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Better. This used to work, but not any more: processors have
pretty much levelled off at around the 3-5GHz mark and don’t
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When there are 100 people running about they will get in each
others’ way; fight over limited resources like bricks; some will
have to sit and twiddle their thumbs while they wait for others to
finish: you can’t plumb a bathroom until the bathroom has been
built

And so on

And when there are more workers, you will need more
managers — not building themselves but making sure workers
are doing the right things

Simply adding more people won’t necessarily get it done faster

Sometimes adding more people will make it go slower as they
get in each others’ way
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• it takes ten people 100 months to build 100 houses

This is much more believable: adding more people we can build
more houses simultaneously

In reality, we won’t get a perfect speedup like this, due to
resource contention issues, but we can get pretty close
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There is the basic time it takes to solve the problem: then there
are substantial overheads in the coordination of the parts of the
solution

The overheads can easily be larger than the problem itself

This is the reality of parallel computing

Often a parallel version of a small problem will be slower than
the sequential version

Only when the problem is made large enough to overcome the
overheads will it become faster than doing it sequentially
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Ideally, we want the cost of management of parallelism to be
minimal

But, if you are not careful, or the problem is such that this is
inevitable, we can find that the cost of management of
parallelism can dominate
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So, “concurrent” means in parts, and those parts may or may
not be running simultaneously

For example, they might be scheduled one at a time on a single
core CPU)

And “parallel” when we are explicitly talking about stuff running
at the same time on multiple pieces of hardware

Concurrency is about dealing with lots of things at
once. Parallelism is about doing lots of things at once.
Rob Pike



Background

So, “concurrent” means in parts, and those parts may or may
not be running simultaneously

For example, they might be scheduled one at a time on a single
core CPU)

And “parallel” when we are explicitly talking about stuff running
at the same time on multiple pieces of hardware

Concurrency is about dealing with lots of things at
once. Parallelism is about doing lots of things at once.
Rob Pike



Background

So, “concurrent” means in parts, and those parts may or may
not be running simultaneously

For example, they might be scheduled one at a time on a single
core CPU)

And “parallel” when we are explicitly talking about stuff running
at the same time on multiple pieces of hardware

Concurrency is about dealing with lots of things at
once. Parallelism is about doing lots of things at once.
Rob Pike



Background

So, “concurrent” means in parts, and those parts may or may
not be running simultaneously

For example, they might be scheduled one at a time on a single
core CPU)

And “parallel” when we are explicitly talking about stuff running
at the same time on multiple pieces of hardware

Concurrency is about dealing with lots of things at
once. Parallelism is about doing lots of things at once.
Rob Pike



Background

Asynchronous programming is an example of non-parallel
concurrency.

This has been around for a long time in many disguises:
futures, promises, coroutines, generators and others

The idea here is that when some code would block, e.g.,
waiting for some I/O, rather than the processor sitting and
waiting doing nothing, the code should direct the processor to
execute some other task

Later, when the I/O is ready, the processor can come back to
where it was and continue from there
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The code makes its own decision on what to do: moving
between different parts of code, ensuring the processor is
always actively working

This is scheduling within the code, without involvement of the
Operating System

As we know, any call to the OS entails a large amount of CPU
overhead, which we avoid here

These are major points of async programming: avoid OS
overheads and keep the processor busy
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Python and more

Constructs in the languages hide varying amounts of the gory
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Why is parallelism an important topic these days?

There is a famous “law” that describes how hardware has
progressed over the years

It is an observation on how the components in integrated
circuits were shrinking over time as engineering advances were
made:

Moore’s Law (1965):

the number of transistors in a chip doubles every two
years
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There are a number of points to be made

• it’s not a “law” in any real sense, but an observation on how
chips progress

• Moore did not say speed doubles, as often mis-quoted
• some variants say “18 months” instead of “two years”, but

the history of this statement is complex
• it is somewhat self-fulfilling, as engineers tend to use it as a

target for the development of each next generation of chips
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than lots of smaller chips

So CPUs tend to keep to the same area, meaning a CPU will
have more and more transistors, not that we have more smaller
CPUs
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multicore processors

Chips with more than one CPU on them
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So now chips in new PCs are all multicore

Dual and quad core is everywhere; 64 core processors are
around; 128 cores are arriving soon (PC-style architecture)

Many cores is great, but we are going to have to find out how to
make best use of them

But simply having two CPUs generally won’t make our program
go twice as fast: overheads like interference and
communication between parts of the computation is going to be
a problem
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To repeat: all this hardware is all wonderful except for one point

This computational power is only useful if we can write
the software to exploit it

Your phone might have eight cores, but it is likely very little
software it runs is capable of using all their power
simultaneously

Software is far behind hardware and has a lot to do to catch up

We are still in the dark regarding parallel software
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Background
A Brief Aside

Note that Moore’s Law also applies to memory: memory chips
have been doubling in capacity at a similar (perhaps faster?)
rate

But the speed of delivery of data from memory to processor(s)
has always lagged behind the speed of processors

Giving a problematic gap between speed of processors and
speed of memory (both in bandwidth and latency)

The gap has decreased a little over the last few years, but on
the other hand multiple processors need more memory
bandwidth

We shall see memory is a big bottleneck in parallel systems
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Moore’s Law

Moore’s Law has been going for 58 years so far

It must come to an end at some point: the end has been
predicted many times in the past, but so far technology has
kept moving onwards

Chip designers think it will keep going for several years yet,
some predict decades

Moore himself thinks perhaps it will last until 2025

And — looking at Intel’s products the last few years — it might
currently be taking 5 years to double transistor counts
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Exercise Some current top end chips have over 100 billion
transistors, and 7000 cores. If Moore’s Law continued, how
many transistors and cores would they have in 10 years? In 20
years?

Exercise Read about Moore’s Second Law (aka Rock’s Law)
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Moore’s Law

Software is getting slower more rapidly than hardware
is becoming faster
Wirth’s Law

Software efficiency halves every 18 months, compen-
sating Moore’s law
David May

The speed of software halves every 18 months
Gates’ Law

What Intel giveth, Microsoft taketh away
Anon


