
Classifications
Shared Memory

Symmetric shared memory is the model that current small
machines (multicore PCs) use

It is well suited to MIMD, but note that SIMD also uses
symmetric shared memory, but with a different access pattern



Classifications
Shared Memory

Symmetric shared memory is the model that current small
machines (multicore PCs) use

It is well suited to MIMD, but note that SIMD also uses
symmetric shared memory, but with a different access pattern



Classifications
NUMA

So if symmetric, i.e., uniform access, shared memory does not
scale, we can try managing memory in other ways

mem mem

mem mem mem mem

mem

CPUCPU

CPU CPU CPU CPU

CPU

Example NUMA

Each processor has a chunk of memory, but can also access
memory of other processors, perhaps arranged in a tree



Classifications
NUMA

A processor will have fast access to its closest chunk of
memory, but slower access to more remote memory

And different chunks of remote memory will have different
access speeds



Classifications
NUMA

A processor will have fast access to its closest chunk of
memory, but slower access to more remote memory

And different chunks of remote memory will have different
access speeds



Classifications
NUMA

Of course many other topologies have been tried: star, ring,
hypercube, full interconnect, and so on

mem

memmem

mem

CPUCPU

CPU

CPU

Memory in a ring

This architecture evens out the access time to different chunks
of memory a little



Classifications
NUMA

Of course many other topologies have been tried: star, ring,
hypercube, full interconnect, and so on

mem

memmem

mem

CPUCPU

CPU

CPU

Memory in a ring

This architecture evens out the access time to different chunks
of memory a little



Classifications
NUMA

These are non-uniform memory access

NUMA shared memory scales much better than symmetric
shared memory

By scaling here we mean you can build larger machines with
more processors cost effectively

But there is a downside: now programs and programmers (and
the OS) have to worry about data locality : data a processor
needs should be kept close to that processor

It can make a huge difference to the speed of a program if the
data is not where it should be



Classifications
NUMA

These are non-uniform memory access

NUMA shared memory scales much better than symmetric
shared memory

By scaling here we mean you can build larger machines with
more processors cost effectively

But there is a downside: now programs and programmers (and
the OS) have to worry about data locality : data a processor
needs should be kept close to that processor

It can make a huge difference to the speed of a program if the
data is not where it should be



Classifications
NUMA

These are non-uniform memory access

NUMA shared memory scales much better than symmetric
shared memory

By scaling here we mean you can build larger machines with
more processors cost effectively

But there is a downside: now programs and programmers (and
the OS) have to worry about data locality : data a processor
needs should be kept close to that processor

It can make a huge difference to the speed of a program if the
data is not where it should be



Classifications
NUMA

These are non-uniform memory access

NUMA shared memory scales much better than symmetric
shared memory

By scaling here we mean you can build larger machines with
more processors cost effectively

But there is a downside: now programs and programmers (and
the OS) have to worry about data locality : data a processor
needs should be kept close to that processor

It can make a huge difference to the speed of a program if the
data is not where it should be



Classifications
NUMA

These are non-uniform memory access

NUMA shared memory scales much better than symmetric
shared memory

By scaling here we mean you can build larger machines with
more processors cost effectively

But there is a downside: now programs and programmers (and
the OS) have to worry about data locality : data a processor
needs should be kept close to that processor

It can make a huge difference to the speed of a program if the
data is not where it should be



Classifications
NUMA

If data is close to the processor that is using it, it will go faster
than if the data has to be fetched from further away

So you try to keep data near the relevant processor

Or the computation on a processor near to the data

Of course, if data needs to be used by several processors, this
becomes a very difficult scheduling problem



Classifications
NUMA

If data is close to the processor that is using it, it will go faster
than if the data has to be fetched from further away

So you try to keep data near the relevant processor

Or the computation on a processor near to the data

Of course, if data needs to be used by several processors, this
becomes a very difficult scheduling problem



Classifications
NUMA

If data is close to the processor that is using it, it will go faster
than if the data has to be fetched from further away

So you try to keep data near the relevant processor

Or the computation on a processor near to the data

Of course, if data needs to be used by several processors, this
becomes a very difficult scheduling problem



Classifications
NUMA

If data is close to the processor that is using it, it will go faster
than if the data has to be fetched from further away

So you try to keep data near the relevant processor

Or the computation on a processor near to the data

Of course, if data needs to be used by several processors, this
becomes a very difficult scheduling problem



Classifications
NUMA

NUMA implementations stratify the memory in terms of
“distance”

For example:

• direct connection on the local memory bus
• on the same node
• one hop away
• two hops away
• and so on



Classifications
NUMA

NUMA implementations stratify the memory in terms of
“distance”

For example:

• direct connection on the local memory bus
• on the same node
• one hop away
• two hops away
• and so on



Classifications
NUMA

Though this is often simplified to: local, remote, and “far away”

The OS or system libraries or the programmer will try their best
to place data in appropriate memory to minimise latency, using
their knowledge of the NUMA hierarchy and their knowledge of
the program’s needs

The programmer ideally would have a good idea of the
architecture of a machine before writing code for it

And so the portability of a program is in question

This is still a matter of great research and development!



