
Background

You have a problem you wish to solve faster. What do you do?

1. You think hard and devise a better solution

Clearly this is a stupid thing to do. Programmers are much too
lazy to do this

2. You get a faster processor

Better. This used to work, but not any more: processors have
pretty much levelled off at around the 3-5GHz mark and don’t
seem to be getting faster

Background

You have a problem you wish to solve faster. What do you do?

1. You think hard and devise a better solution

Clearly this is a stupid thing to do. Programmers are much too
lazy to do this

2. You get a faster processor

Better. This used to work, but not any more: processors have
pretty much levelled off at around the 3-5GHz mark and don’t
seem to be getting faster

Background

You have a problem you wish to solve faster. What do you do?

1. You think hard and devise a better solution

Clearly this is a stupid thing to do. Programmers are much too
lazy to do this

2. You get a faster processor

Better. This used to work, but not any more: processors have
pretty much levelled off at around the 3-5GHz mark and don’t
seem to be getting faster

Background

You have a problem you wish to solve faster. What do you do?

1. You think hard and devise a better solution

Clearly this is a stupid thing to do. Programmers are much too
lazy to do this

2. You get a faster processor

Better. This used to work, but not any more: processors have
pretty much levelled off at around the 3-5GHz mark and don’t
seem to be getting faster

Background

You have a problem you wish to solve faster. What do you do?

1. You think hard and devise a better solution

Clearly this is a stupid thing to do. Programmers are much too
lazy to do this

2. You get a faster processor

Better. This used to work, but not any more: processors have
pretty much levelled off at around the 3-5GHz mark and don’t
seem to be getting faster

Background

3. You get a multicore machine and run the problem in parallel

This must be the solution!

Isn’t it?

One purpose of this Unit is to make you realise this is actually
the hardest way of doing it!

In reality, No. 1 is best, then No. 2, lastly No. 3

Background

3. You get a multicore machine and run the problem in parallel

This must be the solution!

Isn’t it?

One purpose of this Unit is to make you realise this is actually
the hardest way of doing it!

In reality, No. 1 is best, then No. 2, lastly No. 3

Background

3. You get a multicore machine and run the problem in parallel

This must be the solution!

Isn’t it?

One purpose of this Unit is to make you realise this is actually
the hardest way of doing it!

In reality, No. 1 is best, then No. 2, lastly No. 3

Background

3. You get a multicore machine and run the problem in parallel

This must be the solution!

Isn’t it?

One purpose of this Unit is to make you realise this is actually
the hardest way of doing it!

In reality, No. 1 is best, then No. 2, lastly No. 3

Background

3. You get a multicore machine and run the problem in parallel

This must be the solution!

Isn’t it?

One purpose of this Unit is to make you realise this is actually
the hardest way of doing it!

In reality, No. 1 is best, then No. 2, lastly No. 3

Background

Consider the following:

• it takes one person ten months to build one house
• it takes ten people one month to build one house
• it takes 100 people one-tenth of a month to build one house

Why is the last so implausible?

Background

Consider the following:

• it takes one person ten months to build one house

• it takes ten people one month to build one house
• it takes 100 people one-tenth of a month to build one house

Why is the last so implausible?

Background

Consider the following:

• it takes one person ten months to build one house
• it takes ten people one month to build one house

• it takes 100 people one-tenth of a month to build one house

Why is the last so implausible?

Background

Consider the following:

• it takes one person ten months to build one house
• it takes ten people one month to build one house
• it takes 100 people one-tenth of a month to build one house

Why is the last so implausible?

Background

Consider the following:

• it takes one person ten months to build one house
• it takes ten people one month to build one house
• it takes 100 people one-tenth of a month to build one house

Why is the last so implausible?

Background

When there are 100 people running about they will get in each
others’ way; fight over limited resources like bricks; some will
have to sit and twiddle their thumbs while they wait for others to
finish: you can’t plumb a bathroom until the bathroom has been
built

And so on

And when there are more workers, you will need more
managers — not building themselves but making sure workers
are doing the right things

Simply adding more people won’t necessarily get it done faster

Sometimes adding more people will make it go slower as they
get in each others’ way

Background

When there are 100 people running about they will get in each
others’ way; fight over limited resources like bricks; some will
have to sit and twiddle their thumbs while they wait for others to
finish: you can’t plumb a bathroom until the bathroom has been
built

And so on

And when there are more workers, you will need more
managers — not building themselves but making sure workers
are doing the right things

Simply adding more people won’t necessarily get it done faster

Sometimes adding more people will make it go slower as they
get in each others’ way

