
Classifications
Vectors

In a vector processor, the bottleneck to the shared memory still
needs thinking about

For reads: as the cores are all doing the same thing, if one
requests a global shared value from a fixed shared memory
location, then all of them are doing the same

So the memory system puts that single value on the bus and all
the cores read it: no bottleneck

Sometimes called a broadcast



Classifications
Vectors

In a vector processor, the bottleneck to the shared memory still
needs thinking about

For reads: as the cores are all doing the same thing, if one
requests a global shared value from a fixed shared memory
location, then all of them are doing the same

So the memory system puts that single value on the bus and all
the cores read it: no bottleneck

Sometimes called a broadcast



Classifications
Vectors

In a vector processor, the bottleneck to the shared memory still
needs thinking about

For reads: as the cores are all doing the same thing, if one
requests a global shared value from a fixed shared memory
location, then all of them are doing the same

So the memory system puts that single value on the bus and all
the cores read it: no bottleneck

Sometimes called a broadcast



Classifications
Vectors

In a vector processor, the bottleneck to the shared memory still
needs thinking about

For reads: as the cores are all doing the same thing, if one
requests a global shared value from a fixed shared memory
location, then all of them are doing the same

So the memory system puts that single value on the bus and all
the cores read it: no bottleneck

Sometimes called a broadcast



Classifications
Vectors

mem mem mem mem mem

ALU ALU ALUALUALU

One read goes to all cores



Classifications
Vectors

However, as is often the case, it can be that each core wants a
value from a different part of global memory. E.g., core k wants
the k th element from a array

mem mem mem mem mem

ALU ALU ALUALUALU

Reading a vector of values



Classifications
Vectors

In this case, it takes careful management, both by the hardware
and by the programmer, to ensure the transfers use the shared
memory bus efficiently

The case of sending the sending the k item to the k th core is
often optimised by the hardware using coalescence

Using a wide bus (e.g., 512 bits) a single read operation can
fetch multiple data (e.g., 16 integers) and put them all on the
bus simultaneously

Each core reads the value it wants

The next 16 values are sent in the next transfer; and so on



Classifications
Vectors

In this case, it takes careful management, both by the hardware
and by the programmer, to ensure the transfers use the shared
memory bus efficiently

The case of sending the sending the k item to the k th core is
often optimised by the hardware using coalescence

Using a wide bus (e.g., 512 bits) a single read operation can
fetch multiple data (e.g., 16 integers) and put them all on the
bus simultaneously

Each core reads the value it wants

The next 16 values are sent in the next transfer; and so on



Classifications
Vectors

In this case, it takes careful management, both by the hardware
and by the programmer, to ensure the transfers use the shared
memory bus efficiently

The case of sending the sending the k item to the k th core is
often optimised by the hardware using coalescence

Using a wide bus (e.g., 512 bits) a single read operation can
fetch multiple data (e.g., 16 integers) and put them all on the
bus simultaneously

Each core reads the value it wants

The next 16 values are sent in the next transfer; and so on



Classifications
Vectors

In this case, it takes careful management, both by the hardware
and by the programmer, to ensure the transfers use the shared
memory bus efficiently

The case of sending the sending the k item to the k th core is
often optimised by the hardware using coalescence

Using a wide bus (e.g., 512 bits) a single read operation can
fetch multiple data (e.g., 16 integers) and put them all on the
bus simultaneously

Each core reads the value it wants

The next 16 values are sent in the next transfer; and so on



Classifications
Vectors

In this case, it takes careful management, both by the hardware
and by the programmer, to ensure the transfers use the shared
memory bus efficiently

The case of sending the sending the k item to the k th core is
often optimised by the hardware using coalescence

Using a wide bus (e.g., 512 bits) a single read operation can
fetch multiple data (e.g., 16 integers) and put them all on the
bus simultaneously

Each core reads the value it wants

The next 16 values are sent in the next transfer; and so on



Classifications
Vectors

mem mem mem mem mem

ALU ALU ALUALUALU

A single fat read goes to multiple cores



Classifications
Vectors

However, it needs data accesses in the program to be of certain
patterns for this to work, e.g., linear access to an array

The kinds of access pattern allowed for coalescence are
dependent on what the hardware supports, but are generally
picking some subset of a contiguous chunk of the shared
memory

Otherwise, the reads cannot be coalesced and might require
many (e.g., 16) individual reads: much slower

E.g., proc k wants value k2 from the array



Classifications
Vectors

However, it needs data accesses in the program to be of certain
patterns for this to work, e.g., linear access to an array

The kinds of access pattern allowed for coalescence are
dependent on what the hardware supports, but are generally
picking some subset of a contiguous chunk of the shared
memory

Otherwise, the reads cannot be coalesced and might require
many (e.g., 16) individual reads: much slower

