
Shared Memory Systems

Suppose we want to count the number of positive values in a
list of numbers

count = 0;

for (i = 0; i < 100; i++) {

if (val[i] > 0) { count = count + 1; }

}

In C or C++ or Java or whatever

It’s not really worthwhile parallelising this in real life (Exercise
why?), but let’s try



Shared Memory Systems

Suppose we want to count the number of positive values in a
list of numbers

count = 0;

for (i = 0; i < 100; i++) {

if (val[i] > 0) { count = count + 1; }

}

In C or C++ or Java or whatever

It’s not really worthwhile parallelising this in real life (Exercise
why?), but let’s try



Shared Memory Systems

We could split this into two blocks

1
for (i = 0; i < 50; i++) {

if (val[i] > 0) count = count + 1;

}

2
for (i = 50; i < 100; i++) {

if (val[i] > 0) count = count + 1;

}

and by magic to be discussed later have blocks 1 and 2 run in
parallel on separate processors, sharing the variables (i.e.,
shared memory)



Shared Memory Systems

1 2
for (i = 0; i < 50; i++) { for (j = 50; j < 100; j++) {

if (val[i] > 0) { if (val[j] > 0) {

count = count + 1; count = count + 1;

} }

} }

Note we want to share val and count, but not the loop
variables!

No communication or interaction between the threads: instant
speedup of 2?



Shared Memory Systems

1 2
for (i = 0; i < 50; i++) { for (j = 50; j < 100; j++) {

if (val[i] > 0) { if (val[j] > 0) {

count = count + 1; count = count + 1;

} }

} }

Note we want to share val and count, but not the loop
variables!

No communication or interaction between the threads: instant
speedup of 2?



Shared Memory Systems

It may run twice as fast, but sometimes will give the wrong
answer!

Sometimes it will give a value of count that is too small

The problem is the shared resource, the variable count

We have two separate threads reading and updating the value



Shared Memory Systems

It may run twice as fast, but sometimes will give the wrong
answer!

Sometimes it will give a value of count that is too small

The problem is the shared resource, the variable count

We have two separate threads reading and updating the value



Shared Memory Systems

It may run twice as fast, but sometimes will give the wrong
answer!

Sometimes it will give a value of count that is too small

The problem is the shared resource, the variable count

We have two separate threads reading and updating the value



Shared Memory Systems

It may run twice as fast, but sometimes will give the wrong
answer!

Sometimes it will give a value of count that is too small

The problem is the shared resource, the variable count

We have two separate threads reading and updating the value



Shared Memory Systems

Occasionally, just occasionally, the following happens

1 2
read the value of count read the value of count

into a CPU register into a CPU register

add 1 add 1

store the value store the value



Shared Memory Systems

Occasionally, just occasionally, the following happens

1 2
read the value of count read the value of count

into a CPU register into a CPU register

add 1 add 1

store the value store the value



Shared Memory Systems

Occasionally, just occasionally, the following happens

1 2
read the value of count read the value of count

into a CPU register into a CPU register

add 1 add 1

store the value store the value



Shared Memory Systems

So both read a value, 10, say. Both add 1 to get 11. Both store
11.

Even if we don’t have hardware that supports simultaneous
reads and writes (we might have EREW) it can still go wrong

1 2
read the value of count ...

add 1 read the value of count

store the value add 1

... store the value



Shared Memory Systems

So both read a value, 10, say. Both add 1 to get 11. Both store
11.

Even if we don’t have hardware that supports simultaneous
reads and writes (we might have EREW) it can still go wrong

1 2
read the value of count ...

add 1 read the value of count

store the value add 1

... store the value



Shared Memory Systems

So both read a value, 10, say. Both add 1 to get 11. Both store
11.

Even if we don’t have hardware that supports simultaneous
reads and writes (we might have EREW) it can still go wrong

1 2
read the value of count ...

add 1 read the value of count

store the value add 1

... store the value



Shared Memory Systems

So both read a value, 10, say. Both add 1 to get 11. Both store
11.

Even if we don’t have hardware that supports simultaneous
reads and writes (we might have EREW) it can still go wrong

1 2
read the value of count ...

add 1 read the value of count

store the value add 1

... store the value



Shared Memory Systems

So both read a value, 10, say. Both add 1 to get 11. Both store
11.