Classifications
NUMA

Though this is often simplified to: local, remote, and “far away”

The OS or system libraries or the programmer will try their best
to place data in appropriate memory to minimise latency, using
their knowledge of the NUMA hierarchy and their knowledge of
the program’s needs

The programmer ideally would have a good idea of the
architecture of a machine before writing code for it

And so the portability of a program is in question

This is still a matter of great research and development!



Classifications
NUMA

Though this is often simplified to: local, remote, and “far away”

The OS or system libraries or the programmer will try their best
to place data in appropriate memory to minimise latency, using
their knowledge of the NUMA hierarchy and their knowledge of
the program’s needs

The programmer ideally would have a good idea of the
architecture of a machine before writing code for it

And so the portability of a program is in question

This is still a matter of great research and development!



Classifications
NUMA

Though this is often simplified to: local, remote, and “far away”

The OS or system libraries or the programmer will try their best
to place data in appropriate memory to minimise latency, using
their knowledge of the NUMA hierarchy and their knowledge of
the program’s needs

The programmer ideally would have a good idea of the
architecture of a machine before writing code for it

And so the portability of a program is in question

This is still a matter of great research and development!



Classifications
NUMA

Though this is often simplified to: local, remote, and “far away”

The OS or system libraries or the programmer will try their best
to place data in appropriate memory to minimise latency, using
their knowledge of the NUMA hierarchy and their knowledge of
the program’s needs

The programmer ideally would have a good idea of the
architecture of a machine before writing code for it

And so the portability of a program is in question

This is still a matter of great research and development!



Classifications
NUMA

And, of course, there are hybrids where CPUs share some
memory symmetrically and some memory NUMA

mem

CPU

CPU

mem

mem

CPU

CPU

CPUCPU

Hybrid NUMA



Classifications
Distributed Memory

NUMA allows architectures to scale to greater numbers of
processors, but it won’t scale indefinitely, perhaps a few 1000s
of cores

If the problem is the memory bus bottleneck which means you
have to keep cached copies of a value, and then you have the
problem of keeping coherence amongst the copies, why not
simply not have shared memory?

Distributed memory says each processor’s memory it its own
and is entirely separate from every other processor’s memory



Classifications
Distributed Memory

NUMA allows architectures to scale to greater numbers of
processors, but it won’t scale indefinitely, perhaps a few 1000s
of cores

If the problem is the memory bus bottleneck which means you
have to keep cached copies of a value, and then you have the
problem of keeping coherence amongst the copies, why not
simply not have shared memory?

Distributed memory says each processor’s memory it its own
and is entirely separate from every other processor’s memory



Classifications
Distributed Memory

NUMA allows architectures to scale to greater numbers of
processors, but it won’t scale indefinitely, perhaps a few 1000s
of cores

If the problem is the memory bus bottleneck which means you
have to keep cached copies of a value, and then you have the
problem of keeping coherence amongst the copies, why not
simply not have shared memory?

Distributed memory says each processor’s memory it its own
and is entirely separate from every other processor’s memory



Classifications
Distributed Memory

Shared memory processors share a single memory address
space: within a single process memory location 42 on one
processor refers to the same thing as memory location 42 on
every other processor, as it’s the same memory

The variable x on this processor is the same as the x on that
processor (assuming SPMD)



Classifications
Distributed Memory

Shared memory processors share a single memory address
space: within a single process memory location 42 on one
processor refers to the same thing as memory location 42 on
every other processor, as it’s the same memory

The variable x on this processor is the same as the x on that
processor (assuming SPMD)



Classifications
Distributed Memory

CPU CPU CPU CPUCPU

x: 1

a value in
memory

Shared address space



Classifications
Distributed Memory

Processors in a distributed memory architecture each have
their own, separate, address space

Memory location 42 on one processor is entirely separate from
memory location 42 on every other processor

Each processor has their own version of variable x, nothing to
do with any other x on other processors



Classifications
Distributed Memory

Processors in a distributed memory architecture each have
their own, separate, address space

Memory location 42 on one processor is entirely separate from
memory location 42 on every other processor

Each processor has their own version of variable x, nothing to
do with any other x on other processors



Classifications
Distributed Memory

Processors in a distributed memory architecture each have
their own, separate, address space

Memory location 42 on one processor is entirely separate from
memory location 42 on every other processor

Each processor has their own version of variable x, nothing to
do with any other x on other processors