E.g., proc k wants value k2 from the array



Classifications
Vectors

However, it needs data accesses in the program to be of certain
patterns for this to work, e.g., linear access to an array

The kinds of access pattern allowed for coalescence are
dependent on what the hardware supports, but are generally
picking some subset of a contiguous chunk of the shared
memory

Otherwise, the reads cannot be coalesced and might require
many (e.g., 16) individual reads: much slower

E.g., proc k wants value k2 from the array



Classifications
Vectors

However, it needs data accesses in the program to be of certain
patterns for this to work, e.g., linear access to an array

The kinds of access pattern allowed for coalescence are
dependent on what the hardware supports, but are generally
picking some subset of a contiguous chunk of the shared
memory

Otherwise, the reads cannot be coalesced and might require
many (e.g., 16) individual reads: much slower

E.g., proc k wants value k2 from the array



Classifications
Vectors

mem mem mem mem mem

ALU ALU ALUALUALU

read 3

read 2

read 1

Awkward distribution done in multiple reads



Classifications
Vectors

Similarly for writes: e.g., core k writing a value to the k th slot in
an array could be coalesced

Multiple writes to a single location make no sense and are often
disallowed by the system

Exercise Consider the case of indirecting through a pointer to
global memory (a) when each core points to the same location
and (b) when each core points to a different location in the
global memory

Exercise Consider the case of indirecting through a pointer to
local memory (a) when it’s pointing to the same location on all
cores and (b) when it’s pointing to a different location on each
core



Classifications
Vectors

Similarly for writes: e.g., core k writing a value to the k th slot in
an array could be coalesced

Multiple writes to a single location make no sense and are often
disallowed by the system

Exercise Consider the case of indirecting through a pointer to
global memory (a) when each core points to the same location
and (b) when each core points to a different location in the
global memory

Exercise Consider the case of indirecting through a pointer to
local memory (a) when it’s pointing to the same location on all
cores and (b) when it’s pointing to a different location on each
core



Classifications
Vectors

Similarly for writes: e.g., core k writing a value to the k th slot in
an array could be coalesced

Multiple writes to a single location make no sense and are often
disallowed by the system

Exercise Consider the case of indirecting through a pointer to
global memory (a) when each core points to the same location
and (b) when each core points to a different location in the
global memory

Exercise Consider the case of indirecting through a pointer to
local memory (a) when it’s pointing to the same location on all
cores and (b) when it’s pointing to a different location on each
core



Classifications
Vectors

Similarly for writes: e.g., core k writing a value to the k th slot in
an array could be coalesced

Multiple writes to a single location make no sense and are often
disallowed by the system

Exercise Consider the case of indirecting through a pointer to
global memory (a) when each core points to the same location
and (b) when each core points to a different location in the
global memory

Exercise Consider the case of indirecting through a pointer to
local memory (a) when it’s pointing to the same location on all
cores and (b) when it’s pointing to a different location on each
core



Classifications
Vectors

Often there is fast direct communications between
neighbouring CPUs

memory

mem mem mem mem mem

ALU ALU ALUALUALU

Control

Neighbour connections

This allows data to shuffle up and down the vector very quickly:
many problems (e.g., differential equations solving) work on
data and neighbour data in this way



Classifications
Vectors

Often there is fast direct communications between
neighbouring CPUs

memory

mem mem mem mem mem

ALU ALU ALUALUALU

Control

Neighbour connections

This allows data to shuffle up and down the vector very quickly:
many problems (e.g., differential equations solving) work on
data and neighbour data in this way



Classifications
Arrays

Clearly, vector processors are SIMD and not suitable for MIMD
or even SPMD

Vector processors appeared early in parallel computing as they
are relatively easy to build: ALUs are relatively easy to build
and replicate, while control units are complex and hard



Classifications
Arrays

Clearly, vector processors are SIMD and not suitable for MIMD
or even SPMD

Vector processors appeared early in parallel computing as they
are relatively easy to build: ALUs are relatively easy to build
and replicate, while control units are complex and hard



Classifications
Arrays

An extension of the idea was the array processor



Classifications
Arrays

An extension of the idea was the array processor

memmemmemmem

ALUALUALUALU

memmemmemmem

memory

memmem mem mem

memmemmemmem

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

control

Array processor



Classifications
Arrays

An extension of the idea was the array processor

memmemmemmem

ALUALUALUALU

memmemmemmem

memory

memmem mem mem

memmemmemmem

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

control

Array with diagonal connections



Classifications
Arrays

The CPUs are in SIMD lockstep as before, but now in an array

Fast connections in two or more directions

This fits well with 2 dimensional differential equation problems

More expensive than vector processors and much less common



Classifications
Arrays

The CPUs are in SIMD lockstep as before, but now in an array

Fast connections in two or more directions

This fits well with 2 dimensional differential equation problems

More expensive than vector processors and much less common



Classifications
Arrays

The CPUs are in SIMD lockstep as before, but now in an array

Fast connections in two or more directions

This fits well with 2 dimensional differential equation problems

More expensive than vector processors and much less common



Classifications
Arrays

The CPUs are in SIMD lockstep as before, but now in an array

Fast connections in two or more directions

This fits well with 2 dimensional differential equation problems

More expensive than vector processors and much less common



Classifications
Arrays

Early array processors were very simple, but they became
bigger as technology advanced