Even if we don’t have hardware that supports simultaneous
reads and writes (we might have EREW) it can still go wrong

1 2
read the value of count ...

add 1 read the value of count

store the value add 1

... store the value



Shared Memory Systems

The parallel version is simply an incorrect program

This is another example of a race condition where an
unexpected or overlooked timing in the execution produces an
incorrect result

It is a data race: an unsynchronized, concurrent access to data
involving a write

Read-only data is always safe to share: nothing can go wrong

But when a write (or multiple writes) is involved, things can go
badly wrong



Shared Memory Systems

The parallel version is simply an incorrect program

This is another example of a race condition where an
unexpected or overlooked timing in the execution produces an
incorrect result

It is a data race: an unsynchronized, concurrent access to data
involving a write

Read-only data is always safe to share: nothing can go wrong

But when a write (or multiple writes) is involved, things can go
badly wrong



Shared Memory Systems

The parallel version is simply an incorrect program

This is another example of a race condition where an
unexpected or overlooked timing in the execution produces an
incorrect result

It is a data race: an unsynchronized, concurrent access to data
involving a write

Read-only data is always safe to share: nothing can go wrong

But when a write (or multiple writes) is involved, things can go
badly wrong



Shared Memory Systems

The parallel version is simply an incorrect program

This is another example of a race condition where an
unexpected or overlooked timing in the execution produces an
incorrect result

It is a data race: an unsynchronized, concurrent access to data
involving a write

Read-only data is always safe to share: nothing can go wrong

But when a write (or multiple writes) is involved, things can go
badly wrong



Shared Memory Systems

The parallel version is simply an incorrect program

This is another example of a race condition where an
unexpected or overlooked timing in the execution produces an
incorrect result

It is a data race: an unsynchronized, concurrent access to data
involving a write

Read-only data is always safe to share: nothing can go wrong

But when a write (or multiple writes) is involved, things can go
badly wrong



Shared Memory Systems

And notice this can even happen on a single processor, when
multiple threads are being timeshared by the OS

The OS may choose to deschedule thread 1 in between its
read and write; and schedule thread 2 that reads the old value

Exercise And it might give even worse counts: think why

So this is a concurrency error, and not just a parallelism error



Shared Memory Systems

And notice this can even happen on a single processor, when
multiple threads are being timeshared by the OS

The OS may choose to deschedule thread 1 in between its
read and write; and schedule thread 2 that reads the old value

Exercise And it might give even worse counts: think why

So this is a concurrency error, and not just a parallelism error



Shared Memory Systems

And notice this can even happen on a single processor, when
multiple threads are being timeshared by the OS

The OS may choose to deschedule thread 1 in between its
read and write; and schedule thread 2 that reads the old value

Exercise And it might give even worse counts: think why

So this is a concurrency error, and not just a parallelism error



Shared Memory Systems

And notice this can even happen on a single processor, when
multiple threads are being timeshared by the OS

The OS may choose to deschedule thread 1 in between its
read and write; and schedule thread 2 that reads the old value

Exercise And it might give even worse counts: think why

So this is a concurrency error, and not just a parallelism error



Shared Memory Systems

The race may or may not happen according all kinds of external
events that might affect the timing of the execution of the
updates

So the program may often be right, and occasionally wrong

Or the program may often be wrong, and occasionally right

The program might always give the correct answer on your
machine, but give the wrong answer on your customer’s
machine

Exercise Compare with deadlocks



Shared Memory Systems

The race may or may not happen according all kinds of external
events that might affect the timing of the execution of the
updates

So the program may often be right, and occasionally wrong

Or the program may often be wrong, and occasionally right

The program might always give the correct answer on your
machine, but give the wrong answer on your customer’s
machine

Exercise Compare with deadlocks



Shared Memory Systems

The race may or may not happen according all kinds of external
events that might affect the timing of the execution of the
updates

So the program may often be right, and occasionally wrong

Or the program may often be wrong, and occasionally right

The program might always give the correct answer on your
machine, but give the wrong answer on your customer’s
machine

Exercise Compare with deadlocks



Shared Memory Systems

The race may or may not happen according all kinds of external
events that might affect the timing of the execution of the
updates

So the program may often be right, and occasionally wrong

Or the program may often be wrong, and occasionally right

The program might always give the correct answer on your
machine, but give the wrong answer on your customer’s
machine

