout << "time taken" << t-old <<"seconds";

This is “per process”: we’ll see how to add them up.

James Davenport Message Passing Interface 61 / 98

Question 6 Pseudocode

<initialise>

base=MPI_Wtime();

vector<double> timestamps(size);

if (rank==0) {

timestamps[0]=MPI_Wtime()-base;

MPI_Send(...)

MPI_Recv(...) }

else {

MPI_Recv(...)

timestamps[rank]=MPI_Wtime()-base;

MPI_Send(...); }

James Davenport Message Passing Interface 62 / 98

MPI Datatypes

MPI provides a mechanism for user-defined data types, analogous
to struct in C or F90 derived data types.

� but they needn’t be contiguous in memory, that is to say that
MPI_Send can implicitly do a “gather”, and MPI_Recv a
“scatter”.

MPI “normally” deals with the rounding rules, so a double

followed by 3 char would actually have size 16 to align
properly.

There’s a lot, and this talk is just scratching the surface.

James Davenport Message Passing Interface 63 / 98

Contiguous Types

This makes a new type which is count copies of an existing type,
which are contiguous in memory (the easy case!)

int MPI_Type_contiguous(int count, MPI_Datatype oldtype,

MPI_Datatype *newtype)

MPI_TYPE_CONTIGUOUS(COUNT, OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, OLDTYPE, NEWTYPE, IERROR

Since there are count fields in MPI_Send and MPI_Recv, this is
only needed as part of more general constructions.

James Davenport Message Passing Interface 64 / 98

Strided Vector Types

e.g. “two doubles, then skip 4, then two more . . . with a total of
10 lots, i.e. 20 doubles”

int MPI_Type_vector(int count, int blocklength, int stride,

MPI_Datatype oldtype, MPI_Datatype *newtype)

MPI_TYPE_VECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR

So we would have

MPI_Type_vector(10,2,2+4,MPI_DOUBLE,&my_type)

� Note the “2+4”: MPI wants the stride, i.e. the distance
between successive block starts.

! stride can be negative, and −1 does an array backwards

MPI_Type_create_hvector takes the stride in bytes
(portability warning!)

James Davenport Message Passing Interface 65 / 98

Indexed Vector Types

e.g. “3 doubles starting 4 in, then 1 double starting 0 in”

int MPI_Type_indexed(int count, const int array_of_blocklengths[],

const int array_of_displacements[], MPI_Datatype oldtype,

MPI_Datatype *newtype)

MPI_TYPE_INDEXED(COUNT, ARRAY_OF_BLOCKLENGTHS,

ARRAY_OF_DISPLACEMENTS,OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*),

ARRAY_OF_DISPLACEMENTS(*),OLDTYPE, NEWTYPE, IERROR)

So (in pseudo-code)

MPI_Type_indexed(2,[3,1],[4,0],MPI_DOUBLE,&new_type);

� Note the count is the number of blocks, not items.

MPI_Type_create_hindexed has the displacements (only) in
bytes.

MPI_Type_create_indexed_block has one constant block
length

James Davenport Message Passing Interface 66 / 98

Structured Vector Types

As above, but each block can be of a different data type. e.g. “3
doubles starting 64 bytes in, then 7 char starting 0 in”

int MPI_Type_create_struct(int count,

const int array_of_blocklengths[],

const MPI_Aint array_of_displacements[],

const MPI_Datatype array_of_types[], MPI_Datatype *newtype)

MPI_TYPE_CREATE_STRUCT(COUNT, ARRAY_OF_BLOCKLENGTHS,

ARRAY_OF_DISPLACEMENTS, ARRAY_OF_TYPES, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_TYPES(*),

NEWTYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ARRAY_OF_DISPLACEMENTS(*)

So (in pseudo-code)

MPI_Type_indexed(2,[3,7],[64,0],[MPI_DOUBLE,MPI_CHAR],&new_type);

James Davenport Message Passing Interface 67 / 98

Sub-arrays

“A 2× 3× 4 subarray of a 20× 30× 40 C array, starting at
(5, 6, 7)”

int MPI_Type_create_subarray(int ndims, const int

array_of_sizes[],const int array_of_subsizes[], const int

array_of_starts[],int order, MPI_Datatype oldtype,

MPI_Datatype *newtype)

MPI_TYPE_CREATE_SUBARRAY(NDIMS, ARRAY_OF_SIZES, ARRAY_OF_SUBSIZES,

ARRAY_OF_STARTS, ORDER, OLDTYPE, NEWTYPE, IERROR)

INTEGER NDIMS, ARRAY_OF_SIZES(*), ARRAY_OF_SUBSIZES(*),

ARRAY_OF_STARTS(*), ORDER, OLDTYPE, NEWTYPE, IERROR

So (in pseudo-code)

MPI_Type_create_subarray(3,[20,30,40],[2,3,4],[5,6,7],

MPI_ORDER_C,MPI_DOUBLE,&new_type);

� Fortran users need to subtract 1 from the starts

James Davenport Message Passing Interface 68 / 98

Collective Communication

A communication involving a group of processes is called
collective.
The group of processes involved is defined by the
communicator used in the call.
All collective calls must be made by every process in the
group associated with the communicator.