Classifications
Distributed Memory

Each processor has its own memory

Network

CPU CPU CPU CPU CPU

x: 23 x: 99

Distributed memory architecture

Typically connected by a network, rather than an expensive
memory bus



Classifications
Distributed Memory

Each processor has its own memory

Network

CPU CPU CPU CPU CPU

x: 23 x: 99

Distributed memory architecture

Typically connected by a network, rather than an expensive
memory bus



Classifications
Distributed Memory

To get at data on another node a processor sends a message
to that node, which will reply with the data

Clearly this message passing will be very much slower than
simple shared memory accesses

Memory access across a network can be factors of thousands,
perhaps millions times slower than local memory

The position of data is now very important

Your code has to change, too



Classifications
Distributed Memory

To get at data on another node a processor sends a message
to that node, which will reply with the data

Clearly this message passing will be very much slower than
simple shared memory accesses

Memory access across a network can be factors of thousands,
perhaps millions times slower than local memory

The position of data is now very important

Your code has to change, too



Classifications
Distributed Memory

To get at data on another node a processor sends a message
to that node, which will reply with the data

Clearly this message passing will be very much slower than
simple shared memory accesses

Memory access across a network can be factors of thousands,
perhaps millions times slower than local memory

The position of data is now very important

Your code has to change, too



Classifications
Distributed Memory

To get at data on another node a processor sends a message
to that node, which will reply with the data

Clearly this message passing will be very much slower than
simple shared memory accesses

Memory access across a network can be factors of thousands,
perhaps millions times slower than local memory

The position of data is now very important

Your code has to change, too



Classifications
Distributed Memory

To get at data on another node a processor sends a message
to that node, which will reply with the data

Clearly this message passing will be very much slower than
simple shared memory accesses

Memory access across a network can be factors of thousands,
perhaps millions times slower than local memory

The position of data is now very important

Your code has to change, too



Classifications
Distributed Memory

Think of a shared memory operation:
x = y;
x gets the value of y, “simply” read from memory

Compared with the overhead in distributed memory of creating
a message, sending, waiting, reading the reply

See MPI (Message Passing Interface) later, but conceptually
we have to write

x = FetchDouble(remotecpuname, "y");



Classifications
Distributed Memory

Think of a shared memory operation:
x = y;
x gets the value of y, “simply” read from memory

Compared with the overhead in distributed memory of creating
a message, sending, waiting, reading the reply

See MPI (Message Passing Interface) later, but conceptually
we have to write

x = FetchDouble(remotecpuname, "y");



Classifications
Distributed Memory

Think of a shared memory operation:
x = y;
x gets the value of y, “simply” read from memory

Compared with the overhead in distributed memory of creating
a message, sending, waiting, reading the reply

See MPI (Message Passing Interface) later, but conceptually
we have to write

x = FetchDouble(remotecpuname, "y");



Classifications
Distributed Memory

Some underlying message passing library does the hard work
of the messaging

Your code become much more complex to write

Both in needing a lot more text, and in needing thought on
where to put your data



Classifications
Distributed Memory

Some underlying message passing library does the hard work
of the messaging

Your code become much more complex to write

Both in needing a lot more text, and in needing thought on
where to put your data



Classifications
Distributed Memory

Some underlying message passing library does the hard work
of the messaging

Your code become much more complex to write

Both in needing a lot more text, and in needing thought on
where to put your data



Classifications
Message Passing

Note that you can also use message passing on a shared
memory architecture

Doing so might be useful for coding or program structure
reasons

The underlying messages are now probably implemented as
simple accesses to shared memory

Some parallel programming systems (see later) only provide
messaging across threads (often via mechanisms called
channels), thus masking the underlying architecture and
improving program portability across architectures



Classifications
Message Passing

Note that you can also use message passing on a shared
memory architecture

Doing so might be useful for coding or program structure
reasons

The underlying messages are now probably implemented as
simple accesses to shared memory

Some parallel programming systems (see later) only provide
messaging across threads (often via mechanisms called
channels), thus masking the underlying architecture and
improving program portability across architectures



Classifications
Message Passing

Note that you can also use message passing on a shared
memory architecture

Doing so might be useful for coding or program structure
reasons

The underlying messages are now probably implemented as
simple accesses to shared memory

Some parallel programming systems (see later) only provide
messaging across threads (often via mechanisms called
channels), thus masking the underlying architecture and
improving program portability across architectures



Classifications
Message Passing

Note that you can also use message passing on a shared
memory architecture

Doing so might be useful for coding or program structure
reasons

The underlying messages are now probably implemented as
simple accesses to shared memory

Some parallel programming systems (see later) only provide
messaging across threads (often via mechanisms called
channels), thus masking the underlying architecture and
improving program portability across architectures



Classifications
Distributed Memory

When using distributed memory you try to keep the data a
process needs on the processor it is running on, maybe even
replicating data or replicating computations, and access remote
data as little as you get away with

You have to balance the cost of the computations against the
cost of the data movement

