
Background

There is nothing new in Computer Science and that includes
parallelism. Back when large supercomputers were first
popular they had been parallel for a long time

For example, a common kind of hardware was the vector
processor

This is for data parallelism, namely scaling the data, not the
speed (directly)

E.g., add together these 100 pairs of numbers to produce 100
results



Background

There is nothing new in Computer Science and that includes
parallelism. Back when large supercomputers were first
popular they had been parallel for a long time

For example, a common kind of hardware was the vector
processor

This is for data parallelism, namely scaling the data, not the
speed (directly)

E.g., add together these 100 pairs of numbers to produce 100
results



Background

There is nothing new in Computer Science and that includes
parallelism. Back when large supercomputers were first
popular they had been parallel for a long time

For example, a common kind of hardware was the vector
processor

This is for data parallelism, namely scaling the data, not the
speed (directly)

E.g., add together these 100 pairs of numbers to produce 100
results



Background

There is nothing new in Computer Science and that includes
parallelism. Back when large supercomputers were first
popular they had been parallel for a long time

For example, a common kind of hardware was the vector
processor

This is for data parallelism, namely scaling the data, not the
speed (directly)

E.g., add together these 100 pairs of numbers to produce 100
results



Background

A vector processor is a collection of 10s, or 100s or 1000s of
fairly simple CPUs (technically not proper full CPUs, just ALUs:
see later)

However, in a vector processor, the CPUs are not independent
of each other: at each point in time each processor is doing the
same operation

But on different data

So it can add 100 pairs of numbers simultaneously: data
parallel

This is called single instruction multiple data (SIMD) processing



Background

A vector processor is a collection of 10s, or 100s or 1000s of
fairly simple CPUs (technically not proper full CPUs, just ALUs:
see later)

However, in a vector processor, the CPUs are not independent
of each other: at each point in time each processor is doing the
same operation

But on different data

So it can add 100 pairs of numbers simultaneously: data
parallel

This is called single instruction multiple data (SIMD) processing



Background

A vector processor is a collection of 10s, or 100s or 1000s of
fairly simple CPUs (technically not proper full CPUs, just ALUs:
see later)

However, in a vector processor, the CPUs are not independent
of each other: at each point in time each processor is doing the
same operation

But on different data

So it can add 100 pairs of numbers simultaneously: data
parallel

This is called single instruction multiple data (SIMD) processing



Background

A vector processor is a collection of 10s, or 100s or 1000s of
fairly simple CPUs (technically not proper full CPUs, just ALUs:
see later)

However, in a vector processor, the CPUs are not independent
of each other: at each point in time each processor is doing the
same operation

But on different data

So it can add 100 pairs of numbers simultaneously: data
parallel

This is called single instruction multiple data (SIMD) processing



Background

A vector processor is a collection of 10s, or 100s or 1000s of
fairly simple CPUs (technically not proper full CPUs, just ALUs:
see later)

However, in a vector processor, the CPUs are not independent
of each other: at each point in time each processor is doing the
same operation

But on different data

So it can add 100 pairs of numbers simultaneously: data
parallel

This is called single instruction multiple data (SIMD) processing



Background

And there are other ways of making parallel machines: if you
want to make a really big machine, for a long time the
architecture of choice has been the cluster

This is “simply” large numbers of normal PCs connected
together with a network, with your program spread across the
nodes (the PCs)

We can get both process and data parallelism from this
architecture

The hardware is commodity, so clusters with thousands of
CPUs are common; clusters with millions of cores exist



Background

And there are other ways of making parallel machines: if you
want to make a really big machine, for a long time the
architecture of choice has been the cluster

This is “simply” large numbers of normal PCs connected
together with a network, with your program spread across the
nodes (the PCs)

We can get both process and data parallelism from this
architecture

The hardware is commodity, so clusters with thousands of
CPUs are common; clusters with millions of cores exist