CPU #CPUs mem/CPU
DAP 1979 1 bit 4k 4k bits
CM 1983 1 bit 64k few kB
MPP 1983 1 bit 16k 1 kB
MasPar 1990 4 bit 16k 16kB
MasParII 1992 32 bit 64k 64kB

DAP: ICL Distributed Array Processor
CM: Connection Machine (pretty lights)
MPP: Goodyear Massively Parallel Processor



Classifications
Arrays

Early array processors were very simple, but they became
bigger as technology advanced

CPU #CPUs mem/CPU
DAP 1979 1 bit 4k 4k bits
CM 1983 1 bit 64k few kB
MPP 1983 1 bit 16k 1 kB
MasPar 1990 4 bit 16k 16kB
MasParII 1992 32 bit 64k 64kB

DAP: ICL Distributed Array Processor
CM: Connection Machine (pretty lights)
MPP: Goodyear Massively Parallel Processor



Classifications
Arrays

Despite being very wimpy processors, this was made up by
having so many of them

Their throughput (results achieved per second) is quite
respectable

They work very well for certain kinds of problem (e.g., weather
forecasting), but are not suited to many other kinds of problems

Vector/array processing processors are important due to their
influence on the design of GPUs



Classifications
Arrays

Despite being very wimpy processors, this was made up by
having so many of them

Their throughput (results achieved per second) is quite
respectable

They work very well for certain kinds of problem (e.g., weather
forecasting), but are not suited to many other kinds of problems

Vector/array processing processors are important due to their
influence on the design of GPUs



Classifications
Arrays

Despite being very wimpy processors, this was made up by
having so many of them

Their throughput (results achieved per second) is quite
respectable

They work very well for certain kinds of problem (e.g., weather
forecasting), but are not suited to many other kinds of problems

Vector/array processing processors are important due to their
influence on the design of GPUs



Classifications
Arrays

Despite being very wimpy processors, this was made up by
having so many of them

Their throughput (results achieved per second) is quite
respectable

They work very well for certain kinds of problem (e.g., weather
forecasting), but are not suited to many other kinds of problems

Vector/array processing processors are important due to their
influence on the design of GPUs



Classifications
Arrays

Shared, distributed and vector processors are the three major
architectures used today

But others have been tried, with varying levels of success



Classifications
Arrays

Shared, distributed and vector processors are the three major
architectures used today

But others have been tried, with varying levels of success



Classifications
Pipelines, Systolic Arrays

Similar looking to vector processors, but actually quite different,
are systolic arrays

These generalise CPU instruction pipelines to processes

mem
CPU

mem
CPU

mem
CPU

Process pipeline

The CPUs are independent (MIMD/MPMD), each performing
one step in the transformation of the input data

More often found in hardware to solve specific problems; not
often found as a generic machine

Exercise Could this be classified MISD?



Classifications
Pipelines, Systolic Arrays

Similar looking to vector processors, but actually quite different,
are systolic arrays

These generalise CPU instruction pipelines to processes

mem
CPU

mem
CPU

mem
CPU

Process pipeline

The CPUs are independent (MIMD/MPMD), each performing
one step in the transformation of the input data

More often found in hardware to solve specific problems; not
often found as a generic machine

Exercise Could this be classified MISD?



Classifications
Pipelines, Systolic Arrays

Similar looking to vector processors, but actually quite different,
are systolic arrays

These generalise CPU instruction pipelines to processes

mem
CPU

mem
CPU

mem
CPU

Process pipeline

The CPUs are independent (MIMD/MPMD), each performing
one step in the transformation of the input data

More often found in hardware to solve specific problems; not
often found as a generic machine

Exercise Could this be classified MISD?



Classifications
Pipelines, Systolic Arrays

Similar looking to vector processors, but actually quite different,
are systolic arrays

These generalise CPU instruction pipelines to processes

mem
CPU

mem
CPU

mem
CPU

Process pipeline

The CPUs are independent (MIMD/MPMD), each performing
one step in the transformation of the input data

More often found in hardware to solve specific problems; not
often found as a generic machine

Exercise Could this be classified MISD?



Classifications
Pipelines, Systolic Arrays

Similar looking to vector processors, but actually quite different,
are systolic arrays

These generalise CPU instruction pipelines to processes

mem
CPU

mem
CPU

mem
CPU

Process pipeline

The CPUs are independent (MIMD/MPMD), each performing
one step in the transformation of the input data

More often found in hardware to solve specific problems; not
often found as a generic machine

Exercise Could this be classified MISD?