An ideal that is rarely achieved in real programs

Of course, if you replicate data that gets updated, you
immediately have a coherence problem again, but now your
own code has to deal with it



Classifications
Distributed Memory

When using distributed memory you try to keep the data a
process needs on the processor it is running on, maybe even
replicating data or replicating computations, and access remote
data as little as you get away with

You have to balance the cost of the computations against the
cost of the data movement

An ideal that is rarely achieved in real programs

Of course, if you replicate data that gets updated, you
immediately have a coherence problem again, but now your
own code has to deal with it



Classifications
Distributed Memory

When using distributed memory you try to keep the data a
process needs on the processor it is running on, maybe even
replicating data or replicating computations, and access remote
data as little as you get away with

You have to balance the cost of the computations against the
cost of the data movement

An ideal that is rarely achieved in real programs

Of course, if you replicate data that gets updated, you
immediately have a coherence problem again, but now your
own code has to deal with it



Classifications
Distributed Memory

When using distributed memory you try to keep the data a
process needs on the processor it is running on, maybe even
replicating data or replicating computations, and access remote
data as little as you get away with

You have to balance the cost of the computations against the
cost of the data movement

An ideal that is rarely achieved in real programs

Of course, if you replicate data that gets updated, you
immediately have a coherence problem again, but now your
own code has to deal with it



Classifications
Distributed Memory

Note that replicating read-only data (e.g., tables of values) will
be fine: there is no coherence issue with multiple copies of data
that never changes

But you do need to put a lot of thought into replicating
read-write (mutable) data



Classifications
Distributed Memory

Note that replicating read-only data (e.g., tables of values) will
be fine: there is no coherence issue with multiple copies of data
that never changes

But you do need to put a lot of thought into replicating
read-write (mutable) data



Classifications
DMA

More sophisticated systems have extensive hardware support
for messaging

They have specific direct memory access (DMA) hardware that
accesses memory independently of the CPUs

Thus messaging proceeds independently of the CPU:
communication is asynchronous with computation, freeing the
CPU to do something else while the message is being
processed by the DMA hardware

Thus allowing more computation; but at the cost of more
complicated programming



Classifications
DMA

More sophisticated systems have extensive hardware support
for messaging

They have specific direct memory access (DMA) hardware that
accesses memory independently of the CPUs

Thus messaging proceeds independently of the CPU:
communication is asynchronous with computation, freeing the
CPU to do something else while the message is being
processed by the DMA hardware

Thus allowing more computation; but at the cost of more
complicated programming



Classifications
DMA

More sophisticated systems have extensive hardware support
for messaging

They have specific direct memory access (DMA) hardware that
accesses memory independently of the CPUs

Thus messaging proceeds independently of the CPU:
communication is asynchronous with computation, freeing the
CPU to do something else while the message is being
processed by the DMA hardware

Thus allowing more computation; but at the cost of more
complicated programming



Classifications
DMA

More sophisticated systems have extensive hardware support
for messaging

They have specific direct memory access (DMA) hardware that
accesses memory independently of the CPUs

Thus messaging proceeds independently of the CPU:
communication is asynchronous with computation, freeing the
CPU to do something else while the message is being
processed by the DMA hardware

Thus allowing more computation; but at the cost of more
complicated programming



Classifications
Computation vs. Communication

The call to FetchDouble above could return immediately and
allow your code to continue computing on something else,
rather than waiting for the value of y to appear: but you can’t
use x until the value has arrived some time later

Of course, you now need some mechanism to be notified when
the value has arrived, and so you can now use x

Such asynchronous programming is very hard to get right

But this idea of overlapping computation and communication is
important and will reappear many times



Classifications
Computation vs. Communication

The call to FetchDouble above could return immediately and
allow your code to continue computing on something else,
rather than waiting for the value of y to appear: but you can’t
use x until the value has arrived some time later

Of course, you now need some mechanism to be notified when
the value has arrived, and so you can now use x

Such asynchronous programming is very hard to get right

But this idea of overlapping computation and communication is
important and will reappear many times



Classifications
Computation vs. Communication

The call to FetchDouble above could return immediately and
allow your code to continue computing on something else,
rather than waiting for the value of y to appear: but you can’t
use x until the value has arrived some time later

Of course, you now need some mechanism to be notified when
the value has arrived, and so you can now use x

Such asynchronous programming is very hard to get right

But this idea of overlapping computation and communication is
important and will reappear many times



Classifications
Computation vs. Communication

The call to FetchDouble above could return immediately and
allow your code to continue computing on something else,
rather than waiting for the value of y to appear: but you can’t
use x until the value has arrived some time later

Of course, you now need some mechanism to be notified when
the value has arrived, and so you can now use x

Such asynchronous programming is very hard to get right

But this idea of overlapping computation and communication is
important and will reappear many times



Classifications
Distributed Memory

In distributed systems the concept of single shared values has
to go completely out of the window

The value of x here is nothing to do with the value of x there

Programs have to be written with this in mind: global shared
mutable values are simply not a good idea, even in
uniprocessor programs!