Background

And there are other ways of making parallel machines: if you
want to make a really big machine, for a long time the
architecture of choice has been the cluster

This is “simply” large numbers of normal PCs connected
together with a network, with your program spread across the
nodes (the PCs)

We can get both process and data parallelism from this
architecture

The hardware is commodity, so clusters with thousands of
CPUs are common; clusters with millions of cores exist



Background

And there are other ways of making parallel machines: if you
want to make a really big machine, for a long time the
architecture of choice has been the cluster

This is “simply” large numbers of normal PCs connected
together with a network, with your program spread across the
nodes (the PCs)

We can get both process and data parallelism from this
architecture

The hardware is commodity, so clusters with thousands of
CPUs are common; clusters with millions of cores exist



Background

Some words: be aware different people use these terms in
different ways

• core: a single processing element, can be just an ALU or
can have its own instruction decoding unit

• cpu: sometimes just a synonym for core, sometimes a chip
which contains one or more cores

• processor: similar to cpu
• node: a motherboard that can have one or more slots for

multi-core cpus that share some local resource on the
motherboard, particularly memory

• cluster: a collection of nodes connected by a network



Background

For example, the Azure machine you will be using for the
coursework has four nodes, each consisting of two chips, each
with 24 cores



Background

From www.top500.org, the fastest (publicly known) computer in
the world is (June 2023):

Frontier (USA), 8,699,904 cores, comprising AMD
EPYC 64C cpus at 2GHz; plus Radeon Instinct GPUs;
using 23MW power; with Slingshot-11 interconnect;
running HPE Cray OS

This peaks at about 1.2 exaflops

1 exaflop is a quintillion (1018) floating point operations per
second

www.top500.org


Background

From www.top500.org, the fastest (publicly known) computer in
the world is (June 2023):

Frontier (USA), 8,699,904 cores, comprising AMD
EPYC 64C cpus at 2GHz; plus Radeon Instinct GPUs;
using 23MW power; with Slingshot-11 interconnect;
running HPE Cray OS

This peaks at about 1.2 exaflops

1 exaflop is a quintillion (1018) floating point operations per
second

www.top500.org


Background

From www.top500.org, the fastest (publicly known) computer in
the world is (June 2023):

Frontier (USA), 8,699,904 cores, comprising AMD
EPYC 64C cpus at 2GHz; plus Radeon Instinct GPUs;
using 23MW power; with Slingshot-11 interconnect;
running HPE Cray OS

This peaks at about 1.2 exaflops

1 exaflop is a quintillion (1018) floating point operations per
second

www.top500.org


Background

This is the first machine to pass the “exaflop barrier”

HPE is Hewlett Packard Enterprise

Slingshot is a high performance network; a Cray technology,
with (e.g.) hardware support for MPI

HPE Cray OS is a variant of SUSE Linux Enterprise Server



Background

This is the first machine to pass the “exaflop barrier”

HPE is Hewlett Packard Enterprise

Slingshot is a high performance network; a Cray technology,
with (e.g.) hardware support for MPI

HPE Cray OS is a variant of SUSE Linux Enterprise Server



Background

This is the first machine to pass the “exaflop barrier”

HPE is Hewlett Packard Enterprise

Slingshot is a high performance network; a Cray technology,
with (e.g.) hardware support for MPI

HPE Cray OS is a variant of SUSE Linux Enterprise Server



Background

This is the first machine to pass the “exaflop barrier”

HPE is Hewlett Packard Enterprise

Slingshot is a high performance network; a Cray technology,
with (e.g.) hardware support for MPI

HPE Cray OS is a variant of SUSE Linux Enterprise Server



Background

But lots of cores is easy: just expensive

Anyone can build a fast CPU. The trick is to build a fast
system.
Seymour Cray



Background

But lots of cores is easy: just expensive

Anyone can build a fast CPU. The trick is to build a fast
system.
Seymour Cray



Background

The main problem in a cluster is the slow communications
between the CPUs

A typical network connection is millions of times slower than a
memory bus: milliseconds rather than nanoseconds