James Davenport Message Passing Interface 69 / 98

Barrier Synchronization

It may be important that all processes have finished their part
of a task before any process proceeds or that all processes
begin work at the same time.

The routine MPI_Barrier is used to synchronize a group of
processes. No data are transferred.

int MPI_Barrier(MPI_comm comm);

SUBROUTINE MPI_BARRIER(COMM, IERROR)

INTEGER :: COMM, IERROR

A call to MPI_Barrier does not return until all processes
associated with the communicator comm have called it.

If they don’t, then execution will deadlock.

It is the programmer’s responsibility to make sure they do.

James Davenport Message Passing Interface 70 / 98

Barrier Illustrated

James Davenport Message Passing Interface 71 / 98

Broadcast Illustrated

James Davenport Message Passing Interface 72 / 98

Broadcasting data

MPI_Bcast copies data from a specified root process to all
processes in a group.

As with all collective calls, this must be called by every
process associated with the communicator.

int MPI_Bcast(void *buffer, int count,

MPI_Datatype datatype, int root, MPI_Comm comm);

SUBROUTINE MPI_BCAST(BUFFER, COUNT, DATATYPE, ROOT, &

COMM, IERR)

<type> :: BUFFER(*)

INTEGER :: COUNT, DATATYPE, ROOT, COMM, IERR

James Davenport Message Passing Interface 73 / 98

Broadcast — C example

include <mpi.h>

include "mouse.h"

extern int size, rank;

int get_calc_type(window_t * w){

int calc_type;

if (rank == 0)

get_mouse_event(w,&calc_type);

MPI_Bcast(&calc_type, 1, MPI_INT, 0, MPI_COMM_WORLD);

return calc_type;

}

James Davenport Message Passing Interface 74 / 98

Broadcast — Fortran example

SUBROUTINE get_calc_type(rank, size, w, calc_type)

IMPLICIT NONE

INCLUDE "mpif.h"

INCLUDE "mouse.h"

INTEGER, INTENT(IN) :: rank, size

INTEGER, INTENT(OUT) :: calc_type

TYPE (WINDOW_T), INTENT(IN) :: w

INTEGER :: ierr

IF (rank == 0) CALL get_mouse_event(w, calc_type)

CALL MPI_BCAST(calc_type, 1, MPI_INTEGER, 0, &

MPI_COMM_WORLD, ierr)

RETURN

END SUBROUTINE get_calc_type

James Davenport Message Passing Interface 75 / 98

Gather Illustrated

James Davenport Message Passing Interface 76 / 98

MPI Gather

int MPI_Gather(void *sendbuf, int sendcount,

MPI_Datatype sendtype, void *recvbuf, int recvcount,

MPI_Datatype recvtype, int root, MPI_Comm comm);

SUBROUTINE MPI_GATHER(SENDBUF, SENDCOUNT, SENDTYPE, &

RECVBUF, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR)

<sendtype> :: SENDBUF(*)

<recvtype> :: RECVBUF(*)

INTEGER :: SENDCOUNT, SENDTYPE

INTEGER :: RECVCOUNT, RECVTYPE

INTEGER :: ROOT, COMM, IERROR

James Davenport Message Passing Interface 77 / 98

MPI Gather

After a call to MPI_Gather, recvbuf on process root

contains the data from each sendbuf in rank order

includes the data from its own sendbuf.

� Note that recvcount is the amount of data expected to be
received from each process, not the total amount.

MPI_Gatherv has an array of recvcount so you can work out
what has been received

If every process, rather than a single root process, requires the
gathered data, then use MPI_Allgather.

This is functionally equivalent to an MPI_Gather followed by
an MPI_Bcast.

There’s also a converse MPI_Scatter.

James Davenport Message Passing Interface 78 / 98

Reduction

Suppose each process has computed xi , and what we want is

X =
∑size−1

i=0 xi .

This is reduction in MPI-speak.