Exercise Compare with deadlocks



Shared Memory Systems

The race may or may not happen according all kinds of external
events that might affect the timing of the execution of the
updates

So the program may often be right, and occasionally wrong

Or the program may often be wrong, and occasionally right

The program might always give the correct answer on your
machine, but give the wrong answer on your customer’s
machine

Exercise Compare with deadlocks



Shared Memory Systems

Note: the “obvious solution” of having separate count1 and
count2 introduces a new, separate, problem we shall address
later: for now we need to consider shared resources



Races

Philosophy Exercise A race condition is only a bug if the
non-determinism is undesirable. Discuss



Shared Memory Systems

The myriad ways of avoiding race conditions are what keep
programmers and theoreticians in their jobs

And the people designing debugging tools

Some debugging tools exist which will find simple errors like the
above, but in general we have to rely on programmers finding
the bugs by thinking



Shared Memory Systems

The myriad ways of avoiding race conditions are what keep
programmers and theoreticians in their jobs

And the people designing debugging tools

Some debugging tools exist which will find simple errors like the
above, but in general we have to rely on programmers finding
the bugs by thinking



Shared Memory Systems

The myriad ways of avoiding race conditions are what keep
programmers and theoreticians in their jobs

And the people designing debugging tools

Some debugging tools exist which will find simple errors like the
above, but in general we have to rely on programmers finding
the bugs by thinking



Shared Memory Systems
Race Condition Detection Tools

Some tools to help detect race conditions:

• Intel Parallel Inspector, a Visual Studio plugin
• Helgrind, a Valgrind plugin
• Data Race Detection (DRD), another Valgrind plugin

Ideally, the programming language itself would prevent you
from writing code with races (see later for examples)

Experience tells us it is hopeless to rely on the programmer to
get it right!



Shared Memory Systems
Race Condition Detection Tools

Some tools to help detect race conditions:

• Intel Parallel Inspector, a Visual Studio plugin
• Helgrind, a Valgrind plugin
• Data Race Detection (DRD), another Valgrind plugin

Ideally, the programming language itself would prevent you
from writing code with races (see later for examples)

Experience tells us it is hopeless to rely on the programmer to
get it right!



Shared Memory Systems
Race Condition Detection Tools

Some tools to help detect race conditions:

• Intel Parallel Inspector, a Visual Studio plugin
• Helgrind, a Valgrind plugin
• Data Race Detection (DRD), another Valgrind plugin

Ideally, the programming language itself would prevent you
from writing code with races (see later for examples)

Experience tells us it is hopeless to rely on the programmer to
get it right!



Shared Memory Systems

Areas of code that use a shared resource are called a critical
region (also called a critical section)

In the above example, the increments of count form a (small)
critical region

A critical region comprises any pieces of code that access a
resource that might be updated in parallel

So, in this example, any region of code that updates count is
critical

So these pieces of code have to be carefully thought out to
avoid race conditions



Shared Memory Systems

Areas of code that use a shared resource are called a critical
region (also called a critical section)

In the above example, the increments of count form a (small)
critical region

A critical region comprises any pieces of code that access a
resource that might be updated in parallel

So, in this example, any region of code that updates count is
critical

So these pieces of code have to be carefully thought out to
avoid race conditions



Shared Memory Systems

Areas of code that use a shared resource are called a critical
region (also called a critical section)

In the above example, the increments of count form a (small)
critical region

A critical region comprises any pieces of code that access a
resource that might be updated in parallel

So, in this example, any region of code that updates count is
critical

So these pieces of code have to be carefully thought out to
avoid race conditions



Shared Memory Systems

Areas of code that use a shared resource are called a critical
region (also called a critical section)

In the above example, the increments of count form a (small)
critical region

A critical region comprises any pieces of code that access a
resource that might be updated in parallel

So, in this example, any region of code that updates count is
critical

So these pieces of code have to be carefully thought out to
avoid race conditions



Shared Memory Systems

Areas of code that use a shared resource are called a critical
region (also called a critical section)

In the above example, the increments of count form a (small)
critical region

A critical region comprises any pieces of code that access a
resource that might be updated in parallel

So, in this example, any region of code that updates count is
critical

So these pieces of code have to be carefully thought out to
avoid race conditions



Shared Memory Systems

Such critical regions are rife in parallel programs and appear in
many different guises

Sometimes you can run a program 100 times and get the right
answer, but on the 101st time it is wrong