To move data from one node in a cluster to another is
(relatively) immensely slow

Programming a cluster is all about moving the data: we might
be able to do a million machine instructions in the time it takes
to fetch some data from another node



Background

The main problem in a cluster is the slow communications
between the CPUs

A typical network connection is millions of times slower than a
memory bus: milliseconds rather than nanoseconds

To move data from one node in a cluster to another is
(relatively) immensely slow

Programming a cluster is all about moving the data: we might
be able to do a million machine instructions in the time it takes
to fetch some data from another node



Background

The main problem in a cluster is the slow communications
between the CPUs

A typical network connection is millions of times slower than a
memory bus: milliseconds rather than nanoseconds

To move data from one node in a cluster to another is
(relatively) immensely slow

Programming a cluster is all about moving the data: we might
be able to do a million machine instructions in the time it takes
to fetch some data from another node



Background

The main problem in a cluster is the slow communications
between the CPUs

A typical network connection is millions of times slower than a
memory bus: milliseconds rather than nanoseconds

To move data from one node in a cluster to another is
(relatively) immensely slow

Programming a cluster is all about moving the data: we might
be able to do a million machine instructions in the time it takes
to fetch some data from another node



Background

On a machine with a million cores it can be faster to do a million
adds on one core rather than ship out the adds to the CPUs; do
a million adds in parallel; then collect the data back together

Just having an immensely parallel machine doesn’t mean it’s
always better to use the parallelism



Background

On a machine with a million cores it can be faster to do a million
adds on one core rather than ship out the adds to the CPUs; do
a million adds in parallel; then collect the data back together

Just having an immensely parallel machine doesn’t mean it’s
always better to use the parallelism



Background

In a large parallel machine (cluster or otherwise) processing
power is cheap, but data are expensive

This means you have to think about your programs differently

It might be faster to recompute the same value 1000s of times
across many cores than compute it once and communicate it
everywhere

A very different mindset is needed!



Background

In a large parallel machine (cluster or otherwise) processing
power is cheap, but data are expensive

This means you have to think about your programs differently

It might be faster to recompute the same value 1000s of times
across many cores than compute it once and communicate it
everywhere

A very different mindset is needed!



Background

In a large parallel machine (cluster or otherwise) processing
power is cheap, but data are expensive

This means you have to think about your programs differently

It might be faster to recompute the same value 1000s of times
across many cores than compute it once and communicate it
everywhere

A very different mindset is needed!



Background

In a large parallel machine (cluster or otherwise) processing
power is cheap, but data are expensive

This means you have to think about your programs differently

It might be faster to recompute the same value 1000s of times
across many cores than compute it once and communicate it
everywhere

A very different mindset is needed!



Classifications

We need to classify the kinds of parallelism we shall be looking
at

A simple classification was devised by Flynn (1966)

• Single Instruction, Single Data (SISD). Traditional, von
Neumann, single core machines

• Single Instruction, Multiple Data (SIMD). As in a vector
processor. Multiple cores all doing the same operation in
lockstep, but on different datastreams

• Multiple Instruction, Multiple Data (MIMD). Multiple cores
doing different things to different datastreams. What most
people (wrongly) think parallel computing is all about



Classifications

We need to classify the kinds of parallelism we shall be looking
at

A simple classification was devised by Flynn (1966)

• Single Instruction, Single Data (SISD). Traditional, von
Neumann, single core machines

• Single Instruction, Multiple Data (SIMD). As in a vector
processor. Multiple cores all doing the same operation in
lockstep, but on different datastreams

• Multiple Instruction, Multiple Data (MIMD). Multiple cores
doing different things to different datastreams. What most
people (wrongly) think parallel computing is all about



Classifications

We need to classify the kinds of parallelism we shall be looking
at

A simple classification was devised by Flynn (1966)