Can be done element-by-element on arrays

Needn’t be + [but must be mathematically associative —
order of evaluation doesn’t matter]

The order in which the reduction is done is unspecified, so the
result is guaranteed to be the same only to within the
accuracy of round-off errors (see Arithmetic lecture)

James Davenport Message Passing Interface 79 / 98

MPI Reduction routines

There are two standard routines for performing global reduction
operations.

MPI_Reduce performs the reduction and returns the result to
a specific process.

MPI_Allreduce performs the reduction and returns the result
to all the processes associated with the communicator.

+ Equivalent to MPI_Reduce followed by MPI_Bcast.

James Davenport Message Passing Interface 80 / 98

MPI Reduce operations: type MPI Op

Note that all operators are usable from all languages, even if
there’s no language equivalent

James Davenport Message Passing Interface 81 / 98

MPI Reduce

int MPI_Reduce(void *sendbuf, void *recvbuf,

int count, MPI_Datatype datatype,

MPI_Op op, int root, MPI_Comm comm);

SUBROUTINE MPI_REDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, &

OP, ROOT, COMM, IERROR)

<type> :: SENDBUF(*), RECVBUF(*)

INTEGER :: COUNT, DATATYPE, OP

INTEGER :: ROOT, COMM, IERROR

James Davenport Message Passing Interface 82 / 98

MPI Allreduce

int MPI_Allreduce(void *sendbuf,

void *recvbuf, int count,

MPI_Datatype datatype, MPI_Op op,

MPI_Comm comm);

SUBROUTINE MPI_ALLREDUCE(SENDBUF, RECVBUF,

COUNT, DATATYPE, OP, COMM, IERROR)

<type> :: SENDBUF(*), RECVBUF(*)

INTEGER :: COUNT, DATATYPE, OP, COMM, IERROR

Note no root argument to MPI_Alleduce.

James Davenport Message Passing Interface 83 / 98

Reduce-Scatter routines

There are also two MPI reduction routines where the result of
the reduction operation is scattered amongst all the processes
in the group.

MPI_Reduce_scatter_block is functionally equivalent to an
MPI_Reduce followed by an MPI_Scatter.

MPI_Reduce_scatter is functionally equivalent to an
MPI_Reduce followed by an MPI_Scatterv.

Direct implementations may run faster than calling the reduce
and scatter separately.

James Davenport Message Passing Interface 84 / 98

Non-blocking collectives

All these collective operations are blocking (as if broken down into
Send/Recv primitives)
There are also non-blocking versions MPI_Ireduce etc., with
Test/Wait needed as necessary.
Non-blocking Barrier might seem a bit odd!

James Davenport Message Passing Interface 85 / 98

Barrier Illustrated

James Davenport Message Passing Interface 86 / 98

Ibarrier Illustrated

Here five processes can do varying amounts of useful work after
calling MPI_Ibarrier

James Davenport Message Passing Interface 87 / 98

Topologies

Formally, the fact that each process has a rank is sufficient: this
lets us define any structure we want. But

Inefficient (and possibly error-prone)

We don’t tell MPI what we want to do.

We want to define the virtual topology of our tasks (say a 3D grid)
and let MPI map this to the real topology of the hardware (which
isn’t known until run-time and the allocated nodes are known).
All topologies can be defined by a graph, but in practice many are
Cartesian, and specifying the full graph is tedious. General graph
topologies are specified by MPI_Graph_create, or
MPI_Dist_graph_create_adjacent if each node only knows its
neighbours, rather than the full topology.

James Davenport Message Passing Interface 88 / 98

One possible topology

James Davenport Message Passing Interface 89 / 98

One possible topology

James Davenport Message Passing Interface 90 / 98

MPI Cart create

Takes the old communicator comm_old and builds a Cartesian
communicator.

int MPI_Cart_create(MPI_Comm comm_old, int ndims, const int dims[],

const int periods[], int reorder, MPI_Comm *comm_cart)

MPI_CART_CREATE(COMM_OLD, NDIMS, DIMS, PERIODS, REORDER, COMM_CART, IERROR)

INTEGER COMM_OLD, NDIMS, DIMS(*), COMM_CART, IERROR

LOGICAL PERIODS(*), REORDER

reorder says whether the ranks in the new communicator
can be different.

periods says (for each dimension separately) whether it’s
periodic

� processes that don’t fit get MPI_COMM_NULL as the new
communicator

James Davenport Message Passing Interface 91 / 98

Topology-aware MPI code checklist

1 Include the appropriate header file or module

2 Initialise the MPI environment using MPI_Init

3 Initialise the topology, with reorder true

4 Each MPI process must find out the total number of processes
using MPI_Comm_size

5 Each MPI process must find out its own unique rank using
MPI_Comm_rank

* Now we can do the actual work

6 Shutdown the MPI environment using MPI_Finalize

James Davenport Message Passing Interface 92 / 98

A topology means we have neighbours

We specify the direction (0 ≤direction<ndims, even in Fortran)
and a displacement (generally 1)

int MPI_Cart_shift(MPI_Comm comm, int direction, int disp,

int *rank_source, int *rank_dest)

MPI_CART_SHIFT(COMM, DIRECTION, DISP, RANK_SOURCE,

RANK_DEST, IERROR)

INTEGER COMM, DIRECTION, DISP, RANK_SOURCE, RANK_DEST, IERROR

We get back the ranks of the source and destination for a
shift of that type.