Such events can have a very low probability, making them hard
to debug by “run it and see if it works”

But they do happen, so you have to find them by hard thought
instead



Shared Memory Systems

Such critical regions are rife in parallel programs and appear in
many different guises

Sometimes you can run a program 100 times and get the right
answer, but on the 101st time it is wrong

Such events can have a very low probability, making them hard
to debug by “run it and see if it works”

But they do happen, so you have to find them by hard thought
instead



Shared Memory Systems

Such critical regions are rife in parallel programs and appear in
many different guises

Sometimes you can run a program 100 times and get the right
answer, but on the 101st time it is wrong

Such events can have a very low probability, making them hard
to debug by “run it and see if it works”

But they do happen, so you have to find them by hard thought
instead



Shared Memory Systems

Such critical regions are rife in parallel programs and appear in
many different guises

Sometimes you can run a program 100 times and get the right
answer, but on the 101st time it is wrong

Such events can have a very low probability, making them hard
to debug by “run it and see if it works”

But they do happen, so you have to find them by hard thought
instead



Shared Memory Systems
Locks

The problem is that two (or more) threads are trying to update
something at the same time (update = read, modify, write)

In between the read and the write another thread might have
gone behind the first’s back and updated the thing itself



Shared Memory Systems
Locks

The problem is that two (or more) threads are trying to update
something at the same time (update = read, modify, write)

In between the read and the write another thread might have
gone behind the first’s back and updated the thing itself



Shared Memory Systems
Locks

The simplest solution to stop multiple threads updating a
resource is to allow only one thread at a time to do an update
on a shared resource

If a second thread wishes to update while a first has already
started, the second is forced to wait until the first has finished

This will ensure correct updates by avoiding the update overlap
we saw earlier

Note, though, the second thread will have to wait: this is an
inefficiency and if that happens a lot the system as a whole will
be slower than it ought



Shared Memory Systems
Locks

The simplest solution to stop multiple threads updating a
resource is to allow only one thread at a time to do an update
on a shared resource

If a second thread wishes to update while a first has already
started, the second is forced to wait until the first has finished

This will ensure correct updates by avoiding the update overlap
we saw earlier

Note, though, the second thread will have to wait: this is an
inefficiency and if that happens a lot the system as a whole will
be slower than it ought



Shared Memory Systems
Locks

The simplest solution to stop multiple threads updating a
resource is to allow only one thread at a time to do an update
on a shared resource

If a second thread wishes to update while a first has already
started, the second is forced to wait until the first has finished

This will ensure correct updates by avoiding the update overlap
we saw earlier

Note, though, the second thread will have to wait: this is an
inefficiency and if that happens a lot the system as a whole will
be slower than it ought



Shared Memory Systems
Locks

The simplest solution to stop multiple threads updating a
resource is to allow only one thread at a time to do an update
on a shared resource

If a second thread wishes to update while a first has already
started, the second is forced to wait until the first has finished

This will ensure correct updates by avoiding the update overlap
we saw earlier

Note, though, the second thread will have to wait: this is an
inefficiency and if that happens a lot the system as a whole will
be slower than it ought



Concurrency Primitives
Locks

We are forcing the bits of code in the critical region into
executing sequentially, which Amdahl tells us is bad for
speedup

But the sequential execution is essential for the code to be
correct

So we need to make critical regions as small and fast as
possible



Concurrency Primitives
Locks

We are forcing the bits of code in the critical region into
executing sequentially, which Amdahl tells us is bad for
speedup

But the sequential execution is essential for the code to be
correct

So we need to make critical regions as small and fast as
possible



Concurrency Primitives
Locks

We are forcing the bits of code in the critical region into
executing sequentially, which Amdahl tells us is bad for
speedup

But the sequential execution is essential for the code to be
correct

So we need to make critical regions as small and fast as
possible



Concurrency Primitives
Locks

One simple way of enforcing this mutual exclusion on critical
regions is the use of locks

Also called: mutexes. Some confused people use semaphores
(see later), but these are better employed for other problems

A lock is a simple flag that says “Please wait, this region is
busy”



Concurrency Primitives
Locks

One simple way of enforcing this mutual exclusion on critical
regions is the use of locks

Also called: mutexes. Some confused people use semaphores
(see later), but these are better employed for other problems