Background

When there are 100 people running about they will get in each
others’ way; fight over limited resources like bricks; some will
have to sit and twiddle their thumbs while they wait for others to
finish: you can’t plumb a bathroom until the bathroom has been
built

And so on

And when there are more workers, you will need more
managers — not building themselves but making sure workers
are doing the right things

Simply adding more people won’t necessarily get it done faster

Sometimes adding more people will make it go slower as they
get in each others’ way

Background

When there are 100 people running about they will get in each
others’ way; fight over limited resources like bricks; some will
have to sit and twiddle their thumbs while they wait for others to
finish: you can’t plumb a bathroom until the bathroom has been
built

And so on

And when there are more workers, you will need more
managers — not building themselves but making sure workers
are doing the right things

Simply adding more people won’t necessarily get it done faster

Sometimes adding more people will make it go slower as they
get in each others’ way

Background

When there are 100 people running about they will get in each
others’ way; fight over limited resources like bricks; some will
have to sit and twiddle their thumbs while they wait for others to
finish: you can’t plumb a bathroom until the bathroom has been
built

And so on

And when there are more workers, you will need more
managers — not building themselves but making sure workers
are doing the right things

Simply adding more people won’t necessarily get it done faster

Sometimes adding more people will make it go slower as they
get in each others’ way

Background

But we can scale in a different way:

• it takes one person ten months to build one house
• it takes ten people ten months to build ten houses
• it takes one person 100 months to build ten houses
• it takes ten people 100 months to build 100 houses

This is much more believable: adding more people we can build
more houses simultaneously

In reality, we won’t get a perfect speedup like this, due to
resource contention issues, but we can get pretty close

Background

But we can scale in a different way:

• it takes one person ten months to build one house

• it takes ten people ten months to build ten houses
• it takes one person 100 months to build ten houses
• it takes ten people 100 months to build 100 houses

This is much more believable: adding more people we can build
more houses simultaneously

In reality, we won’t get a perfect speedup like this, due to
resource contention issues, but we can get pretty close

Background

But we can scale in a different way:

• it takes one person ten months to build one house
• it takes ten people ten months to build ten houses

• it takes one person 100 months to build ten houses
• it takes ten people 100 months to build 100 houses

This is much more believable: adding more people we can build
more houses simultaneously

In reality, we won’t get a perfect speedup like this, due to
resource contention issues, but we can get pretty close

Background

But we can scale in a different way:

• it takes one person ten months to build one house
• it takes ten people ten months to build ten houses
• it takes one person 100 months to build ten houses

• it takes ten people 100 months to build 100 houses

This is much more believable: adding more people we can build
more houses simultaneously

In reality, we won’t get a perfect speedup like this, due to
resource contention issues, but we can get pretty close

Background

But we can scale in a different way:

• it takes one person ten months to build one house
• it takes ten people ten months to build ten houses
• it takes one person 100 months to build ten houses
• it takes ten people 100 months to build 100 houses

This is much more believable: adding more people we can build
more houses simultaneously

In reality, we won’t get a perfect speedup like this, due to
resource contention issues, but we can get pretty close

Background

But we can scale in a different way:

• it takes one person ten months to build one house
• it takes ten people ten months to build ten houses
• it takes one person 100 months to build ten houses
• it takes ten people 100 months to build 100 houses

This is much more believable: adding more people we can build
more houses simultaneously

In reality, we won’t get a perfect speedup like this, due to
resource contention issues, but we can get pretty close

Background

But we can scale in a different way:

• it takes one person ten months to build one house
• it takes ten people ten months to build ten houses
• it takes one person 100 months to build ten houses
• it takes ten people 100 months to build 100 houses

This is much more believable: adding more people we can build
more houses simultaneously

In reality, we won’t get a perfect speedup like this, due to
resource contention issues, but we can get pretty close

Background

Most people think parallel computing is about making things go
faster

Up to a point, but they will soon be disappointed

Much more likely to succeed is to make things larger

This scales much better

Background

Most people think parallel computing is about making things go
faster

Up to a point, but they will soon be disappointed

Much more likely to succeed is to make things larger

This scales much better

Background

Most people think parallel computing is about making things go
faster

Up to a point, but they will soon be disappointed

Much more likely to succeed is to make things larger

This scales much better

Background

Most people think parallel computing is about making things go
faster

Up to a point, but they will soon be disappointed

Much more likely to succeed is to make things larger

This scales much better

Background

The first is process parallelism, also called task parallelism

The second is data parallelism

Two very different ways of getting more in a given amount of
time

Background

The first is process parallelism, also called task parallelism

The second is data parallelism

Two very different ways of getting more in a given amount of
time

Background

The first is process parallelism, also called task parallelism

The second is data parallelism

Two very different ways of getting more in a given amount of
time

Background

You all have had the situation where someone tries to help you
do something and it’s ended up taking longer