� MPI_PROC_NULL if it doesn’t exist: this is legitimate as a
source or destination (always giving 0 objects)

James Davenport Message Passing Interface 93 / 98

Talking to your neighbours

James Davenport Message Passing Interface 94 / 98

Collectives

Some of these generalise to topologies, and provide a function I
can’t mimic without topologies.

int MPI_Neighbor_allgather(const void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, int recvcount,

MPI_Datatype recvtype, MPI_Comm comm)

MPI_NEIGHBOR_ALLGATHER(SENDBUF, SENDCOUNT, SENDTYPE,

RECVBUF, RECVCOUNT,RECVTYPE, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR

The send buffer is sent to each neighboring process and the l-th
block in the receive buffer is received from the l-th neighbor.
Also allgatherv version, non-blocking versions, and a
MPI_Neighbor_alltoall where different items can be sent to
different neighbours.

James Davenport Message Passing Interface 95 / 98

Bibliography I

L. Anton, M. Ashworth, X. Guo, S. Pickles, A. Porter, and
A. Sunderland.
Exploiting multi-core processors for scientific applications using
hybrid MPI-OpenMP.
Technical Report DL-TR-2015-002, Daresbury Labs, 2015.

Yuichiro Ajima, Takahiro Kawashima, Takayuki Okamoto,
Naoyuki Shida, Kouichi Hirai, Toshiyuki Shimizu, Shinya
Hiramoto, Yoshiro Ikeda, Takahide Yoshikawa, Kenji Uchida,
et al.
The Tofu Interconnect D.
In 2018 IEEE International Conference on Cluster Computing
(CLUSTER), pages 646–654. IEEE, 2018.

James Davenport Message Passing Interface 96 / 98

Bibliography II

M. Allalen.
Best Practice Guide - Modern Interconnects.
http://www.prace-ri.eu/IMG/pdf/

Best-Practice-Guide-Modern-Interconnects.pdf, 2019.

M. Ashworth.
Performance of Coarray Fortran vs MPI in a CFD Application.
https://www.softwareoutlook.ac.uk/sites/www.

softwareoutlook.ac.uk/files/Ashworth_Poster_

PGAS14_08Oct14.pdf, 2014.

J. Bachan, S.B. Baden, S. Hofmeyr, M. Jacquelin, A. Kamil,
D. Bonachea, P.H. Hargrove, and H. Ahmed.
UPC++: A High-Performance Communication Framework for
Asynchronous Computation.
In 2019 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 963–973, 2019.

James Davenport Message Passing Interface 97 / 98

http://www.prace-ri.eu/IMG/pdf/Best-Practice-Guide-Modern-Interconnects.pdf
http://www.prace-ri.eu/IMG/pdf/Best-Practice-Guide-Modern-Interconnects.pdf
https://www.softwareoutlook.ac.uk/sites/www.softwareoutlook.ac.uk/files/Ashworth_Poster_PGAS14_08Oct14.pdf
https://www.softwareoutlook.ac.uk/sites/www.softwareoutlook.ac.uk/files/Ashworth_Poster_PGAS14_08Oct14.pdf
https://www.softwareoutlook.ac.uk/sites/www.softwareoutlook.ac.uk/files/Ashworth_Poster_PGAS14_08Oct14.pdf

Bibliography III

Message Passing Interface Forum.
MPI: A Message-Passing Interface Standard Version 3.1.
http:

//mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf,
2015.

J. Squyres.
SEND, ISEND, or SENDRECV. . . ?
https://web.archive.org/web/20160316101539/http:

//blogs.cisco.com/performance/send_isend_or_

sendrecv, 2009.

James Davenport Message Passing Interface 98 / 98

http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://web.archive.org/web/20160316101539/http://blogs.cisco.com/performance/send_isend_or_sendrecv
https://web.archive.org/web/20160316101539/http://blogs.cisco.com/performance/send_isend_or_sendrecv
https://web.archive.org/web/20160316101539/http://blogs.cisco.com/performance/send_isend_or_sendrecv

