
Analysis
Speedup: Amdahl’s Law

Now there is the natural upper bound of Sp ≤ p: we wouldn’t
expect to get more speedup than the number of processors we
have

But it turns out that the number of processors is generally not
the limiting factor on speedup: there is another fundamental
restriction on speedup that is often overlooked

Amdahl’s Law reveals a natural upper bound on the speedup
that is theoretically possible even before we add in
implementation overheads
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Suppose we have a problem of which 90% can be run in
parallel, leaving 10% sequential code

For example, we have to read data before we can process it: a
necessary sequentiality. Similarly for writing after processing.
Or the add after the square in x2 + 1

So there’s always some sequentiality

But in the best possible case, using an unlimited number of
processors, we might be able to get the parallel part down to as
close to zero time as we like

We still have the 10% sequential part
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S∞ =
time on a sequential processor

time on parallel processors
=
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= 10

A speedup of 10 even on an infinite number of processors

It doesn’t even matter what the problem is, or what hardware
we have
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Speedup: Amdahl’s Law

This is Amdahl’s Law:

Every program has a natural limit on the maximum
speedup it can attain, regardless of the number of pro-
cessors used
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Let T = Tseq + Tpar be the time spent in the sequential and
parallel parts of our problem on a sequential processor

Then the maximum speedup Sp using p processors on the
parallel part is

Sp ≤
Tseq + Tpar

Tseq + Tpar/p

where we have perfectly parallelised the parallel part
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Most do I/O, which must be serialised (made sequential)

Further, as p →∞, we get
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so there is a limit even given infinite processing power

This limit is determined by the time taken in the sequential part
of the computation
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To see this consider the fraction x = Tseq/(Tseq + Tpar) which is
the proportion of the sequential part within the whole

Note that 0 ≤ x ≤ 1, and that rearranging the above gives

Sp ≤
1

x + (1− x)/p

And so
S∞ ≤

1
x

is bounded
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speedup varies with p

All Amdahl says is that an upper limit exists

Your program may not get anywhere close to that limit and
often in real programs, does not
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To emphasize: all we know is that actual speedup is below
Amdahl’s limit

Exercise Show that if 0 ≤ x ≤ 1, then

1
x + (1− x)/p

≤ p

Exercise What is the maximum speedup of a program that is
100% sequential?
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Amdahl’s law is real: there is a natural limit on speedup for a
given problem

But there’s another point of view

Gustafson pointed out that in real life larger machines tend to
attract larger problems

Amdahl assumes a fixed size of problem

Gustafson’s Law (occasionally called Gustafson-Barsis’s Law)
gives us another limit
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Suppose we have a problem of size n

Sp(n) ≤
1

xn + (1− xn)/p

where Sp(n) is the speedup on p processors for a problem of
size n; xn is the fraction of the computation spent sequentially

Gustafson argues: as n gets larger, the sequential part
relatively decreases, so xn → 0 (p is fixed)

So
Sp(∞) ≤ p

i.e., we now get a speedup limit that is the “perfect” speedup p
— on an infinitely sized problem
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Both Amdahl and Gustafson are correct: they just apply to
different cases of scaling

Amdahl: fixed problem, scaling processing power (sometimes
called strong scaling)

Gustafson: fixed processing power, scaling problem

This should convince you that even a simple measure like
speedup can be problematic!

But it does re-emphasise the fact that parallelism is not about
making things faster, but about making things larger
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Analysis
Speedup

Speedup is a simple measure, often proving that your parallel
program is slower than it ought to be

1

1

p

S
p

Typical speedup curve

Sometimes it takes p to be surprisingly large before you even
catch up with the uniprocessor time with Sp = 1 (sometimes
never!)
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off
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Speedup

This is usually due to increased communications between the
processors adding more overhead but not more speedup,
perhaps due to Amdahl

Of course, it’s not always this bad, but it’s quite common!