There is the basic time it takes to solve the problem: then there
are substantial overheads in the coordination of the parts of the
solution

The overheads can easily be larger than the problem itself

This is the reality of parallel computing

Often a parallel version of a small problem will be slower than
the sequential version

Only when the problem is made large enough to overcome the
overheads will it become faster than doing it sequentially

Background

You all have had the situation where someone tries to help you
do something and it’s ended up taking longer

There is the basic time it takes to solve the problem: then there
are substantial overheads in the coordination of the parts of the
solution

The overheads can easily be larger than the problem itself

This is the reality of parallel computing

Often a parallel version of a small problem will be slower than
the sequential version

Only when the problem is made large enough to overcome the
overheads will it become faster than doing it sequentially

Background

You all have had the situation where someone tries to help you
do something and it’s ended up taking longer

There is the basic time it takes to solve the problem: then there
are substantial overheads in the coordination of the parts of the
solution

The overheads can easily be larger than the problem itself

This is the reality of parallel computing

Often a parallel version of a small problem will be slower than
the sequential version

Only when the problem is made large enough to overcome the
overheads will it become faster than doing it sequentially

Background

You all have had the situation where someone tries to help you
do something and it’s ended up taking longer

There is the basic time it takes to solve the problem: then there
are substantial overheads in the coordination of the parts of the
solution

The overheads can easily be larger than the problem itself

This is the reality of parallel computing

Often a parallel version of a small problem will be slower than
the sequential version

Only when the problem is made large enough to overcome the
overheads will it become faster than doing it sequentially

Background

You all have had the situation where someone tries to help you
do something and it’s ended up taking longer

There is the basic time it takes to solve the problem: then there
are substantial overheads in the coordination of the parts of the
solution

The overheads can easily be larger than the problem itself

This is the reality of parallel computing

Often a parallel version of a small problem will be slower than
the sequential version

Only when the problem is made large enough to overcome the
overheads will it become faster than doing it sequentially

Background

You all have had the situation where someone tries to help you
do something and it’s ended up taking longer

There is the basic time it takes to solve the problem: then there
are substantial overheads in the coordination of the parts of the
solution

The overheads can easily be larger than the problem itself

This is the reality of parallel computing

Often a parallel version of a small problem will be slower than
the sequential version

Only when the problem is made large enough to overcome the
overheads will it become faster than doing it sequentially

Background

So cost (the number of cpu cycles) of a parallel computation
= cost of computation + cost of management of parallelism

Ideally, we want the cost of management of parallelism to be
minimal

But, if you are not careful, or the problem is such that this is
inevitable, we can find that the cost of management of
parallelism can dominate

Background

So cost (the number of cpu cycles) of a parallel computation
= cost of computation + cost of management of parallelism

Ideally, we want the cost of management of parallelism to be
minimal

But, if you are not careful, or the problem is such that this is
inevitable, we can find that the cost of management of
parallelism can dominate

Background

So cost (the number of cpu cycles) of a parallel computation
= cost of computation + cost of management of parallelism

Ideally, we want the cost of management of parallelism to be
minimal

But, if you are not careful, or the problem is such that this is
inevitable, we can find that the cost of management of
parallelism can dominate

Background

Another huge issue is that people have enough difficulties with
programming sequential machines

Some would say that sequential programming is not yet a
“solved” problem

Parallel programming is much harder

If you think you understand parallel programing, you definitely
don’t

Background

Another huge issue is that people have enough difficulties with
programming sequential machines

Some would say that sequential programming is not yet a
“solved” problem

Parallel programming is much harder

If you think you understand parallel programing, you definitely
don’t

Background

Another huge issue is that people have enough difficulties with
programming sequential machines

Some would say that sequential programming is not yet a
“solved” problem

Parallel programming is much harder

If you think you understand parallel programing, you definitely
don’t

Background

Another huge issue is that people have enough difficulties with
programming sequential machines

Some would say that sequential programming is not yet a
“solved” problem

Parallel programming is much harder

If you think you understand parallel programing, you definitely
don’t

Background

You have all the issues of sequential programs plus lots more

And they are issues that many programmers have difficulty
even understanding

Particularly as they have been trained to program for sequential
machines and have habits and assumptions that are simply
invalid for parallel machines

Background

You have all the issues of sequential programs plus lots more

And they are issues that many programmers have difficulty
even understanding

Particularly as they have been trained to program for sequential
machines and have habits and assumptions that are simply
invalid for parallel machines

Background

You have all the issues of sequential programs plus lots more

And they are issues that many programmers have difficulty
even understanding

Particularly as they have been trained to program for sequential
machines and have habits and assumptions that are simply
invalid for parallel machines

Background

Have I convinced you that parallel programming is difficult yet?

