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Efficiency is speedup per processor:

Ep =
Sp

p
=

time on a sequential processor
p × time on p parallel processors

Usually 0 ≤ Ep ≤ 1, and is often written as a percentage

Ep = 0.5 (50%) means we are using only half of the processors’
capabilities on our computation; half is lost in overheads or
idling while waiting for something

Ep = 1 (100%) means we are using all the processors all the
time on our computation

Ep > 1 indicate superlinear speedup: we are using more than
100% of the processors!
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As an example of calculating speedup and efficiency we
consider a pipeline (systolic array)

Systolic array

Data moves from one processor to the next being transformed
at each stage: we assume one time step per transform

This could equally be a CPU instruction pipeline
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p + n − 1
=

p
(p − 1)/n + 1

As time passes, the number of tasks n gets large, and Sp → p

A p-stage pipeline has a speedup is less than p, but that gets
closer to p as time progresses

Also, the speedup starts low (for n = 1, Sp = p/(p + 1− 1) = 1)
and increases over time, getting closer and closer to p
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Ep = 1/(p + 1− 1) = 1/p) and increases over time
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Speedup and Efficiency

Pipelines are a really good way of making something parallel:
both great speedup and great efficiency

As long as we can keep the pipeline full: in a CPU each time
we take a jump the instruction pipeline breaks, empties and
needs to refill

To keep high efficiency we need to avoid this: thus the
complications in the designs of modern processors that are
aimed at keeping the pipeline full

(Things like speculative evaluation and branch prediction, using
many transistors. . . )
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Speedup and Efficiency are simple, but useful measures of a
parallel system, as long as you take care over using them

There are many other measures that are occasionally used, but
they are of lesser importance

Exercise Some people use the phrase “negative speedup”
rather than “slowdown”. Why is that incorrect?
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Karp-Flatt

Sometimes people use the Karp-Flatt metric as a measure of
an implementation to see how well it is doing

This is essentially an empirical measure of the sequential
fraction of a computation (important for the Amdahl limit)
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where Sp is the measured speedup and p the number of
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A larger e indicates a larger sequential part

If we have perfect speedup, Sp = p, and e = 0

If we have no speedup, Sp = 1, and e = 1

If we have slowdown, e.g., Sp = 1/2, and e ≈ 2

(If we have superlinear speedup, Sp > p, and e < 0)

Exercise Calculate Karp-Flatt for the pipeline. What does it tell
us?
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time for a given implementation

It does not tell us the sequential limit for the problem

After all, you might just have a poor implementation

A big Karp-Flatt value is often an indication you need to re-think
your code
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Next: a parallel algorithm is work efficient (cost efficient) if the
number of operations it performs is no more than the sequential
algorithm

For example, a parallel algorithm might duplicate some
operations on separate processors as it is more convenient, or
reduces communications

The parallel overhead is

To = pTp − Ts

where Ts is the sequential time and Tp is the parallel time
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This measures the amount of extra work we are doing to get
the parallelism

A measure of the extra energy expended in the parallel
algorithm or implementation

And the cost of the overheads (e.g., communication) when we
measure a real implementation

Exercise Calculate the parallel overhead for the pipeline. What
does it tell us?
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This relationship is called the isoefficiency, and expresses n as
a function of p
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Computing the isoefficiency can be a bit fiddly, but often it is
easiest to start by looking at the parallel overhead

We have efficiency E = Ts/pTp and overhead To = pTp − Ts.
Combining these:

E =
Ts

p
(

To+Ts
p

) =
Ts

To + Ts
=

1
1 + To/Ts

So to keep E constant, we need to keep To/Ts constant
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for some constant c

As both Ts and To depend on n and p, this equation generally
gives us enough to solve for n in terms of p
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Example. The p-stage pipeline had efficiency

E = n/(p + n − 1)

on a problem of size n

The overhead

To = pTp − Ts = p(p + n − 1)− np = p2 − p

independent of n

This fixed overhead again tells us it is a good idea to keep the
pipeline full!
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But we do need to be careful that we are making meaningful
comparisons of parallel and sequential algorithms

Exercise Compute these measures for summing n numbers
using p processors
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communications overhead

Bandwidth is the number of bytes per second transmitted over
some medium

Latency is how long we have to wait for the data to arrive
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Example A memory bus (DDR5) might have 400Gb/sec
bandwidth and latency 100ns.

Fast, but processors are faster! Data might arrive at a
prodigious rate when it does arrive, but a processor could do a
lot of work while it was waiting for the first byte to arrive

This is why processors have lots of complex and clever caching
to avoid going off-chip
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This is how nodes in a cluster are often connected

Again we are in the range of hundreds of thousands of
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plentiful, but communications are slow and expensive

This is why when we implement parallel code we really need to
concentrate on the communications more than the
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Doubling the width of a bus will double the bandwidth, but do
nothing to the latency

We might get a huge bandwidth by strapping a USB stick to a
pigeon: the latency would not be so good, though!

For a long time sneakernet was the best way to transmit large
volumes of data

Exercise Read about how data was transmitted to generate the
recent (2019) image of a black hole
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Analysis
Note: Moore says sizes of RAM are increasing, but latencies
are far behind

Sizes of RAM over time

Graph from Kevin K. Chang, PhD., CMU 2017
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Thus, like Amdahl, latency is another natural limit on parallel
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We now move on to look at shared memory and distributed
memory systems in more detail, in particular the issues that
arise in software and programming

We start with shared memory MIMD as people think it seems
more similar to SISD than distributed memory is, and so is
“easier”

We will look at simple programs that have multiple threads of
control, i.e., parts of the process are running simultaneously on
separate processors



Shared Memory Systems

We now move on to look at shared memory and distributed
memory systems in more detail, in particular the issues that
arise in software and programming

We start with shared memory MIMD as people think it seems
more similar to SISD than distributed memory is, and so is
“easier”

We will look at simple programs that have multiple threads of
control, i.e., parts of the process are running simultaneously on
separate processors



Shared Memory Systems

We now move on to look at shared memory and distributed
memory systems in more detail, in particular the issues that
arise in software and programming

We start with shared memory MIMD as people think it seems
more similar to SISD than distributed memory is, and so is
“easier”

We will look at simple programs that have multiple threads of
control, i.e., parts of the process are running simultaneously on
separate processors



Shared Memory Systems

Note: a single program might use several processes, and each
process might contain several threads

Separate processes have separate (virtual) memory address
spaces (my memory location 42 is different from your memory
location 42)

Multiple threads in the same process (generally) share the
same (virtual) address space (my memory location 42 is the
same as your memory location 42)

Here we consider the shared part, i.e., threads within a process
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