Classifications
Pipelines, Systolic Arrays

Similar looking to vector processors, but actually quite different,
are systolic arrays

These generalise CPU instruction pipelines to processes

mem
CPU

mem
CPU

mem
CPU

Process pipeline

The CPUs are independent (MIMD/MPMD), each performing
one step in the transformation of the input data

More often found in hardware to solve specific problems; not
often found as a generic machine

Exercise Could this be classified MISD?



Classifications
Pipelines, Systolic Arrays

For example, a graphics card might want to do clipping of
polygons, then colouring, then shading

Each step separate, but compute intensive

Just as pipelining instructions in a processor allows instructions
to be processed faster, pipelining these kinds of computations
allows pixels to be computed faster

Used in graphics coprocessors as another form of parallelism

Part of the reason why digital TV is delayed relative to realtime
is that the encoding of the picture goes through a big pipeline
before it is transmitted: there is an inherent latency in pipelines



Classifications
Pipelines, Systolic Arrays

For example, a graphics card might want to do clipping of
polygons, then colouring, then shading

Each step separate, but compute intensive

Just as pipelining instructions in a processor allows instructions
to be processed faster, pipelining these kinds of computations
allows pixels to be computed faster

Used in graphics coprocessors as another form of parallelism

Part of the reason why digital TV is delayed relative to realtime
is that the encoding of the picture goes through a big pipeline
before it is transmitted: there is an inherent latency in pipelines



Classifications
Pipelines, Systolic Arrays

For example, a graphics card might want to do clipping of
polygons, then colouring, then shading

Each step separate, but compute intensive

Just as pipelining instructions in a processor allows instructions
to be processed faster, pipelining these kinds of computations
allows pixels to be computed faster

Used in graphics coprocessors as another form of parallelism

Part of the reason why digital TV is delayed relative to realtime
is that the encoding of the picture goes through a big pipeline
before it is transmitted: there is an inherent latency in pipelines



Classifications
Pipelines, Systolic Arrays

For example, a graphics card might want to do clipping of
polygons, then colouring, then shading

Each step separate, but compute intensive

Just as pipelining instructions in a processor allows instructions
to be processed faster, pipelining these kinds of computations
allows pixels to be computed faster

Used in graphics coprocessors as another form of parallelism

Part of the reason why digital TV is delayed relative to realtime
is that the encoding of the picture goes through a big pipeline
before it is transmitted: there is an inherent latency in pipelines



Classifications
Pipelines, Systolic Arrays

For example, a graphics card might want to do clipping of
polygons, then colouring, then shading

Each step separate, but compute intensive

Just as pipelining instructions in a processor allows instructions
to be processed faster, pipelining these kinds of computations
allows pixels to be computed faster

Used in graphics coprocessors as another form of parallelism

Part of the reason why digital TV is delayed relative to realtime
is that the encoding of the picture goes through a big pipeline
before it is transmitted: there is an inherent latency in pipelines



Classifications
Pipelines, Systolic Arrays

Systolic arrays are the obvious extension

mem
CPU

mem
CPU

mem
CPU

mem
CPU

mem
CPU

mem
CPU

Systolic array

but it is unclear if these were ever built



Classifications
Extensions of von Neumann

So why do all these varieties of parallel architecture exist?

There is essentially just one way uniprocessor machines are
built: the von Neumann model

Is there a model that encapsulates multiprocessors in the same
way?

There are many contenders, but no obvious winner



Classifications
Extensions of von Neumann

So why do all these varieties of parallel architecture exist?

There is essentially just one way uniprocessor machines are
built: the von Neumann model

Is there a model that encapsulates multiprocessors in the same
way?

There are many contenders, but no obvious winner



Classifications
Extensions of von Neumann

So why do all these varieties of parallel architecture exist?

There is essentially just one way uniprocessor machines are
built: the von Neumann model

Is there a model that encapsulates multiprocessors in the same
way?

There are many contenders, but no obvious winner



Classifications
Extensions of von Neumann

So why do all these varieties of parallel architecture exist?

There is essentially just one way uniprocessor machines are
built: the von Neumann model

Is there a model that encapsulates multiprocessors in the same
way?

There are many contenders, but no obvious winner



Classifications
Extensions of von Neumann

We have the original von Neumann 5 box model

input output

ALU Control

memory

CPU

von Neumann 5 box model



Classifications
Extensions of von Neumann

Shared memory MIMD

ALU ControlALU Control ALU Control

input output

memory

Shared memory box model



Classifications
Extensions of von Neumann

Distributed memory MIMD

ALU ControlALU Control ALU Control

memory memorymemory

input output

Distributed memory box model



Classifications
Extensions of von Neumann

Vector processor

ALU

memory

ALU

memory

ALU

memory

ALU

memory

ALU

memory

input output

Memory

Control

Vector processor memory box model



Classifications
Extensions of von Neumann

Perhaps there just isn’t a single extension of von Neumann that
is suitable as a one-size-fits-all solution

Or perhaps we just haven’t thought of it yet?