Well, it’s worse than you can imagine!

Background

Have I convinced you that parallel programming is difficult yet?

Well, it’s worse than you can imagine!

Background

You will see the terms parallel and concurrent, with some
people using them interchangeably

But it is sometimes important to make a distinction between the
two

concurrent means your computation has separately
executable parts

parallel means those parts are being executed at the same
time

Concurrency is about structure, parallelism is about execution

Background

You will see the terms parallel and concurrent, with some
people using them interchangeably

But it is sometimes important to make a distinction between the
two

concurrent means your computation has separately
executable parts

parallel means those parts are being executed at the same
time

Concurrency is about structure, parallelism is about execution

Background

You will see the terms parallel and concurrent, with some
people using them interchangeably

But it is sometimes important to make a distinction between the
two

concurrent means your computation has separately
executable parts

parallel means those parts are being executed at the same
time

Concurrency is about structure, parallelism is about execution

Background

You will see the terms parallel and concurrent, with some
people using them interchangeably

But it is sometimes important to make a distinction between the
two

concurrent means your computation has separately
executable parts

parallel means those parts are being executed at the same
time

Concurrency is about structure, parallelism is about execution

Background

You will see the terms parallel and concurrent, with some
people using them interchangeably

But it is sometimes important to make a distinction between the
two

concurrent means your computation has separately
executable parts

parallel means those parts are being executed at the same
time

Concurrency is about structure, parallelism is about execution

Background

So, “concurrent” means in parts, and those parts may or may
not be running simultaneously

For example, they might be scheduled one at a time on a single
core CPU)

And “parallel” when we are explicitly talking about stuff running
at the same time on multiple pieces of hardware

Concurrency is about dealing with lots of things at
once. Parallelism is about doing lots of things at once.
Rob Pike

Background

So, “concurrent” means in parts, and those parts may or may
not be running simultaneously

For example, they might be scheduled one at a time on a single
core CPU)

And “parallel” when we are explicitly talking about stuff running
at the same time on multiple pieces of hardware

Concurrency is about dealing with lots of things at
once. Parallelism is about doing lots of things at once.
Rob Pike

Background

So, “concurrent” means in parts, and those parts may or may
not be running simultaneously

For example, they might be scheduled one at a time on a single
core CPU)

And “parallel” when we are explicitly talking about stuff running
at the same time on multiple pieces of hardware

Concurrency is about dealing with lots of things at
once. Parallelism is about doing lots of things at once.
Rob Pike

Background

So, “concurrent” means in parts, and those parts may or may
not be running simultaneously

For example, they might be scheduled one at a time on a single
core CPU)

And “parallel” when we are explicitly talking about stuff running
at the same time on multiple pieces of hardware

Concurrency is about dealing with lots of things at
once. Parallelism is about doing lots of things at once.
Rob Pike

Background

Asynchronous programming is an example of non-parallel
concurrency.

This has been around for a long time in many disguises:
futures, promises, coroutines, generators and others

The idea here is that when some code would block, e.g.,
waiting for some I/O, rather than the processor sitting and
waiting doing nothing, the code should direct the processor to
execute some other task

Later, when the I/O is ready, the processor can come back to
where it was and continue from there

Background

Asynchronous programming is an example of non-parallel
concurrency.

This has been around for a long time in many disguises:
futures, promises, coroutines, generators and others

The idea here is that when some code would block, e.g.,
waiting for some I/O, rather than the processor sitting and
waiting doing nothing, the code should direct the processor to
execute some other task

Later, when the I/O is ready, the processor can come back to
where it was and continue from there

Background

Asynchronous programming is an example of non-parallel
concurrency.

This has been around for a long time in many disguises:
futures, promises, coroutines, generators and others

The idea here is that when some code would block, e.g.,
waiting for some I/O, rather than the processor sitting and
waiting doing nothing, the code should direct the processor to
execute some other task

Later, when the I/O is ready, the processor can come back to
where it was and continue from there

Background

Asynchronous programming is an example of non-parallel
concurrency.