Classifications
Distributed Memory

In distributed systems the concept of single shared values has
to go completely out of the window

The value of x here is nothing to do with the value of x there

Programs have to be written with this in mind: global shared
mutable values are simply not a good idea, even in
uniprocessor programs!



Classifications
Distributed Memory

In distributed systems the concept of single shared values has
to go completely out of the window

The value of x here is nothing to do with the value of x there

Programs have to be written with this in mind: global shared
mutable values are simply not a good idea, even in
uniprocessor programs!



Classifications
Distributed Memory

Distributed memory is the architecture used by clusters: each
node is effectively a PC

Very suitable for SPMD, not so suitable for SIMD

Even with the huge message passing overhead, clusters are
very popular, particularly with very large problems where the
overhead is small relative to the rest of the computation

The computations do have to be huge!



Classifications
Distributed Memory

Distributed memory is the architecture used by clusters: each
node is effectively a PC

Very suitable for SPMD, not so suitable for SIMD

Even with the huge message passing overhead, clusters are
very popular, particularly with very large problems where the
overhead is small relative to the rest of the computation

The computations do have to be huge!



Classifications
Distributed Memory

Distributed memory is the architecture used by clusters: each
node is effectively a PC

Very suitable for SPMD, not so suitable for SIMD

Even with the huge message passing overhead, clusters are
very popular, particularly with very large problems where the
overhead is small relative to the rest of the computation

The computations do have to be huge!



Classifications
Distributed Memory

Distributed memory is the architecture used by clusters: each
node is effectively a PC

Very suitable for SPMD, not so suitable for SIMD

Even with the huge message passing overhead, clusters are
very popular, particularly with very large problems where the
overhead is small relative to the rest of the computation

The computations do have to be huge!



Classifications
Distributed Memory

Not suitable for small problems, or problems where data need
to move a lot between processors

Scales very well as an architecture. Clusters of over a million
cores exist: see the TOP500 list



Classifications
Distributed Memory

Not suitable for small problems, or problems where data need
to move a lot between processors

Scales very well as an architecture. Clusters of over a million
cores exist: see the TOP500 list



Classifications
Scaling

Making big machines is easier with distributed systems, too

When we try to add CPUs to a shared memory system, we
have to pay a great deal for the complicated memory
architecture as it means redesigning the silicon and building
new chips

This can quickly swamp all other costs, so making scaling a
shared memory system impractical

In contrast, the cost of adding CPUs to a distributed memory
system is “simply” the cost of the CPUs and the networking

This is roughly linear (per CPU) price scaling



Classifications
Scaling

Making big machines is easier with distributed systems, too

When we try to add CPUs to a shared memory system, we
have to pay a great deal for the complicated memory
architecture as it means redesigning the silicon and building
new chips

This can quickly swamp all other costs, so making scaling a
shared memory system impractical

In contrast, the cost of adding CPUs to a distributed memory
system is “simply” the cost of the CPUs and the networking

This is roughly linear (per CPU) price scaling



Classifications
Scaling

Making big machines is easier with distributed systems, too

When we try to add CPUs to a shared memory system, we
have to pay a great deal for the complicated memory
architecture as it means redesigning the silicon and building
new chips

This can quickly swamp all other costs, so making scaling a
shared memory system impractical

In contrast, the cost of adding CPUs to a distributed memory
system is “simply” the cost of the CPUs and the networking

This is roughly linear (per CPU) price scaling



Classifications
Scaling

Making big machines is easier with distributed systems, too

When we try to add CPUs to a shared memory system, we
have to pay a great deal for the complicated memory
architecture as it means redesigning the silicon and building
new chips

This can quickly swamp all other costs, so making scaling a
shared memory system impractical

In contrast, the cost of adding CPUs to a distributed memory
system is “simply” the cost of the CPUs and the networking

This is roughly linear (per CPU) price scaling



Classifications
Scaling

Making big machines is easier with distributed systems, too

When we try to add CPUs to a shared memory system, we
have to pay a great deal for the complicated memory
architecture as it means redesigning the silicon and building
new chips

This can quickly swamp all other costs, so making scaling a
shared memory system impractical

In contrast, the cost of adding CPUs to a distributed memory
system is “simply” the cost of the CPUs and the networking

This is roughly linear (per CPU) price scaling



Classifications
Distributed Memory

However, when scaling a cluster we should take care to scale
the network, too, otherwise we have exactly the same kinds of
bottleneck issues that shared memory systems have

In a network like

Simple shared network

the single shared network is clearly a bottleneck



Classifications
Distributed Memory

However, when scaling a cluster we should take care to scale
the network, too, otherwise we have exactly the same kinds of
bottleneck issues that shared memory systems have