• Single Instruction, Single Data (SISD). Traditional, von
Neumann, single core machines

• Single Instruction, Multiple Data (SIMD). As in a vector
processor. Multiple cores all doing the same operation in
lockstep, but on different datastreams

• Multiple Instruction, Multiple Data (MIMD). Multiple cores
doing different things to different datastreams. What most
people (wrongly) think parallel computing is all about



Classifications

We need to classify the kinds of parallelism we shall be looking
at

A simple classification was devised by Flynn (1966)

• Single Instruction, Single Data (SISD). Traditional, von
Neumann, single core machines

• Single Instruction, Multiple Data (SIMD). As in a vector
processor. Multiple cores all doing the same operation in
lockstep, but on different datastreams

• Multiple Instruction, Multiple Data (MIMD). Multiple cores
doing different things to different datastreams. What most
people (wrongly) think parallel computing is all about



Classifications

We need to classify the kinds of parallelism we shall be looking
at

A simple classification was devised by Flynn (1966)

• Single Instruction, Single Data (SISD). Traditional, von
Neumann, single core machines

• Single Instruction, Multiple Data (SIMD). As in a vector
processor. Multiple cores all doing the same operation in
lockstep, but on different datastreams

• Multiple Instruction, Multiple Data (MIMD). Multiple cores
doing different things to different datastreams. What most
people (wrongly) think parallel computing is all about



Classifications

• Multiple Instruction, Single Data (MISD). Something to fill
in the last combination of letters. Sometimes interpreted as
redundancy, e.g., airplane flight control where they have
multiple (different!) computers all processing the same
data

Data
Single Multiple

Instruc- Single SISD SIMD
tion Multiple MISD MIMD



Classifications

• Multiple Instruction, Single Data (MISD). Something to fill
in the last combination of letters. Sometimes interpreted as
redundancy, e.g., airplane flight control where they have
multiple (different!) computers all processing the same
data

Data
Single Multiple

Instruc- Single SISD SIMD
tion Multiple MISD MIMD



Classifications

Flynn’s classification is nice and simple, so people have
extended it further, in particular sub-dividing MIMD

• Single Program, Multiple Data (SPMD). Recall SIMD runs
the same program on multiple cores in lockstep, so every
core is executing the same instruction. SPMD runs the
same program (on different data) on a MIMD machine, with
each core going their own way, particularly on loops and
conditionals

• Multiple Program Multiple Data (MPMD). A MIMD machine
not running SPMD. So each core running potentially
different programs, e.g., producer-consumer models, or
systolic pipelines (see later)



Classifications

Flynn’s classification is nice and simple, so people have
extended it further, in particular sub-dividing MIMD

• Single Program, Multiple Data (SPMD). Recall SIMD runs
the same program on multiple cores in lockstep, so every
core is executing the same instruction. SPMD runs the
same program (on different data) on a MIMD machine, with
each core going their own way, particularly on loops and
conditionals

• Multiple Program Multiple Data (MPMD). A MIMD machine
not running SPMD. So each core running potentially
different programs, e.g., producer-consumer models, or
systolic pipelines (see later)



Classifications

Flynn’s classification is nice and simple, so people have
extended it further, in particular sub-dividing MIMD

• Single Program, Multiple Data (SPMD). Recall SIMD runs
the same program on multiple cores in lockstep, so every
core is executing the same instruction. SPMD runs the
same program (on different data) on a MIMD machine, with
each core going their own way, particularly on loops and
conditionals

• Multiple Program Multiple Data (MPMD). A MIMD machine
not running SPMD. So each core running potentially
different programs, e.g., producer-consumer models, or
systolic pipelines (see later)



Classifications

Of course, there are many more classifications we need to look
at

We can think of how the parts of the architecture are connected



Classifications

Of course, there are many more classifications we need to look
at

We can think of how the parts of the architecture are connected



Classifications
Uniprocessor

A uniprocessor (unicore) or sequential processor is the
traditional von Neumann architecture of a single CPU, memory,
etc.