This has been around for a long time in many disguises:
futures, promises, coroutines, generators and others

The idea here is that when some code would block, e.g.,
waiting for some I/O, rather than the processor sitting and
waiting doing nothing, the code should direct the processor to
execute some other task

Later, when the I/O is ready, the processor can come back to
where it was and continue from there

Background

The code makes its own decision on what to do: moving
between different parts of code, ensuring the processor is
always actively working

This is scheduling within the code, without involvement of the
Operating System

As we know, any call to the OS entails a large amount of CPU
overhead, which we avoid here

These are major points of async programming: avoid OS
overheads and keep the processor busy

Background

The code makes its own decision on what to do: moving
between different parts of code, ensuring the processor is
always actively working

This is scheduling within the code, without involvement of the
Operating System

As we know, any call to the OS entails a large amount of CPU
overhead, which we avoid here

These are major points of async programming: avoid OS
overheads and keep the processor busy

Background

The code makes its own decision on what to do: moving
between different parts of code, ensuring the processor is
always actively working

This is scheduling within the code, without involvement of the
Operating System

As we know, any call to the OS entails a large amount of CPU
overhead, which we avoid here

These are major points of async programming: avoid OS
overheads and keep the processor busy

Background

The code makes its own decision on what to do: moving
between different parts of code, ensuring the processor is
always actively working

This is scheduling within the code, without involvement of the
Operating System

As we know, any call to the OS entails a large amount of CPU
overhead, which we avoid here

These are major points of async programming: avoid OS
overheads and keep the processor busy

Background

So async code is concurrent (structural), but not parallel
(execution)

Programming async code is very complicated and shares many
features with programming parallel code

Modern programming languages are starting to support async
programming natively, e.g., JavaScript, Swift, C++, Rust,
Python and more

Constructs in the languages hide varying amounts of the gory
details of choosing and switching between tasks

Background

So async code is concurrent (structural), but not parallel
(execution)

Programming async code is very complicated and shares many
features with programming parallel code

Modern programming languages are starting to support async
programming natively, e.g., JavaScript, Swift, C++, Rust,
Python and more

Constructs in the languages hide varying amounts of the gory
details of choosing and switching between tasks

Background

So async code is concurrent (structural), but not parallel
(execution)

Programming async code is very complicated and shares many
features with programming parallel code

Modern programming languages are starting to support async
programming natively, e.g., JavaScript, Swift, C++, Rust,
Python and more

Constructs in the languages hide varying amounts of the gory
details of choosing and switching between tasks

Background

So async code is concurrent (structural), but not parallel
(execution)

Programming async code is very complicated and shares many
features with programming parallel code

Modern programming languages are starting to support async
programming natively, e.g., JavaScript, Swift, C++, Rust,
Python and more

Constructs in the languages hide varying amounts of the gory
details of choosing and switching between tasks

Background

Async programming is good in cases where we have lots of
tasks that mostly wait, e.g., I/O

Parallel programming is good in cases where we have lots of
tasks that mostly compute

Async is cooperative while parallel is preemptive

Async is for waiting in parallel

Background

Async programming is good in cases where we have lots of
tasks that mostly wait, e.g., I/O

Parallel programming is good in cases where we have lots of
tasks that mostly compute

Async is cooperative while parallel is preemptive

Async is for waiting in parallel

Background

Async programming is good in cases where we have lots of
tasks that mostly wait, e.g., I/O

Parallel programming is good in cases where we have lots of
tasks that mostly compute

Async is cooperative while parallel is preemptive

Async is for waiting in parallel

Background

Async programming is good in cases where we have lots of
tasks that mostly wait, e.g., I/O

Parallel programming is good in cases where we have lots of
tasks that mostly compute

Async is cooperative while parallel is preemptive

Async is for waiting in parallel

Background

In this unit we shall be concentrating on parallelism (though lots
of what we say also applies to async programming, too)

Exercise Reflect on how you might use both async and
parallel programming in one program

Background

In this unit we shall be concentrating on parallelism (though lots
of what we say also applies to async programming, too)

Exercise Reflect on how you might use both async and
parallel programming in one program

Background

In contrast to concurrent and parallel, you might hear of serial
and sequential both being used to describe
non-concurrent/non-parallel systems

Serial and sequential mean the same thing

Background

In contrast to concurrent and parallel, you might hear of serial
and sequential both being used to describe
non-concurrent/non-parallel systems

Serial and sequential mean the same thing

Background
Moore’s Law

Why is parallelism an important topic these days?