Classifications
Extensions of von Neumann

Perhaps there just isn’t a single extension of von Neumann that
is suitable as a one-size-fits-all solution

Or perhaps we just haven’t thought of it yet?



Classifications
Extensions of von Neumann

There are several theoretical models whose aim is to guide the
design of parallel algorithms and allow the analysis of them

As with von Neumann, the idea is that you

• write your program in accordance with the model
• the model maps well onto all kinds of real hardware
• therefore your program maps well onto all kinds of real

hardware



Classifications
Extensions of von Neumann

There are several theoretical models whose aim is to guide the
design of parallel algorithms and allow the analysis of them

As with von Neumann, the idea is that you

• write your program in accordance with the model
• the model maps well onto all kinds of real hardware
• therefore your program maps well onto all kinds of real

hardware



Classifications
Extensions of von Neumann

Firstly: PRAM

The Parallel Random Access Machine model idealises a
parallel computer as shared memory MIMD, concentrating on
the memory bottleneck

You have a choice of how memory can be accessed:

• Exclusive Read Exclusive Write (EREW). Each memory
location can only be read or written by one processor at a
time. The simplest architecture

• Concurrent Read Exclusive Write (CREW). Each memory
location can be read by many processors simultaneously,
but written by just one processor at a time (c.f. global
memory in a vector processor)



Classifications
Extensions of von Neumann

Firstly: PRAM

The Parallel Random Access Machine model idealises a
parallel computer as shared memory MIMD, concentrating on
the memory bottleneck

You have a choice of how memory can be accessed:

• Exclusive Read Exclusive Write (EREW). Each memory
location can only be read or written by one processor at a
time. The simplest architecture

• Concurrent Read Exclusive Write (CREW). Each memory
location can be read by many processors simultaneously,
but written by just one processor at a time (c.f. global
memory in a vector processor)



Classifications
Extensions of von Neumann

Firstly: PRAM

The Parallel Random Access Machine model idealises a
parallel computer as shared memory MIMD, concentrating on
the memory bottleneck

You have a choice of how memory can be accessed:

• Exclusive Read Exclusive Write (EREW). Each memory
location can only be read or written by one processor at a
time. The simplest architecture

• Concurrent Read Exclusive Write (CREW). Each memory
location can be read by many processors simultaneously,
but written by just one processor at a time (c.f. global
memory in a vector processor)



Classifications
Extensions of von Neumann

Firstly: PRAM

The Parallel Random Access Machine model idealises a
parallel computer as shared memory MIMD, concentrating on
the memory bottleneck

You have a choice of how memory can be accessed:

• Exclusive Read Exclusive Write (EREW). Each memory
location can only be read or written by one processor at a
time. The simplest architecture

• Concurrent Read Exclusive Write (CREW). Each memory
location can be read by many processors simultaneously,
but written by just one processor at a time (c.f. global
memory in a vector processor)



Classifications
Extensions of von Neumann

Firstly: PRAM

The Parallel Random Access Machine model idealises a
parallel computer as shared memory MIMD, concentrating on
the memory bottleneck

You have a choice of how memory can be accessed:

• Exclusive Read Exclusive Write (EREW). Each memory
location can only be read or written by one processor at a
time. The simplest architecture

• Concurrent Read Exclusive Write (CREW). Each memory
location can be read by many processors simultaneously,
but written by just one processor at a time (c.f. global
memory in a vector processor)



Classifications
Extensions of von Neumann

• Concurrent Read Concurrent Write (CRCW). Each
memory location can be read or written by many
processors simultaneously. Not a realistic model

• Exclusive Read Concurrent Write (ERCW). The fourth
combination, never used.



Classifications
Extensions of von Neumann

• Concurrent Read Concurrent Write (CRCW). Each
memory location can be read or written by many
processors simultaneously. Not a realistic model

• Exclusive Read Concurrent Write (ERCW). The fourth
combination, never used.