It does mean there is often an optimum number of processors
for a given size of problem that achieves the best speedup

Of course, these are only typical behaviours: a given program
may behave quite differently from all of this
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Speedup

Exercise Consider what might be the difference between a
sequential implementation of something and a parallel
implementation running on one processor



Analysis
Superlinear Speedup

You will get used to seeing Sp < p

On the other hand, it is possible that Sp > p

This seemingly impossible condition is called superlinear
speedup

It is quite rare in real life, but it really can happen that a program
runs more than p times as fast on p processors

This can happen for a variety of reasons, some technological,
and some more philosophical
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Superlinear Speedup

The first technological reason is due to cache memory

Cache memory is a lot faster than main memory so if you can
fit your problem entirely in cache, it will run faster

For example, a Core i7: perhaps 200 cycles to access main
memory, compared to 2 cycles for a L1 cache hit

p processors might have p times the cache of a single
processor, so a problem spread across the processors might
well fit in the larger amount of cache available

Of course, this takes a certain kind of low-communication,
easily dividable problem to work; and the right hardware
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Note: modern CPUs tend to share cache across multiple cores,
so it is unlikely p cores has p times as much cache

(This helps with cache coherence!)
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Analysis
Superlinear Speedup

Another (more philosophical) reason is due to the way speedup
is defined

Sp =
time on a sequential processor
time on p parallel processors

What are we comparing against what?

Here is an example to illustrate the issue

We have bubblesort running on a uniprocessor: we wish to
make it run on a parallel machine
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Superlinear Speedup

One way of doing this is:

• split the data into equal halves
• bubblesort each half in parallel
• merge the two sorted lists together

This is 2-way parallelism

The middle step can be itself parallelised recursively: split into
two, bubble and merge, giving 4-way parallelism

Depending on the number of processors we have, we can keep
recursively dividing
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Superlinear Speedup

This seems like a reasonable way to implement bubblesort on a
parallel machine

What is the speedup? We need to find out how long each
version takes to run

Normal bubblesort takes time n2/2 + O(n) comparisons in the
average case to sort n items

So bubblesorting the two halves (in parallel) takes time

(n/2)2/2 + O(n/2) = n2/8 + O(n)
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Merging n values takes O(n), giving a total of

n2/8 + O(n) + O(n) = n2/8 + O(n)

time

This gives speedup

S2 =
n2/2 + O(n)
n2/8 + O(n)

≈ 4

Already superlinear!
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On 4 processors we could repeat: the speedup we get is
S4 ≈ 16

Clearly this a wonderful algorithm

If we were to implement it, we would truly see these speedups

What is happening?



Analysis
Superlinear Speedup

On 4 processors we could repeat: the speedup we get is
S4 ≈ 16

Clearly this a wonderful algorithm

If we were to implement it, we would truly see these speedups

What is happening?



Analysis
Superlinear Speedup

On 4 processors we could repeat: the speedup we get is
S4 ≈ 16

Clearly this a wonderful algorithm

If we were to implement it, we would truly see these speedups

What is happening?



Analysis
Superlinear Speedup

On 4 processors we could repeat: the speedup we get is
S4 ≈ 16

Clearly this a wonderful algorithm

If we were to implement it, we would truly see these speedups

What is happening?



Analysis
Superlinear Speedup

Consider the same subdividing algorithm on a single processor

Time to bubblesort halves: 2× (n2/8 + O(n)) = n2/4 + O(n);
time to merge O(n); total n2/4 + O(n)

“Speedup”

S1 =
n2/2 + O(n)
n2/4 + O(n)

≈ 2

So we win even on a uniprocessor
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kind of sort: if we recurse all the way we have actually
implemented a merge sort
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computing speedups that we are comparing like with like

It may not always be possible to have a suitable parallel version
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the best possible sequential way of doing things
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And occasionally we see superlinear speedup due to
randomness

If the data contains random numbers, or there is something that
adds an elements of randomness to the run time we can get a
superlinear speedup

This time due to the parallel version “getting lucky” and hitting a
special case that finishes early relative to your measured
sequential version

So also not comparing like with like

You would need to ensure each run had the same randomness
to be properly comparable; or run many times and take an
average time
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In conclusion: speedup is a nice and simple, easy to
understand measure: but we have to take care over what it is
telling us

Some problems are pathologically parallel, meaning they fall
easily into parallel parts that have a minimum of communication

For such problems it is easy to get good speedups

E.g., graphics rendering, weather forecasting, parameter
sweeping, etc. Often they are data parallel problems

Other problems fare less well — in terms of speed — from
parallelisation!
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