input output

ALU Control

memory

CPU

von Neumann Architecture

A hugely successful model that enabled the computer
revolution to take place



Classifications
Coprocessor

A coprocessor is a non-general processor used as a worker by
the processor

memory

CPU

co
pr

oc
es

so
r

Coprocessor

Currently very popular in the form of graphics cards



Classifications
Multiprocessor

A multiprocessor is a loose term applying to most parallel
architectures, except occasionally SIMD, which usually doesn’t
have multiple full cores



Classifications
Shared Memory

A multiprocessor has shared memory when the cores access
memory on a shared bus

memory

CPU CPUCPU CPU CPU

Shared Memory

Cores share each other’s data: if one core modifies the value of
a value in memory, the other cores see that change



Classifications
Shared Memory

In reality, the shared bus can be a lot more complicated, e.g., a
tree or ring structure

In this example, we have symmetric shared memory: every
CPU has the same equal access to the shared memory



Classifications
Shared Memory

In reality, the shared bus can be a lot more complicated, e.g., a
tree or ring structure

In this example, we have symmetric shared memory: every
CPU has the same equal access to the shared memory



Classifications
Shared Memory

This is possibly what most people think of as a typical parallel
architecture

Unfortunately, it has a lot of problems as an architecture

In particular, the memory is a bottleneck

Memory and memory buses are slow relative to a processor
anyway, and when you have several cores all trying to access
memory simultaneously it gets much worse



Classifications
Shared Memory

This is possibly what most people think of as a typical parallel
architecture

Unfortunately, it has a lot of problems as an architecture

In particular, the memory is a bottleneck

Memory and memory buses are slow relative to a processor
anyway, and when you have several cores all trying to access
memory simultaneously it gets much worse



Classifications
Shared Memory

This is possibly what most people think of as a typical parallel
architecture

Unfortunately, it has a lot of problems as an architecture

In particular, the memory is a bottleneck

Memory and memory buses are slow relative to a processor
anyway, and when you have several cores all trying to access
memory simultaneously it gets much worse



Classifications
Shared Memory

This is possibly what most people think of as a typical parallel
architecture

Unfortunately, it has a lot of problems as an architecture

In particular, the memory is a bottleneck

Memory and memory buses are slow relative to a processor
anyway, and when you have several cores all trying to access
memory simultaneously it gets much worse



Classifications
Shared Memory

Even single core processors have a problem with the speed
disparity, so they use fast (but small) intermediate cache
memory

A small (because it’s expensive) chunk of very fast memory
where you store copies of a few of the values you are currently
using from main memory

Sometime two or three (occasionally four) levels of cache of
increasing size but decreasing speed

CPU

L
1

 c
ac

h
e

L
2

 c
ac

h
e

L
3

 c
ac

h
e

memory

Levels of cache



Classifications
Shared Memory

Even single core processors have a problem with the speed
disparity, so they use fast (but small) intermediate cache
memory

A small (because it’s expensive) chunk of very fast memory
where you store copies of a few of the values you are currently
using from main memory

Sometime two or three (occasionally four) levels of cache of
increasing size but decreasing speed

CPU

L
1

 c
ac

h
e

L
2

 c
ac

h
e

L
3

 c
ac

h
e

memory

Levels of cache



Classifications
Shared Memory

Even single core processors have a problem with the speed
disparity, so they use fast (but small) intermediate cache
memory

A small (because it’s expensive) chunk of very fast memory
where you store copies of a few of the values you are currently
using from main memory

Sometime two or three (occasionally four) levels of cache of
increasing size but decreasing speed

CPU

L
1

 c
ac

h
e

L
2

 c
ac

h
e

L
3

 c
ac

h
e

memory

Levels of cache



Classifications
Shared Memory

Even single core processors have a problem with the speed
disparity, so they use fast (but small) intermediate cache
memory