Classifications
Extensions of von Neumann

PRAMs make many further simplifying assumptions, including:

• Memory is symmetric: every location is accessed at the
same speed. Decreasingly realistic

• There are an unlimited number of processors: there’s
always another processor if you need it. Seems unrealistic,
but not so bad as you think as most programs are unable
to make use of the hardware that we currently have

• Memory is unlimited. This assumption is also often made
in analysis of uniprocessor algorithms



Classifications
Extensions of von Neumann

PRAMs make many further simplifying assumptions, including:

• Memory is symmetric: every location is accessed at the
same speed. Decreasingly realistic

• There are an unlimited number of processors: there’s
always another processor if you need it. Seems unrealistic,
but not so bad as you think as most programs are unable
to make use of the hardware that we currently have

• Memory is unlimited. This assumption is also often made
in analysis of uniprocessor algorithms



Classifications
Extensions of von Neumann

PRAMs make many further simplifying assumptions, including:

• Memory is symmetric: every location is accessed at the
same speed. Decreasingly realistic

• There are an unlimited number of processors: there’s
always another processor if you need it. Seems unrealistic,
but not so bad as you think as most programs are unable
to make use of the hardware that we currently have

• Memory is unlimited. This assumption is also often made
in analysis of uniprocessor algorithms



Classifications
Extensions of von Neumann

PRAMs make many further simplifying assumptions, including:

• Memory is symmetric: every location is accessed at the
same speed. Decreasingly realistic

• There are an unlimited number of processors: there’s
always another processor if you need it. Seems unrealistic,
but not so bad as you think as most programs are unable
to make use of the hardware that we currently have

• Memory is unlimited. This assumption is also often made
in analysis of uniprocessor algorithms



Classifications
Extensions of von Neumann

In the early days of Computer Science, there were many clever
algorithms invented to deal with the lack of available memory

And, to some extent, memory is still limited in some modern
architectures that have very large numbers of CPUs so
proportionally each has only a small share of memory

And people want to run programs on datasets of
ever-increasing size



Classifications
Extensions of von Neumann

In the early days of Computer Science, there were many clever
algorithms invented to deal with the lack of available memory

And, to some extent, memory is still limited in some modern
architectures that have very large numbers of CPUs so
proportionally each has only a small share of memory

And people want to run programs on datasets of
ever-increasing size



Classifications
Extensions of von Neumann

In the early days of Computer Science, there were many clever
algorithms invented to deal with the lack of available memory

And, to some extent, memory is still limited in some modern
architectures that have very large numbers of CPUs so
proportionally each has only a small share of memory

And people want to run programs on datasets of
ever-increasing size



Classifications
Extensions of von Neumann

So you analyse your program, counting numbers of memory
accesses it makes (according to which of
EREW/CREW/CRCW you have chosen) and this gives you a
measure of the time your program will take to run

This is primarily a MIMD model, but you can analyse SIMD
using it

It totally ignores important realities like NUMA and other
overheads, such as communication time in a distributed
memory system

But it gives you a rough idea and it is extensively used in
analysis of parallel algorithms: we’ll have some examples later



Classifications
Extensions of von Neumann

So you analyse your program, counting numbers of memory
accesses it makes (according to which of
EREW/CREW/CRCW you have chosen) and this gives you a
measure of the time your program will take to run

This is primarily a MIMD model, but you can analyse SIMD
using it

It totally ignores important realities like NUMA and other
overheads, such as communication time in a distributed
memory system

But it gives you a rough idea and it is extensively used in
analysis of parallel algorithms: we’ll have some examples later



Classifications
Extensions of von Neumann

So you analyse your program, counting numbers of memory
accesses it makes (according to which of
EREW/CREW/CRCW you have chosen) and this gives you a
measure of the time your program will take to run

This is primarily a MIMD model, but you can analyse SIMD
using it

It totally ignores important realities like NUMA and other
overheads, such as communication time in a distributed
memory system

But it gives you a rough idea and it is extensively used in
analysis of parallel algorithms: we’ll have some examples later



Classifications
Extensions of von Neumann

So you analyse your program, counting numbers of memory
accesses it makes (according to which of
EREW/CREW/CRCW you have chosen) and this gives you a
measure of the time your program will take to run

This is primarily a MIMD model, but you can analyse SIMD
using it

It totally ignores important realities like NUMA and other
overheads, such as communication time in a distributed
memory system

But it gives you a rough idea and it is extensively used in
analysis of parallel algorithms: we’ll have some examples later



Classifications
Extensions of von Neumann

Next: BSP

The Bulk Synchronous Parallel model

This model takes communication time into account

It assumes processors with local memory communicating over
a network

Good for distributed, but can be used for shared memory where
you just have smaller communication costs



Classifications
Extensions of von Neumann

Next: BSP

The Bulk Synchronous Parallel model

This model takes communication time into account

It assumes processors with local memory communicating over
a network

Good for distributed, but can be used for shared memory where
you just have smaller communication costs



Classifications
Extensions of von Neumann

Next: BSP

The Bulk Synchronous Parallel model

This model takes communication time into account

It assumes processors with local memory communicating over
a network

Good for distributed, but can be used for shared memory where
you just have smaller communication costs



Classifications
Extensions of von Neumann

Next: BSP

The Bulk Synchronous Parallel model

This model takes communication time into account

It assumes processors with local memory communicating over
a network

Good for distributed, but can be used for shared memory where
you just have smaller communication costs