In a network like

Simple shared network

the single shared network is clearly a bottleneck



Classifications
Distributed Memory

So we need to scale the network. There are many choices:

Network with two interfaces

Each processor would use one interface to communicate with
processors 0, 2, 4, etc.., and the other interface to processors
1, 3, 5, etc., thus spreading the load



Classifications
Distributed Memory

Or three interfaces

Network with three interfaces

But this gets expensive very quickly



Classifications
Distributed Memory

Or three interfaces

Network with three interfaces

But this gets expensive very quickly



Classifications
Distributed Memory

Trees are a good way of connecting things:

Tree network

Though the upper links now are a bottleneck, and we have
introduced another non-uniformity



Classifications
Distributed Memory

Trees are a good way of connecting things:

Tree network

Though the upper links now are a bottleneck, and we have
introduced another non-uniformity



Classifications
Distributed Memory

1

4

8

Fat Tree

In a fat tree links up the tree have larger bandwidths, thus
allowing full simultaneous bandwidth between each pair of
nodes



Classifications
Distributed Memory

Though the latency between nodes will vary

In practice, a full fat tree is quite expensive, so real fat trees
tend to skimp on the upper links a bit, e.g, 1, 2, 2 in the above
diagram would be much cheaper to build (and a “2” would
probably be a pair of “1”s)

Thus trading bandwidth for cost

Many other topologies exist, such as hypercube, torus, Banyan,
etc.

Exercise Azure uses a Clos network within its datacentres.
Read about this



Classifications
Distributed Memory

Though the latency between nodes will vary

In practice, a full fat tree is quite expensive, so real fat trees
tend to skimp on the upper links a bit, e.g, 1, 2, 2 in the above
diagram would be much cheaper to build (and a “2” would
probably be a pair of “1”s)

Thus trading bandwidth for cost

Many other topologies exist, such as hypercube, torus, Banyan,
etc.

Exercise Azure uses a Clos network within its datacentres.
Read about this



Classifications
Distributed Memory

Though the latency between nodes will vary

In practice, a full fat tree is quite expensive, so real fat trees
tend to skimp on the upper links a bit, e.g, 1, 2, 2 in the above
diagram would be much cheaper to build (and a “2” would
probably be a pair of “1”s)

Thus trading bandwidth for cost

Many other topologies exist, such as hypercube, torus, Banyan,
etc.

Exercise Azure uses a Clos network within its datacentres.
Read about this



Classifications
Distributed Memory

Though the latency between nodes will vary

In practice, a full fat tree is quite expensive, so real fat trees
tend to skimp on the upper links a bit, e.g, 1, 2, 2 in the above
diagram would be much cheaper to build (and a “2” would
probably be a pair of “1”s)

Thus trading bandwidth for cost

Many other topologies exist, such as hypercube, torus, Banyan,
etc.

Exercise Azure uses a Clos network within its datacentres.
Read about this



Classifications
Distributed Memory

Though the latency between nodes will vary

In practice, a full fat tree is quite expensive, so real fat trees
tend to skimp on the upper links a bit, e.g, 1, 2, 2 in the above
diagram would be much cheaper to build (and a “2” would
probably be a pair of “1”s)

Thus trading bandwidth for cost

Many other topologies exist, such as hypercube, torus, Banyan,
etc.

Exercise Azure uses a Clos network within its datacentres.
Read about this



Classifications
Distributed Memory

The point here is that this is relatively cheap to do with a
distributed memory network. But adding bandwidth by doing
this kind of connectivity in a shared memory system is
extremely expensive as it likely needs new silicon

Adding bandwidth in a network is relatively cheap

But decreasing latency is very expensive whatever the system



Classifications
Distributed Memory

The point here is that this is relatively cheap to do with a
distributed memory network. But adding bandwidth by doing
this kind of connectivity in a shared memory system is
extremely expensive as it likely needs new silicon

Adding bandwidth in a network is relatively cheap

But decreasing latency is very expensive whatever the system



Classifications
Distributed Memory

The point here is that this is relatively cheap to do with a
distributed memory network. But adding bandwidth by doing
this kind of connectivity in a shared memory system is
extremely expensive as it likely needs new silicon

Adding bandwidth in a network is relatively cheap

But decreasing latency is very expensive whatever the system



Classifications
Virtual Shared/Distributed Virtual Memory

Some programmers don’t like the fact that distributed memory
machines require programming using message passing and
prefer the shared address space model: shared memory is
easier to write programs for (they claim)

They can use virtual shared memory

Just as virtual memory is a way of converting virtual memory
addresses into physical memory addresses, virtual shared
memory is a mechanism to have a single, virtual, address
space that is converted into distributed physical addresses

Thus this is also called distributed virtual memory and
distributed shared memory