There is a famous “law” that describes how hardware has
progressed over the years

It is an observation on how the components in integrated
circuits were shrinking over time as engineering advances were
made:

Moore’s Law (1965):

the number of transistors in a chip doubles every two
years

Background
Moore’s Law

Why is parallelism an important topic these days?

There is a famous “law” that describes how hardware has
progressed over the years

It is an observation on how the components in integrated
circuits were shrinking over time as engineering advances were
made:

Moore’s Law (1965):

the number of transistors in a chip doubles every two
years

Background
Moore’s Law

Why is parallelism an important topic these days?

There is a famous “law” that describes how hardware has
progressed over the years

It is an observation on how the components in integrated
circuits were shrinking over time as engineering advances were
made:

Moore’s Law (1965):

the number of transistors in a chip doubles every two
years

Background
Moore’s Law

Why is parallelism an important topic these days?

There is a famous “law” that describes how hardware has
progressed over the years

It is an observation on how the components in integrated
circuits were shrinking over time as engineering advances were
made:

Moore’s Law (1965):

the number of transistors in a chip doubles every two
years

Background
Moore’s Law

There are a number of points to be made

• it’s not a “law” in any real sense, but an observation on how
chips progress

• Moore did not say speed doubles, as often mis-quoted
• some variants say “18 months” instead of “two years”, but

the history of this statement is complex
• it is somewhat self-fulfilling, as engineers tend to use it as a

target for the development of each next generation of chips

Background
Moore’s Law

There are a number of points to be made

• it’s not a “law” in any real sense, but an observation on how
chips progress

• Moore did not say speed doubles, as often mis-quoted
• some variants say “18 months” instead of “two years”, but

the history of this statement is complex
• it is somewhat self-fulfilling, as engineers tend to use it as a

target for the development of each next generation of chips

Background
Moore’s Law

There are a number of points to be made

• it’s not a “law” in any real sense, but an observation on how
chips progress

• Moore did not say speed doubles, as often mis-quoted

• some variants say “18 months” instead of “two years”, but
the history of this statement is complex

• it is somewhat self-fulfilling, as engineers tend to use it as a
target for the development of each next generation of chips

Background
Moore’s Law

There are a number of points to be made

• it’s not a “law” in any real sense, but an observation on how
chips progress

• Moore did not say speed doubles, as often mis-quoted
• some variants say “18 months” instead of “two years”, but

the history of this statement is complex

• it is somewhat self-fulfilling, as engineers tend to use it as a
target for the development of each next generation of chips

Background
Moore’s Law

There are a number of points to be made

• it’s not a “law” in any real sense, but an observation on how
chips progress

• Moore did not say speed doubles, as often mis-quoted
• some variants say “18 months” instead of “two years”, but

the history of this statement is complex
• it is somewhat self-fulfilling, as engineers tend to use it as a

target for the development of each next generation of chips

Background
Moore’s Law

There is some economics in there, too: the profit margins on
silicon wafers mean that it is better to have fewer larger chips
than lots of smaller chips

So CPUs tend to keep to the same area, meaning a CPU will
have more and more transistors, not that we have more smaller
CPUs

Background
Moore’s Law

There is some economics in there, too: the profit margins on
silicon wafers mean that it is better to have fewer larger chips
than lots of smaller chips

So CPUs tend to keep to the same area, meaning a CPU will
have more and more transistors, not that we have more smaller
CPUs

Background
Moore’s Law

 1000

 10000

 100000

 1x106

 1x107

 1x108

 1x109

 1x1010

 1x1011

 1x1012

 1970 1980 1990 2000 2010 2020 2030

"cspeed"
"tcount"

Log of speed and transistor count against date of Intel processors

Background
Moore’s Law

We can see why people thought that Moore’s Law was about
speed: for a long time both transistor count and speed went up
exponentially

In 2005 people would have said that CPUs would be running at
480GHz by 2020

However, over the last few years speed has stopped increasing

But, crucially, the transistor count continues to increase

CPUs stay the same physical size

Background
Moore’s Law

We can see why people thought that Moore’s Law was about
speed: for a long time both transistor count and speed went up
exponentially

In 2005 people would have said that CPUs would be running at
480GHz by 2020

However, over the last few years speed has stopped increasing

But, crucially, the transistor count continues to increase

CPUs stay the same physical size

Background
Moore’s Law

We can see why people thought that Moore’s Law was about
speed: for a long time both transistor count and speed went up
exponentially

In 2005 people would have said that CPUs would be running at
480GHz by 2020

However, over the last few years speed has stopped increasing

But, crucially, the transistor count continues to increase

CPUs stay the same physical size

Background
Moore’s Law

We can see why people thought that Moore’s Law was about
speed: for a long time both transistor count and speed went up
exponentially