Classifications
Extensions of von Neumann

Next: BSP

The Bulk Synchronous Parallel model

This model takes communication time into account

It assumes processors with local memory communicating over
a network

Good for distributed, but can be used for shared memory where
you just have smaller communication costs



Classifications
Extensions of von Neumann

A computation is modelled as a sequence of supersteps

• each processor does some computation (MIMD, but could
be SIMD)

• each processor does some communication
• each processor waits at a global barrier until everybody

has finished their communications. This is the “bulk
synchronous” part

• repeat



Classifications
Extensions of von Neumann

A computation is modelled as a sequence of supersteps

• each processor does some computation (MIMD, but could
be SIMD)

• each processor does some communication
• each processor waits at a global barrier until everybody

has finished their communications. This is the “bulk
synchronous” part

• repeat



Classifications
Extensions of von Neumann

BSP supersteps



Classifications
Extensions of von Neumann

Processing is simplified in this way to give us a chance of being
able to make an analysis

Fortunately, many real computations are not too far from this
shape

More realistic than PRAMs, but harder work to get analyses out
of it

But those analyses tend to be a better match to realistic
hardware



Classifications
Extensions of von Neumann

Processing is simplified in this way to give us a chance of being
able to make an analysis

Fortunately, many real computations are not too far from this
shape

More realistic than PRAMs, but harder work to get analyses out
of it

But those analyses tend to be a better match to realistic
hardware



Classifications
Extensions of von Neumann

Processing is simplified in this way to give us a chance of being
able to make an analysis

Fortunately, many real computations are not too far from this
shape

More realistic than PRAMs, but harder work to get analyses out
of it

But those analyses tend to be a better match to realistic
hardware



Classifications
Extensions of von Neumann

Processing is simplified in this way to give us a chance of being
able to make an analysis

Fortunately, many real computations are not too far from this
shape

More realistic than PRAMs, but harder work to get analyses out
of it

But those analyses tend to be a better match to realistic
hardware



Classifications
Extensions of von Neumann

And so on for many other models, some practical, some not

For example, parallel Turing machines and Communicating
Sequential Processes (CSP) amongst others. Both better at
describing the nature and limitations of parallel programs than
for investigating how well they work

But the fact remains that there is not one simple theoretical
model that works well for all kinds of parallel processing

This might be the source of the confusion in parallel hardware,
but we have to live with it



Classifications
Extensions of von Neumann

And so on for many other models, some practical, some not

For example, parallel Turing machines and Communicating
Sequential Processes (CSP) amongst others. Both better at
describing the nature and limitations of parallel programs than
for investigating how well they work

But the fact remains that there is not one simple theoretical
model that works well for all kinds of parallel processing

This might be the source of the confusion in parallel hardware,
but we have to live with it



Classifications
Extensions of von Neumann

And so on for many other models, some practical, some not

For example, parallel Turing machines and Communicating
Sequential Processes (CSP) amongst others. Both better at
describing the nature and limitations of parallel programs than
for investigating how well they work

But the fact remains that there is not one simple theoretical
model that works well for all kinds of parallel processing

This might be the source of the confusion in parallel hardware,
but we have to live with it



Classifications
Extensions of von Neumann

And so on for many other models, some practical, some not

For example, parallel Turing machines and Communicating
Sequential Processes (CSP) amongst others. Both better at
describing the nature and limitations of parallel programs than
for investigating how well they work

But the fact remains that there is not one simple theoretical
model that works well for all kinds of parallel processing

This might be the source of the confusion in parallel hardware,
but we have to live with it



Analysis

So we need to look at how to analyse parallel algorithms

Analysis of parallel algorithms is like analysis of sequential
algorithms, just more complicated

Later we shall see statements like “this takes time O(n2) using
O(p) processors”

But we shall start with a few simple measures that we can use
to indicate how well our parallel algorithms are working

They are quite crude, but effective



Analysis

So we need to look at how to analyse parallel algorithms

Analysis of parallel algorithms is like analysis of sequential
algorithms, just more complicated

Later we shall see statements like “this takes time O(n2) using
O(p) processors”

But we shall start with a few simple measures that we can use
to indicate how well our parallel algorithms are working

They are quite crude, but effective



Analysis

So we need to look at how to analyse parallel algorithms

Analysis of parallel algorithms is like analysis of sequential
algorithms, just more complicated

Later we shall see statements like “this takes time O(n2) using
O(p) processors”

But we shall start with a few simple measures that we can use
to indicate how well our parallel algorithms are working

They are quite crude, but effective



Analysis

So we need to look at how to analyse parallel algorithms

Analysis of parallel algorithms is like analysis of sequential
algorithms, just more complicated

Later we shall see statements like “this takes time O(n2) using
O(p) processors”