A small (because it’s expensive) chunk of very fast memory
where you store copies of a few of the values you are currently
using from main memory

Sometime two or three (occasionally four) levels of cache of
increasing size but decreasing speed

CPU

L
1

 c
ac

h
e

L
2

 c
ac

h
e

L
3

 c
ac

h
e

memory

Levels of cache



Classifications
Shared Memory

So shared memory machines try to cut down the traffic on the
bus by using caches

cache

CPU

cache

CPU

cache

CPU

cache

CPU

cache

CPU

memory

Memory caches

Each core has its own chunk of fast cache memory: this cuts
down on use of the bus



Classifications
Shared Memory

If a core is manipulating the value of a variable it will be loaded
into the cache and operated on there, rather than over the bus
in main memory

CPU CPU CPU CPUCPU

x: 1

a value in
memory

A value in memory



Classifications
Shared Memory

If a core is manipulating the value of a variable it will be loaded
into the cache and operated on there, rather than over the bus
in main memory

CPU CPU CPU CPUCPU

x: 1

read x
uses the bus

Read value



Classifications
Shared Memory

If a core is manipulating the value of a variable it will be loaded
into the cache and operated on there, rather than over the bus
in main memory

CPU CPU CPU CPUCPU

x: 1

x: 1

cache x

Copy in cache



Classifications
Shared Memory

If a core is manipulating the value of a variable it will be loaded
into the cache and operated on there, rather than over the bus
in main memory

CPU CPU CPU CPUCPU

x: 1

x: 2

update x

Update x (in cache)



Classifications
Shared Memory

If a core is manipulating the value of a variable it will be loaded
into the cache and operated on there, rather than over the bus
in main memory

CPU CPU CPU CPUCPU

x: 1

x: 3

update x

again

Update x again



Classifications
Shared Memory

If a core is manipulating the value of a variable it will be loaded
into the cache and operated on there, rather than over the bus
in main memory

CPU CPU CPU CPUCPU

x: 3

x: 3

sometime later
store x; uses
the bus

Store x later



Classifications
Shared Memory

This reduces pressure on the shared bus: but now we have the
problem of cache coherence

A CPU only updates its cached copy; the global copy remains
at its old value for a while

So if another core want to read the value before the updated
version has been written back, it will get the old value



Classifications
Shared Memory

This reduces pressure on the shared bus: but now we have the
problem of cache coherence

A CPU only updates its cached copy; the global copy remains
at its old value for a while

So if another core want to read the value before the updated
version has been written back, it will get the old value



Classifications
Shared Memory

This reduces pressure on the shared bus: but now we have the
problem of cache coherence

A CPU only updates its cached copy; the global copy remains
at its old value for a while

So if another core want to read the value before the updated
version has been written back, it will get the old value



Classifications
Shared Memory

CPU CPU CPU CPUCPU

x: 1

x: 2

x has been
updated

x has been updated in cache



Classifications
Shared Memory

CPU CPU CPU CPUCPU

x: 1

x: 2

another CPU
wants x

Another CPU wants x



Classifications
Shared Memory

Even worse, dependent on timing, you don’t know if the first
CPU has written the value back or not

Meaning different runs of the same program can produce
different results, dependent on what else happens to be going
on in the system

This is an example of a race condition: differing orders of
execution of concurrent parts of a system produces varying
outcomes

This particular example is a data race: a race condition that
involves updating data



Classifications
Shared Memory

Even worse, dependent on timing, you don’t know if the first
CPU has written the value back or not

Meaning different runs of the same program can produce
different results, dependent on what else happens to be going
on in the system

This is an example of a race condition: differing orders of
execution of concurrent parts of a system produces varying
outcomes

This particular example is a data race: a race condition that
involves updating data



Classifications
Shared Memory

Even worse, dependent on timing, you don’t know if the first
CPU has written the value back or not