In 2005 people would have said that CPUs would be running at
480GHz by 2020

However, over the last few years speed has stopped increasing

But, crucially, the transistor count continues to increase

CPUs stay the same physical size

Background
Moore’s Law

We can see why people thought that Moore’s Law was about
speed: for a long time both transistor count and speed went up
exponentially

In 2005 people would have said that CPUs would be running at
480GHz by 2020

However, over the last few years speed has stopped increasing

But, crucially, the transistor count continues to increase

CPUs stay the same physical size

Background
Moore’s Law

Engineer:
What are we going to do with those extra transistors?

Marketer:
How are we going to convince people to buy the new CPUs?

Solution:
multicore processors

Chips with more than one CPU on them

Background
Moore’s Law

Engineer:
What are we going to do with those extra transistors?

Marketer:
How are we going to convince people to buy the new CPUs?

Solution:
multicore processors

Chips with more than one CPU on them

Background
Moore’s Law

Engineer:
What are we going to do with those extra transistors?

Marketer:
How are we going to convince people to buy the new CPUs?

Solution:
multicore processors

Chips with more than one CPU on them

Background
Moore’s Law

Engineer:
What are we going to do with those extra transistors?

Marketer:
How are we going to convince people to buy the new CPUs?

Solution:
multicore processors

Chips with more than one CPU on them

Background

So now chips in new PCs are all multicore

Dual and quad core is everywhere; 64 core processors are
around; 128 cores are arriving soon (PC-style architecture)

Many cores is great, but we are going to have to find out how to
make best use of them

But simply having two CPUs generally won’t make our program
go twice as fast: overheads like interference and
communication between parts of the computation is going to be
a problem

Background

So now chips in new PCs are all multicore

Dual and quad core is everywhere; 64 core processors are
around; 128 cores are arriving soon (PC-style architecture)

Many cores is great, but we are going to have to find out how to
make best use of them

But simply having two CPUs generally won’t make our program
go twice as fast: overheads like interference and
communication between parts of the computation is going to be
a problem

Background

So now chips in new PCs are all multicore

Dual and quad core is everywhere; 64 core processors are
around; 128 cores are arriving soon (PC-style architecture)

Many cores is great, but we are going to have to find out how to
make best use of them

But simply having two CPUs generally won’t make our program
go twice as fast: overheads like interference and
communication between parts of the computation is going to be
a problem

Background

So now chips in new PCs are all multicore

Dual and quad core is everywhere; 64 core processors are
around; 128 cores are arriving soon (PC-style architecture)

Many cores is great, but we are going to have to find out how to
make best use of them

But simply having two CPUs generally won’t make our program
go twice as fast: overheads like interference and
communication between parts of the computation is going to be
a problem

Background

To repeat: all this hardware is all wonderful except for one point

This computational power is only useful if we can write
the software to exploit it

Your phone might have eight cores, but it is likely very little
software it runs is capable of using all their power
simultaneously

Software is far behind hardware and has a lot to do to catch up

We are still in the dark regarding parallel software

Background

To repeat: all this hardware is all wonderful except for one point

This computational power is only useful if we can write
the software to exploit it

Your phone might have eight cores, but it is likely very little
software it runs is capable of using all their power
simultaneously

Software is far behind hardware and has a lot to do to catch up

We are still in the dark regarding parallel software

Background

To repeat: all this hardware is all wonderful except for one point

This computational power is only useful if we can write
the software to exploit it

Your phone might have eight cores, but it is likely very little
software it runs is capable of using all their power
simultaneously

Software is far behind hardware and has a lot to do to catch up

We are still in the dark regarding parallel software

Background

To repeat: all this hardware is all wonderful except for one point

This computational power is only useful if we can write
the software to exploit it

Your phone might have eight cores, but it is likely very little
software it runs is capable of using all their power
simultaneously

Software is far behind hardware and has a lot to do to catch up

We are still in the dark regarding parallel software

Background

To repeat: all this hardware is all wonderful except for one point

This computational power is only useful if we can write
the software to exploit it

Your phone might have eight cores, but it is likely very little
software it runs is capable of using all their power
simultaneously

Software is far behind hardware and has a lot to do to catch up

We are still in the dark regarding parallel software

Background
A Brief Aside

Note that Moore’s Law also applies to memory: memory chips
have been doubling in capacity at a similar (perhaps faster?)
rate

But the speed of delivery of data from memory to processor(s)
has always lagged behind the speed of processors