But we shall start with a few simple measures that we can use
to indicate how well our parallel algorithms are working

They are quite crude, but effective



Analysis

So we need to look at how to analyse parallel algorithms

Analysis of parallel algorithms is like analysis of sequential
algorithms, just more complicated

Later we shall see statements like “this takes time O(n2) using
O(p) processors”

But we shall start with a few simple measures that we can use
to indicate how well our parallel algorithms are working

They are quite crude, but effective



Analysis
Speedup

They mostly measure the parallel algorithm in comparison with
a corresponding sequential algorithm

Or a parallel implementation with a corresponding sequential
implementation: by timing actual running code

We have seen that having p processors won’t necessarily make
our program run p times as fast

The speedup using p processors is

Sp =
time on a sequential processor
time on p parallel processors

Ideally we’d like Sp = p, but this never happens



Analysis
Speedup

They mostly measure the parallel algorithm in comparison with
a corresponding sequential algorithm

Or a parallel implementation with a corresponding sequential
implementation: by timing actual running code

We have seen that having p processors won’t necessarily make
our program run p times as fast

The speedup using p processors is

Sp =
time on a sequential processor
time on p parallel processors

Ideally we’d like Sp = p, but this never happens



Analysis
Speedup

They mostly measure the parallel algorithm in comparison with
a corresponding sequential algorithm

Or a parallel implementation with a corresponding sequential
implementation: by timing actual running code

We have seen that having p processors won’t necessarily make
our program run p times as fast

The speedup using p processors is

Sp =
time on a sequential processor
time on p parallel processors

Ideally we’d like Sp = p, but this never happens



Analysis
Speedup

They mostly measure the parallel algorithm in comparison with
a corresponding sequential algorithm

Or a parallel implementation with a corresponding sequential
implementation: by timing actual running code

We have seen that having p processors won’t necessarily make
our program run p times as fast

The speedup using p processors is

Sp =
time on a sequential processor
time on p parallel processors

Ideally we’d like Sp = p, but this never happens



Analysis
Speedup

They mostly measure the parallel algorithm in comparison with
a corresponding sequential algorithm

Or a parallel implementation with a corresponding sequential
implementation: by timing actual running code

We have seen that having p processors won’t necessarily make
our program run p times as fast

The speedup using p processors is

Sp =
time on a sequential processor
time on p parallel processors

Ideally we’d like Sp = p, but this never happens



Analysis
Speedup

Usually Sp is much smaller than p for several reasons

Firstly, there is communications overheads between processors

This might be fairly small for shared memory, or large for
distributed memory, but it is present

Time spent communicating is time not spent computing



Analysis
Speedup

Usually Sp is much smaller than p for several reasons

Firstly, there is communications overheads between processors

This might be fairly small for shared memory, or large for
distributed memory, but it is present

Time spent communicating is time not spent computing



Analysis
Speedup

Usually Sp is much smaller than p for several reasons

Firstly, there is communications overheads between processors

This might be fairly small for shared memory, or large for
distributed memory, but it is present

Time spent communicating is time not spent computing



Analysis
Speedup

Usually Sp is much smaller than p for several reasons

Firstly, there is communications overheads between processors

This might be fairly small for shared memory, or large for
distributed memory, but it is present

Time spent communicating is time not spent computing



Analysis
Speedup

So more communications (data movement) will tend to lead to
smaller speedups

For example, speedups on distributed memory machines can
be reduced as the cost of communications is quite high

But speedups can improve for a larger computation where the
relative cost of communications drops

Remember clusters are used for large problems where the
emphasis is on size, not speed



Analysis
Speedup

So more communications (data movement) will tend to lead to
smaller speedups

For example, speedups on distributed memory machines can
be reduced as the cost of communications is quite high

But speedups can improve for a larger computation where the
relative cost of communications drops

Remember clusters are used for large problems where the
emphasis is on size, not speed



Analysis
Speedup

So more communications (data movement) will tend to lead to
smaller speedups

For example, speedups on distributed memory machines can
be reduced as the cost of communications is quite high

But speedups can improve for a larger computation where the
relative cost of communications drops

Remember clusters are used for large problems where the
emphasis is on size, not speed



Analysis
Speedup

So more communications (data movement) will tend to lead to
smaller speedups

For example, speedups on distributed memory machines can
be reduced as the cost of communications is quite high

But speedups can improve for a larger computation where the
relative cost of communications drops

Remember clusters are used for large problems where the
emphasis is on size, not speed



Analysis
Slowdown

In really bad cases, Sp < 1, i.e., our parallel program goes
slower than our sequential program even though we’ve thrown
all this expensive hardware at it!

This is more common than we’d like



Analysis
Slowdown

In really bad cases, Sp < 1, i.e., our parallel program goes
slower than our sequential program even though we’ve thrown
all this expensive hardware at it!

This is more common than we’d like


