Parallel Computing
CM30225
Russell Bradford
2023/24
1. Analysis
Efficiency
If we are lucky enough that increases with we can make our program get faster by adding more processors
But at what cost?
If we can double the speed of a program using 4 processors we feel we are doing better than if we used a different approach that needed 8 processors for the same speedup
Efficiency measures this
2. Analysis
Efficiency
Efficiency is speedup per processor:

Usually , and is often written as a percentage
 () means we are using only half of the processors’ capabilities on our computation; half is lost in overheads or idling while waiting for something
 () means we are using all the processors all the time on our computation
 indicate superlinear speedup: we are using more than 100% of the processors!
3. Analysis
Efficiency
Efficiency is useful when we need to gauge the cost of a parallel system: the higher the efficiency the better the utilisation of the processors
When this indicates that somewhere at some point a processor not working on the computation. Perhaps it is occupied in communication; or possibly just lying idle waiting
4. Analysis
Efficiency
Typical efficiency graph on a fixed size problem:
[image: Pics/dropoff3.svg]
Efficiency graph dropoff
5. Analysis
Speedup and Efficiency
As an example of calculating speedup and efficiency we consider a pipeline (systolic array)
[image: Pics/pipeline2.svg]
Systolic array
Data moves from one processor to the next being transformed at each stage: we assume one time step per transform
This could equally be a CPU instruction pipeline
6. Analysis
Speedup and Efficiency
A -stage pipeline will take time steps to fill; after that it produces one result per time step
So it can produce results in time steps
A sequential system will take time steps to do the steps on the computations
7. Analysis
Speedup and Efficiency
The speedup is

As time passes, the number of tasks gets large, and
A -stage pipeline has a speedup is less than , but that gets closer to as time progresses
Also, the speedup starts low (for ,) and increases over time, getting closer and closer to
8. Analysis
Speedup and Efficiency
The efficiency is

As gets large,
Eventually we are (close to) using all the processors all the time: perfect efficiency!
Also, the efficiency starts low (for ,) and increases over time
9. Analysis
Speedup and Efficiency
Pipelines are a really good way of making something parallel: both great speedup and great efficiency
As long as we can keep the pipeline full: in a CPU each time we take a jump the instruction pipeline breaks, empties and needs to refill
To keep high efficiency we need to avoid this: thus the complications in the designs of modern processors that are aimed at keeping the pipeline full
(Things like speculative evaluation and branch prediction, using many transistors…)
10. Analysis
Other measures
Speedup and Efficiency are simple, but useful measures of a parallel system, as long as you take care over using them
There are many other measures that are occasionally used, but they are of lesser importance
Exercise Some people use the phrase “negative speedup” rather than “slowdown”. Why is that incorrect?
11. Analysis
Karp-Flatt
Sometimes people use the Karp-Flatt metric as a measure of an implementation to see how well it is doing
This is essentially an empirical measure of the sequential fraction of a computation (important for the Amdahl limit)
 where is the measured speedup and the number of processors
12. Analysis
Karp-Flatt
A larger indicates a larger sequential part
If we have perfect speedup, , and
If we have no speedup, , and
If we have slowdown, e.g., , and
(If we have superlinear speedup, , and)
Exercise Calculate Karp-Flatt for the pipeline. What does it tell us?
13. Analysis
Karp-Flatt
Note that Karp-Flatt will give you an estimate for the sequential time for a given implementation
It does not tell us the sequential limit for the problem
After all, you might just have a poor implementation
A big Karp-Flatt value is often an indication you need to re-think your code
14. Analysis
Work Efficient
Next: a parallel algorithm is work efficient (cost efficient) if the number of operations it performs is no more than the sequential algorithm
For example, a parallel algorithm might duplicate some operations on separate processors as it is more convenient, or reduces communications
The parallel overhead is

where is the sequential time and is the parallel time
15. Analysis
Work Efficient
This measures the amount of extra work we are doing to get the parallelism
A measure of the extra energy expended in the parallel algorithm or implementation
And the cost of the overheads (e.g., communication) when we measure a real implementation
Exercise Calculate the parallel overhead for the pipeline. What does it tell us?
16. Analysis
Isoefficiency
Another question is “how scalable is this algorithm?”
Here we ask for a relationship between , the number of processors and the size of the problem for a given efficiency
If we increase , how much to we have to increase to maintain a given efficiency?
17. Analysis
Isoefficiency
Increasing will generally decrease efficiency (Amdahl)
Increasing will generally increase efficiency (Gustafson)
A poorly scalable algorithm will need to increase a lot to maintain efficiency as we increase
This relationship is called the isoefficiency, and expresses as a function of
It quantifies the balance between Amdahl and Gustafson
18. Analysis
Isoefficiency
Computing the isoefficiency can be a bit fiddly, but often it is easiest to start by looking at the parallel overhead
We have efficiency and overhead . Combining these:

So to keep constant, we need to keep constant
19. Analysis
Isoefficiency
So we must have

for some constant
As both and depend on and , this equation generally gives us enough to solve for in terms of
20. Analysis
Isoefficiency
Example. The -stage pipeline had efficiency on a problem of size
The overhead

independent of
This fixed overhead again tells us it is a good idea to keep the pipeline full!
21. Analysis
Isoefficiency
We want which is

We solve for

Thus the isoefficiency is

22. Analysis
Isoefficiency
This is linear in : if we double we need only double to maintain efficiency
So this tells us pipelines are very scalable
23. Analysis
Measures Conclusion
There are many ways we can measure if our parallel program is performing well, or poorly
But we do need to be careful that we are making meaningful comparisons of parallel and sequential algorithms
Exercise Compute these measures for summing numbers using processors
24. Analysis
Bandwidth and Latency
While we are thinking about measurement of parallel systems we need to make a quick comment about bandwidth and latency as they play an important role in the way we regard communications overhead
Bandwidth is the number of bytes per second transmitted over some medium
Latency is how long we have to wait for the data to arrive
25. Analysis
Bandwidth and Latency
Bandwidth is often mentioned in descriptions of things as it is easy to visualise (a rate of flow)
However, latency is often just as important in parallel systems
Bandwidths these days are pretty high: Mb and Gb rates are common
Latencies of milliseconds may seem small, but relatively speaking they are the big problem
26. Analysis
Bandwidth and Latency
Example A memory bus (DDR5) might have 400Gb/sec bandwidth and latency 100ns.
Fast, but processors are faster! Data might arrive at a prodigious rate when it does arrive, but a processor could do a lot of work while it was waiting for the first byte to arrive
This is why processors have lots of complex and clever caching to avoid going off-chip
27. Analysis
Bandwidth and Latency
Example A local network (10Gb Ethernet) might have bandwidth 10Gb/sec and latency 100s
This is how nodes in a cluster are often connected
Again we are in the range of hundreds of thousands of instructions while waiting
And this does not include the CPU overhead of going through the Operating System to send and receive the packets from the network
28. Analysis
Bandwidth and Latency
The latency affects coding strongly: it may be worthwhile doing duplicate computations if that is faster than fetching a value
In large parallel systems compute power is cheap and plentiful, but communications are slow and expensive
This is why when we implement parallel code we really need to concentrate on the communications more than the computations
29. Analysis
Bandwidth and Latency
It is quite easy to increase bandwidth
Doubling the width of a bus will double the bandwidth, but do nothing to the latency
We might get a huge bandwidth by strapping a USB stick to a pigeon: the latency would not be so good, though!
For a long time sneakernet was the best way to transmit large volumes of data
Exercise Read about how data was transmitted to generate the recent (2019) image of a black hole
30. Analysis
Note: Moore says sizes of RAM are increasing, but latencies are far behind
[image: Pics/image57.png]
Sizes of RAM over time
Graph from Kevin K. Chang, PhD., CMU 2017
31. Analysis
Bandwidth and Latency
Latency is often limited by Physics: the speed of light is a big factor on latency these days
Thus, like Amdahl, latency is another natural limit on parallel computation
Particularly on distributed architectures
32. Shared Memory Systems
We now move on to look at shared memory and distributed memory systems in more detail, in particular the issues that arise in software and programming
We start with shared memory MIMD as people think it seems more similar to SISD than distributed memory is, and so is “easier”
We will look at simple programs that have multiple threads of control, i.e., parts of the process are running simultaneously on separate processors
33. Shared Memory Systems
Note: a single program might use several processes, and each process might contain several threads
Separate processes have separate (virtual) memory address spaces (my memory location 42 is different from your memory location 42)
Multiple threads in the same process (generally) share the same (virtual) address space (my memory location 42 is the same as your memory location 42)
Here we consider the shared part, i.e., threads within a process
rId26.svg

	

 1

 E

 1

 p

 p

rId29.png

rId32.svg

	

	

	

	

rId35.png

rId86.png
DRAM Improvements vs. Moore's Law

500 = Moore's 2 Year Law
= Capacity
= Bandwidth
. - Latency
50
10
5

1
1999 2001 2003 2005 2007 2009 2011 2013 2015 2017