Giving a problematic gap between speed of processors and
speed of memory (both in bandwidth and latency)

The gap has decreased a little over the last few years, but on
the other hand multiple processors need more memory
bandwidth

We shall see memory is a big bottleneck in parallel systems

Background
A Brief Aside

Note that Moore’s Law also applies to memory: memory chips
have been doubling in capacity at a similar (perhaps faster?)
rate

But the speed of delivery of data from memory to processor(s)
has always lagged behind the speed of processors

Giving a problematic gap between speed of processors and
speed of memory (both in bandwidth and latency)

The gap has decreased a little over the last few years, but on
the other hand multiple processors need more memory
bandwidth

We shall see memory is a big bottleneck in parallel systems

Background
A Brief Aside

Note that Moore’s Law also applies to memory: memory chips
have been doubling in capacity at a similar (perhaps faster?)
rate

But the speed of delivery of data from memory to processor(s)
has always lagged behind the speed of processors

Giving a problematic gap between speed of processors and
speed of memory (both in bandwidth and latency)

The gap has decreased a little over the last few years, but on
the other hand multiple processors need more memory
bandwidth

We shall see memory is a big bottleneck in parallel systems

Background
A Brief Aside

Note that Moore’s Law also applies to memory: memory chips
have been doubling in capacity at a similar (perhaps faster?)
rate

But the speed of delivery of data from memory to processor(s)
has always lagged behind the speed of processors

Giving a problematic gap between speed of processors and
speed of memory (both in bandwidth and latency)

The gap has decreased a little over the last few years, but on
the other hand multiple processors need more memory
bandwidth

We shall see memory is a big bottleneck in parallel systems

Background
A Brief Aside

Note that Moore’s Law also applies to memory: memory chips
have been doubling in capacity at a similar (perhaps faster?)
rate

But the speed of delivery of data from memory to processor(s)
has always lagged behind the speed of processors

Giving a problematic gap between speed of processors and
speed of memory (both in bandwidth and latency)

The gap has decreased a little over the last few years, but on
the other hand multiple processors need more memory
bandwidth

We shall see memory is a big bottleneck in parallel systems

Background
Moore’s Law

Moore’s Law has been going for 58 years so far

It must come to an end at some point: the end has been
predicted many times in the past, but so far technology has
kept moving onwards

Chip designers think it will keep going for several years yet,
some predict decades

Moore himself thinks perhaps it will last until 2025

And — looking at Intel’s products the last few years — it might
currently be taking 5 years to double transistor counts

Background
Moore’s Law

Moore’s Law has been going for 58 years so far

It must come to an end at some point: the end has been
predicted many times in the past, but so far technology has
kept moving onwards

Chip designers think it will keep going for several years yet,
some predict decades

Moore himself thinks perhaps it will last until 2025

And — looking at Intel’s products the last few years — it might
currently be taking 5 years to double transistor counts

Background
Moore’s Law

Moore’s Law has been going for 58 years so far

It must come to an end at some point: the end has been
predicted many times in the past, but so far technology has
kept moving onwards

Chip designers think it will keep going for several years yet,
some predict decades

Moore himself thinks perhaps it will last until 2025

And — looking at Intel’s products the last few years — it might
currently be taking 5 years to double transistor counts

Background
Moore’s Law

Moore’s Law has been going for 58 years so far

It must come to an end at some point: the end has been
predicted many times in the past, but so far technology has
kept moving onwards

Chip designers think it will keep going for several years yet,
some predict decades

Moore himself thinks perhaps it will last until 2025

And — looking at Intel’s products the last few years — it might
currently be taking 5 years to double transistor counts

Background
Moore’s Law

Moore’s Law has been going for 58 years so far

It must come to an end at some point: the end has been
predicted many times in the past, but so far technology has
kept moving onwards

Chip designers think it will keep going for several years yet,
some predict decades

Moore himself thinks perhaps it will last until 2025

And — looking at Intel’s products the last few years — it might
currently be taking 5 years to double transistor counts

Background
Moore’s Law

Exercise Some current top end chips have over 100 billion
transistors, and 7000 cores. If Moore’s Law continued, how
many transistors and cores would they have in 10 years? In 20
years?

Exercise Read about Moore’s Second Law (aka Rock’s Law)

Background
Moore’s Law

Software is getting slower more rapidly than hardware
is becoming faster
Wirth’s Law

Software efficiency halves every 18 months, compen-
sating Moore’s law
David May

The speed of software halves every 18 months
Gates’ Law

What Intel giveth, Microsoft taketh away
Anon