A lock is a simple flag that says “Please wait, this region is
busy”



Concurrency Primitives
Locks

One simple way of enforcing this mutual exclusion on critical
regions is the use of locks

Also called: mutexes. Some confused people use semaphores
(see later), but these are better employed for other problems

A lock is a simple flag that says “Please wait, this region is
busy”



Concurrency Primitives
Locks

We must surround all critical regions that update a given
shared resource with a grab and release of the lock:

get lock get lock

do stuff on a resource other stuff on same resource

release lock release lock

If a second thread tries to grab the lock it will be made to wait
until the lock is released by the first thread

In this way we can ensure that two updates never overlap



Concurrency Primitives
Locks

We must surround all critical regions that update a given
shared resource with a grab and release of the lock:

get lock get lock

do stuff on a resource other stuff on same resource

release lock release lock

If a second thread tries to grab the lock it will be made to wait
until the lock is released by the first thread

In this way we can ensure that two updates never overlap



Concurrency Primitives
Locks

We must surround all critical regions that update a given
shared resource with a grab and release of the lock:

get lock get lock

do stuff on a resource other stuff on same resource

release lock release lock

If a second thread tries to grab the lock it will be made to wait
until the lock is released by the first thread

In this way we can ensure that two updates never overlap



Concurrency Primitives
We will get either

get lock try to get lock

do stuff on a resource (wait)

release lock (wait)

get lock

other stuff on same resource

release lock

or

try to get lock get lock

(wait) other stuff on same resource

(wait) release lock

get lock

do stuff on a resource

release lock

No parallelism on access to the resource!



Concurrency Primitives
Locks

Note that every piece of parallel code in the program that
updates that resource will have to have to be wrapped in the
grab of the lock

If we miss protecting any occurrence of a parallel update, the
whole thing is broken

This is clearly a good source of bugs

Locks are a very crude method to prevent race conditions, but
they are widely used



Concurrency Primitives
Locks

Note that every piece of parallel code in the program that
updates that resource will have to have to be wrapped in the
grab of the lock

If we miss protecting any occurrence of a parallel update, the
whole thing is broken

This is clearly a good source of bugs

Locks are a very crude method to prevent race conditions, but
they are widely used



Concurrency Primitives
Locks

Note that every piece of parallel code in the program that
updates that resource will have to have to be wrapped in the
grab of the lock

If we miss protecting any occurrence of a parallel update, the
whole thing is broken

This is clearly a good source of bugs

Locks are a very crude method to prevent race conditions, but
they are widely used



Concurrency Primitives
Locks

Note that every piece of parallel code in the program that
updates that resource will have to have to be wrapped in the
grab of the lock

If we miss protecting any occurrence of a parallel update, the
whole thing is broken

This is clearly a good source of bugs

Locks are a very crude method to prevent race conditions, but
they are widely used



Concurrency Primitives
Locks

This also applies to more than two threads, of course

The first grab of the lock will succeed, the others will have to
wait until the lock is released

If more than one thread tries to grab the lock at the same
instant, just one will succeed. The others will have to wait

If there are several threads waiting on a lock, just one will get
the lock when it is released: the other threads continue to wait



Concurrency Primitives
Locks

This also applies to more than two threads, of course

The first grab of the lock will succeed, the others will have to
wait until the lock is released

If more than one thread tries to grab the lock at the same
instant, just one will succeed. The others will have to wait

If there are several threads waiting on a lock, just one will get
the lock when it is released: the other threads continue to wait



Concurrency Primitives
Locks

This also applies to more than two threads, of course

The first grab of the lock will succeed, the others will have to
wait until the lock is released

If more than one thread tries to grab the lock at the same
instant, just one will succeed. The others will have to wait

If there are several threads waiting on a lock, just one will get
the lock when it is released: the other threads continue to wait



Concurrency Primitives
Locks

This also applies to more than two threads, of course

The first grab of the lock will succeed, the others will have to
wait until the lock is released

If more than one thread tries to grab the lock at the same
instant, just one will succeed. The others will have to wait

If there are several threads waiting on a lock, just one will get
the lock when it is released: the other threads continue to wait



Concurrency Primitives
Locks

Also, most implementations of locks are not fair in the sense
that any one of the waiting threads will get the lock, there’s no
first-in-first-out enforced

This is because (a) it’s extra overhead for the OS to implement
such a FIFO and (b) most programs don’t need it, so why have
an overhead that most programs don’t want?