Classifications
Virtual Shared/Distributed Virtual Memory

Some programmers don’t like the fact that distributed memory
machines require programming using message passing and
prefer the shared address space model: shared memory is
easier to write programs for (they claim)

They can use virtual shared memory

Just as virtual memory is a way of converting virtual memory
addresses into physical memory addresses, virtual shared
memory is a mechanism to have a single, virtual, address
space that is converted into distributed physical addresses

Thus this is also called distributed virtual memory and
distributed shared memory



Classifications
Virtual Shared/Distributed Virtual Memory

Some programmers don’t like the fact that distributed memory
machines require programming using message passing and
prefer the shared address space model: shared memory is
easier to write programs for (they claim)

They can use virtual shared memory

Just as virtual memory is a way of converting virtual memory
addresses into physical memory addresses, virtual shared
memory is a mechanism to have a single, virtual, address
space that is converted into distributed physical addresses

Thus this is also called distributed virtual memory and
distributed shared memory



Classifications
Virtual Shared/Distributed Virtual Memory

Some programmers don’t like the fact that distributed memory
machines require programming using message passing and
prefer the shared address space model: shared memory is
easier to write programs for (they claim)

They can use virtual shared memory

Just as virtual memory is a way of converting virtual memory
addresses into physical memory addresses, virtual shared
memory is a mechanism to have a single, virtual, address
space that is converted into distributed physical addresses

Thus this is also called distributed virtual memory and
distributed shared memory



Classifications
Virtual Shared/Distributed Virtual Memory

Reading and writing variables will be implemented by a
message passing layer hidden from the programmer in the OS
or systems libraries

So the programmer won’t have to care about it and they can
write programs as if the whole of memory was one big chunk

The programmer writes the simple “x = y” and the
compiler/OS converts this into a shared memory access or a
message call as appropriate

But it will be very NUMA to data



Classifications
Virtual Shared/Distributed Virtual Memory

Reading and writing variables will be implemented by a
message passing layer hidden from the programmer in the OS
or systems libraries

So the programmer won’t have to care about it and they can
write programs as if the whole of memory was one big chunk

The programmer writes the simple “x = y” and the
compiler/OS converts this into a shared memory access or a
message call as appropriate

But it will be very NUMA to data



Classifications
Virtual Shared/Distributed Virtual Memory

Reading and writing variables will be implemented by a
message passing layer hidden from the programmer in the OS
or systems libraries

So the programmer won’t have to care about it and they can
write programs as if the whole of memory was one big chunk

The programmer writes the simple “x = y” and the
compiler/OS converts this into a shared memory access or a
message call as appropriate

But it will be very NUMA to data



Classifications
Virtual Shared/Distributed Virtual Memory

Reading and writing variables will be implemented by a
message passing layer hidden from the programmer in the OS
or systems libraries

So the programmer won’t have to care about it and they can
write programs as if the whole of memory was one big chunk

The programmer writes the simple “x = y” and the
compiler/OS converts this into a shared memory access or a
message call as appropriate

But it will be very NUMA to data



Classifications
Virtual Shared/Distributed Virtual Memory

Unfortunately, programmers do have to care as the speed of a
program will be very hard to predict or control, depending on
how data is distributed across memory and the particular
NUMA architecture it is running on

How long does the assignment “x = y” take? Is it different from
“x = z”?

A good programmer looking for a good, consistent performance
from their code will still need to think hard

A poor programmer will think their life is easier



Classifications
Virtual Shared/Distributed Virtual Memory

Unfortunately, programmers do have to care as the speed of a
program will be very hard to predict or control, depending on
how data is distributed across memory and the particular
NUMA architecture it is running on

How long does the assignment “x = y” take? Is it different from
“x = z”?

A good programmer looking for a good, consistent performance
from their code will still need to think hard

A poor programmer will think their life is easier



Classifications
Virtual Shared/Distributed Virtual Memory

Unfortunately, programmers do have to care as the speed of a
program will be very hard to predict or control, depending on
how data is distributed across memory and the particular
NUMA architecture it is running on

How long does the assignment “x = y” take? Is it different from
“x = z”?

A good programmer looking for a good, consistent performance
from their code will still need to think hard

A poor programmer will think their life is easier



Classifications
Virtual Shared/Distributed Virtual Memory

Unfortunately, programmers do have to care as the speed of a
program will be very hard to predict or control, depending on
how data is distributed across memory and the particular
NUMA architecture it is running on

How long does the assignment “x = y” take? Is it different from
“x = z”?