Meaning different runs of the same program can produce
different results, dependent on what else happens to be going
on in the system

This is an example of a race condition: differing orders of
execution of concurrent parts of a system produces varying
outcomes

This particular example is a data race: a race condition that
involves updating data



Classifications
Shared Memory

Even worse, dependent on timing, you don’t know if the first
CPU has written the value back or not

Meaning different runs of the same program can produce
different results, dependent on what else happens to be going
on in the system

This is an example of a race condition: differing orders of
execution of concurrent parts of a system produces varying
outcomes

This particular example is a data race: a race condition that
involves updating data



Classifications
Shared Memory

Not what we want, as we can’t control the vagaries of hardware
operation

You might get the right answer on hundreds of runs; it doesn’t
mean your program is correct!

And it might always happen to be right on your machine, but
wrong when run on some other machine



Classifications
Shared Memory

Not what we want, as we can’t control the vagaries of hardware
operation

You might get the right answer on hundreds of runs; it doesn’t
mean your program is correct!

And it might always happen to be right on your machine, but
wrong when run on some other machine



Classifications
Shared Memory

Not what we want, as we can’t control the vagaries of hardware
operation

You might get the right answer on hundreds of runs; it doesn’t
mean your program is correct!

And it might always happen to be right on your machine, but
wrong when run on some other machine



Classifications
Shared Memory

There are other ways to fail, too

Others cores might be doing the same: reading and updating
the value. Thus there can be several conflicting copies of what
is supposed to be the same variable in different caches

When one core updates the variable the other cores will still be
using their own in their caches



Classifications
Shared Memory

There are other ways to fail, too

Others cores might be doing the same: reading and updating
the value. Thus there can be several conflicting copies of what
is supposed to be the same variable in different caches

When one core updates the variable the other cores will still be
using their own in their caches



Classifications
Shared Memory

There are other ways to fail, too

Others cores might be doing the same: reading and updating
the value. Thus there can be several conflicting copies of what
is supposed to be the same variable in different caches

When one core updates the variable the other cores will still be
using their own in their caches



Classifications
Shared Memory

CPU CPU CPU CPUCPU

x: 1

x: 1 x: 1

multiple 
copies of
x

Multiple copies of x



Classifications
Shared Memory

CPU CPU CPU CPUCPU

x: 1

multiple 

x: 2 x: 3

updates
inconsistent

Multiple inconsistent copies



Classifications
Shared Memory

The cache coherence problem is the issue of trying to make
sure all cached copies of a variable are kept in sync

This might be done in several ways

E.g., in the snarfing protocol, whenever an update is made the
value is immediately written through the bus (increasing traffic
on the bus. . . ) to main memory. The other caches are watching
the bus and if they have a copy of the variable they update their
copy with the value being written (they “snarf” the new value)

This is expensive in hardware and does not scale well to large
number of cores as every write must go through the bus



Classifications
Shared Memory

The cache coherence problem is the issue of trying to make
sure all cached copies of a variable are kept in sync

This might be done in several ways

E.g., in the snarfing protocol, whenever an update is made the
value is immediately written through the bus (increasing traffic
on the bus. . . ) to main memory. The other caches are watching
the bus and if they have a copy of the variable they update their
copy with the value being written (they “snarf” the new value)

This is expensive in hardware and does not scale well to large
number of cores as every write must go through the bus



Classifications
Shared Memory

The cache coherence problem is the issue of trying to make
sure all cached copies of a variable are kept in sync

This might be done in several ways

E.g., in the snarfing protocol, whenever an update is made the
value is immediately written through the bus (increasing traffic
on the bus. . . ) to main memory. The other caches are watching
the bus and if they have a copy of the variable they update their
copy with the value being written (they “snarf” the new value)

This is expensive in hardware and does not scale well to large
number of cores as every write must go through the bus



Classifications
Shared Memory

The cache coherence problem is the issue of trying to make
sure all cached copies of a variable are kept in sync