The threads are likely arriving at the lock in a non-deterministic
order, so what’s the sense in preserving that random order?



Concurrency Primitives
Locks

Also, most implementations of locks are not fair in the sense
that any one of the waiting threads will get the lock, there’s no
first-in-first-out enforced

This is because (a) it’s extra overhead for the OS to implement
such a FIFO and (b) most programs don’t need it, so why have
an overhead that most programs don’t want?

The threads are likely arriving at the lock in a non-deterministic
order, so what’s the sense in preserving that random order?



Concurrency Primitives
Locks

Also, most implementations of locks are not fair in the sense
that any one of the waiting threads will get the lock, there’s no
first-in-first-out enforced

This is because (a) it’s extra overhead for the OS to implement
such a FIFO and (b) most programs don’t need it, so why have
an overhead that most programs don’t want?

The threads are likely arriving at the lock in a non-deterministic
order, so what’s the sense in preserving that random order?



Concurrency Primitives
Locks

Also, it’s bad practice for the programmer to rely on the
order of things happening in a parallel system

If certain things need to happen in a certain order, the
programmer must write code to ensure that this happens

You can’t rely on luck, or that they usually happen in the right
order

Also note that specifying orders on events is another form of
sequentiality, which we would like to minimise



Concurrency Primitives
Locks

Also, it’s bad practice for the programmer to rely on the
order of things happening in a parallel system

If certain things need to happen in a certain order, the
programmer must write code to ensure that this happens

You can’t rely on luck, or that they usually happen in the right
order

Also note that specifying orders on events is another form of
sequentiality, which we would like to minimise



Concurrency Primitives
Locks

Also, it’s bad practice for the programmer to rely on the
order of things happening in a parallel system

If certain things need to happen in a certain order, the
programmer must write code to ensure that this happens

You can’t rely on luck, or that they usually happen in the right
order

Also note that specifying orders on events is another form of
sequentiality, which we would like to minimise



Concurrency Primitives
Locks

Also, it’s bad practice for the programmer to rely on the
order of things happening in a parallel system

If certain things need to happen in a certain order, the
programmer must write code to ensure that this happens

You can’t rely on luck, or that they usually happen in the right
order

Also note that specifying orders on events is another form of
sequentiality, which we would like to minimise



Concurrency Primitives
Locks

Often, the wait on the lock is implemented and enforced by the
operating system, which might deschedule the waiting thread to
free up the CPU for something else to run

With this kind of lock implementation, a thread takes no CPU
time while locked

Thus the overhead of this lock is the CPU time it takes for the
OS to deschedule and later reschedule the thread (not trivial!)



Concurrency Primitives
Locks

Often, the wait on the lock is implemented and enforced by the
operating system, which might deschedule the waiting thread to
free up the CPU for something else to run

With this kind of lock implementation, a thread takes no CPU
time while locked

Thus the overhead of this lock is the CPU time it takes for the
OS to deschedule and later reschedule the thread (not trivial!)



Concurrency Primitives
Locks

Often, the wait on the lock is implemented and enforced by the
operating system, which might deschedule the waiting thread to
free up the CPU for something else to run

With this kind of lock implementation, a thread takes no CPU
time while locked

Thus the overhead of this lock is the CPU time it takes for the
OS to deschedule and later reschedule the thread (not trivial!)



Concurrency Primitives
Spinlocks

In contrast, sometimes the lock wait is implemented as a busy
wait : the thread keeps trying in a tight (busy) loop to grab the
lock, continually burning CPU cycles

These are called spinlocks

The argument is that critical regions should be small to
maintain efficiency, so it will only be a short time before the lock
will be released

And by the time the OS has descheduled the waiting thread the
lock could already be free, so instead just keep busy trying



Concurrency Primitives
Spinlocks

In contrast, sometimes the lock wait is implemented as a busy
wait : the thread keeps trying in a tight (busy) loop to grab the
lock, continually burning CPU cycles

These are called spinlocks

The argument is that critical regions should be small to
maintain efficiency, so it will only be a short time before the lock
will be released

And by the time the OS has descheduled the waiting thread the
lock could already be free, so instead just keep busy trying



Concurrency Primitives
Spinlocks

In contrast, sometimes the lock wait is implemented as a busy
wait : the thread keeps trying in a tight (busy) loop to grab the
lock, continually burning CPU cycles