A good programmer looking for a good, consistent performance
from their code will still need to think hard

A poor programmer will think their life is easier



Classifications
Virtual Shared/Distributed Virtual Memory

The underlying system also needs to solve all the problems of
cache coherence that shared memory hardware has, but now
using the (relatively) slow messaging passing layer rather than
custom-designed hardware

The NUMA aspect is so unpredictable that many programmers
prefer to be in control and have an explicitly non-shared model

When you write FetchDouble you know it is going to be slow

Compare with “how fast is x = y?” in VSM



Classifications
Virtual Shared/Distributed Virtual Memory

The underlying system also needs to solve all the problems of
cache coherence that shared memory hardware has, but now
using the (relatively) slow messaging passing layer rather than
custom-designed hardware

The NUMA aspect is so unpredictable that many programmers
prefer to be in control and have an explicitly non-shared model

When you write FetchDouble you know it is going to be slow

Compare with “how fast is x = y?” in VSM



Classifications
Virtual Shared/Distributed Virtual Memory

The underlying system also needs to solve all the problems of
cache coherence that shared memory hardware has, but now
using the (relatively) slow messaging passing layer rather than
custom-designed hardware

The NUMA aspect is so unpredictable that many programmers
prefer to be in control and have an explicitly non-shared model

When you write FetchDouble you know it is going to be slow

Compare with “how fast is x = y?” in VSM



Classifications
Virtual Shared/Distributed Virtual Memory

The underlying system also needs to solve all the problems of
cache coherence that shared memory hardware has, but now
using the (relatively) slow messaging passing layer rather than
custom-designed hardware

The NUMA aspect is so unpredictable that many programmers
prefer to be in control and have an explicitly non-shared model

When you write FetchDouble you know it is going to be slow

Compare with “how fast is x = y?” in VSM



Classifications
Virtual Shared/Distributed Virtual Memory

The underlying communications layer in VSM might be
implemented

• in the Operating System, such as Mosix. This means all
standard system libraries and user code can be used
unchanged and a cluster looks like a single big machine: a
single system image (SSI)
• by the programming language and libraries, such as

Cluster OpenMP or Unified Parallel C (see later), so the
language may need a bit of learning by the programmer



Classifications
Virtual Shared/Distributed Virtual Memory

The underlying communications layer in VSM might be
implemented

• in the Operating System, such as Mosix. This means all
standard system libraries and user code can be used
unchanged and a cluster looks like a single big machine: a
single system image (SSI)

• by the programming language and libraries, such as
Cluster OpenMP or Unified Parallel C (see later), so the
language may need a bit of learning by the programmer



Classifications
Virtual Shared/Distributed Virtual Memory

The underlying communications layer in VSM might be
implemented

• in the Operating System, such as Mosix. This means all
standard system libraries and user code can be used
unchanged and a cluster looks like a single big machine: a
single system image (SSI)
• by the programming language and libraries, such as

Cluster OpenMP or Unified Parallel C (see later), so the
language may need a bit of learning by the programmer



Classifications
Virtual Shared/Distributed Virtual Memory

VSM is currently fairly rare in practice, though as NUMA
techniques improve, people are starting to talk about shared
memory clusters as being a viable and useful way to proceed



Latency numbers every programmer should know

L1 Cache hit 0.5 ns 0.5 sec
one heart beat

Mutex lock/unlock 25 ns 25 sec
making coffee

Main memory access 100 ns 100 sec
brushing your teeth

Read 1MB from memory 250,000 ns 2.9 days
a long weekend

Round trip within 500,000 ns 5.8 days
datacentre a short holiday
Read 1MB from disk 30,000,000 ns 1 year
Send a packet California→ 150,000,000 ns 4.8 years
Netherlands→ California two round trips

to Mars

https://gist.github.com/hellerbarde/2843375

https://gist.github.com/hellerbarde/2843375


Classifications

The next class of architecture is one we have already touched
on

It has elements of both shared and distributed memory

It is used for data parallel computation



Classifications

The next class of architecture is one we have already touched
on

It has elements of both shared and distributed memory

It is used for data parallel computation



Classifications

The next class of architecture is one we have already touched
on

It has elements of both shared and distributed memory

It is used for data parallel computation



Classifications
Vectors

A vector processor is a SIMD collection of CPUs (actually
ALUs), often with a chunk of global shared memory (and a
single control unit)

memory

mem mem mem mem mem

ALU ALU ALUALUALU

Control

Vector processor

Each processor also has its own chunk of local memory that it
operates on



Classifications
Vectors

The local memory allows each ALU to work on a different set of
values

Note: this is not cache, but simply per-ALU memory



Classifications
Vectors

The local memory allows each ALU to work on a different set of
values

Note: this is not cache, but simply per-ALU memory



Classifications
Cache vs Local

Cache memory: a fast local copy of a slower memory location.
If a value of a variable is cached on different cores, we want all
the caches to contain the same value for that variable

Local memory: per core memory (not always fast, by the way!)
where we expect to have different values for a given variable in
each



Classifications
Cache vs Local

Cache memory: a fast local copy of a slower memory location.
If a value of a variable is cached on different cores, we want all
the caches to contain the same value for that variable

Local memory: per core memory (not always fast, by the way!)
where we expect to have different values for a given variable in
each