This might be done in several ways

E.g., in the snarfing protocol, whenever an update is made the
value is immediately written through the bus (increasing traffic
on the bus. . . ) to main memory. The other caches are watching
the bus and if they have a copy of the variable they update their
copy with the value being written (they “snarf” the new value)

This is expensive in hardware and does not scale well to large
number of cores as every write must go through the bus



Classifications
Shared Memory

CPU CPU CPU CPUCPU

x: 1

x: 2 x: 1

new value 
immediately
written

New value immediately written to memory



Classifications
Shared Memory

CPU CPU CPU CPUCPU

x: 2

cache copies 

update from

bus

x: 2

x: 2

Caches copy update from bus



Classifications
Shared Memory

But this is better than you might imagine as typical code reads
values much more than it updates values

In x = y + z two values are read, one is written

So this kind of cache-watching is more effective than you might
think

Secondly, well-written code will avoid using shared values in
the first place. Sharing mutable state across threads is bad
design (more on this later)



Classifications
Shared Memory

But this is better than you might imagine as typical code reads
values much more than it updates values

In x = y + z two values are read, one is written

So this kind of cache-watching is more effective than you might
think

Secondly, well-written code will avoid using shared values in
the first place. Sharing mutable state across threads is bad
design (more on this later)



Classifications
Shared Memory

But this is better than you might imagine as typical code reads
values much more than it updates values

In x = y + z two values are read, one is written

So this kind of cache-watching is more effective than you might
think

Secondly, well-written code will avoid using shared values in
the first place. Sharing mutable state across threads is bad
design (more on this later)



Classifications
Shared Memory

But this is better than you might imagine as typical code reads
values much more than it updates values

In x = y + z two values are read, one is written

So this kind of cache-watching is more effective than you might
think

Secondly, well-written code will avoid using shared values in
the first place. Sharing mutable state across threads is bad
design (more on this later)



Classifications
Shared Memory

Other solutions might be to try to balance the memory/cpu
speed disparity

You could use very fast buses and main memory: not a solution
due to cost

Or use slow processors: IBM tried this and it was surprisingly
good!



Classifications
Shared Memory

Other solutions might be to try to balance the memory/cpu
speed disparity

You could use very fast buses and main memory: not a solution
due to cost

Or use slow processors: IBM tried this and it was surprisingly
good!



Classifications
Shared Memory

Other solutions might be to try to balance the memory/cpu
speed disparity

You could use very fast buses and main memory: not a solution
due to cost

Or use slow processors: IBM tried this and it was surprisingly
good!



Classifications
Shared Memory

Exercise Modern architectures are more like:

CPU CPU CPU CPU

x: 2

CPU CPU CPU CPU

x: 2

x: 2

Modern memory architectures

Does this solve the problem?



Classifications
Shared Memory

Unfortunately, such symmetric shared memory does not scale
well, perhaps a few 100s of cores, with complex hardware
support in the caches

Ampere has a 128 core Arm architecture

Intel have just announced a 288 core x86 chip (Sept 2023)



Classifications
Shared Memory

Unfortunately, such symmetric shared memory does not scale
well, perhaps a few 100s of cores, with complex hardware
support in the caches

Ampere has a 128 core Arm architecture

Intel have just announced a 288 core x86 chip (Sept 2023)



Classifications
Shared Memory

Unfortunately, such symmetric shared memory does not scale
well, perhaps a few 100s of cores, with complex hardware
support in the caches

Ampere has a 128 core Arm architecture

Intel have just announced a 288 core x86 chip (Sept 2023)



Classifications
Shared Memory

Exercise Read about cache coherence mechanisms: snoopy
caches; directory based; snarfing; MSI; MESI

Exercise Another complication to symmetric shared memory is
when the cores are not identical: read about performance and
efficiency cores (P-cores and E-cores) used by Intel, Apple and
others