These are called spinlocks

The argument is that critical regions should be small to
maintain efficiency, so it will only be a short time before the lock
will be released

And by the time the OS has descheduled the waiting thread the
lock could already be free, so instead just keep busy trying



Concurrency Primitives
Spinlocks

In contrast, sometimes the lock wait is implemented as a busy
wait : the thread keeps trying in a tight (busy) loop to grab the
lock, continually burning CPU cycles

These are called spinlocks

The argument is that critical regions should be small to
maintain efficiency, so it will only be a short time before the lock
will be released

And by the time the OS has descheduled the waiting thread the
lock could already be free, so instead just keep busy trying



Concurrency Primitives
Spinlocks

This is good for when responsiveness is more important than
CPU cost, e.g., real-time systems, but too expensive for many
systems

Note that spinlocks use CPU cycles, thus occupying the CPU,
while blocking locks release the CPU so it can potentially used
for something else



Concurrency Primitives
Spinlocks

This is good for when responsiveness is more important than
CPU cost, e.g., real-time systems, but too expensive for many
systems

Note that spinlocks use CPU cycles, thus occupying the CPU,
while blocking locks release the CPU so it can potentially used
for something else



Concurrency Primitives
Spinlocks

You should take care over using spinlocks rather than blocking
locks

They assume that the holding thread only holds the lock for a
brief time: but the holding thread can be preempted by the OS
at any time

Thus preventing release of the lock for an arbitrarily long period
of time



Concurrency Primitives
Spinlocks

You should take care over using spinlocks rather than blocking
locks

They assume that the holding thread only holds the lock for a
brief time: but the holding thread can be preempted by the OS
at any time

Thus preventing release of the lock for an arbitrarily long period
of time



Concurrency Primitives
Spinlocks

You should take care over using spinlocks rather than blocking
locks

They assume that the holding thread only holds the lock for a
brief time: but the holding thread can be preempted by the OS
at any time

Thus preventing release of the lock for an arbitrarily long period
of time



Concurrency Primitives
Spinlocks

Exercise And read about the cache-thrashing behaviour that
occurs if the spinlock is not implemented carefully

. . . do not use spinlocks in user space, unless you ac-
tually know what you’re doing. And be aware that the
likelihood that you know what you are doing is basically
nil
Linus Torvalds



Concurrency Primitives
Spinlocks

Exercise And read about the cache-thrashing behaviour that
occurs if the spinlock is not implemented carefully

. . . do not use spinlocks in user space, unless you ac-
tually know what you’re doing. And be aware that the
likelihood that you know what you are doing is basically
nil
Linus Torvalds



Concurrency Primitives
Locks

A hybrid implementation will spin for a short while, then pass to
the OS: trying to get the best of both approaches

Though there is still great debate over the best approach



Concurrency Primitives
Locks

To use a lock, in pseudocode:

countlock = make_a_new_lock();

...

get_lock(countlock); get_lock(countlock);

count = count + 1; count = 2*count;

free_lock(countlock); free_lock(countlock);

Remember we must put a grab and release of the countlock
around all updates to count in code where there might be
more than one thread wanting to update the value



Concurrency Primitives
Locks

To use a lock, in pseudocode:

countlock = make_a_new_lock();

...

get_lock(countlock); get_lock(countlock);

count = count + 1; count = 2*count;

free_lock(countlock); free_lock(countlock);

Remember we must put a grab and release of the countlock
around all updates to count in code where there might be
more than one thread wanting to update the value



Concurrency Primitives
Locks

For most programming languages it is the responsibility of the
programmer to spot all the shared resources that need this
treatment and to write correct code to enforce exclusive access

Getting this wrong (e.g., overlooking an update to count and
not putting in the lock) is the source of one of the most common
bugs in parallel programming

Particularly for programmers trained in sequential
programming; for sequential programs all accesses are already
sequential!



Concurrency Primitives
Locks

For most programming languages it is the responsibility of the
programmer to spot all the shared resources that need this
treatment and to write correct code to enforce exclusive access

Getting this wrong (e.g., overlooking an update to count and
not putting in the lock) is the source of one of the most common
bugs in parallel programming

Particularly for programmers trained in sequential
programming; for sequential programs all accesses are already
sequential!



Concurrency Primitives
Locks

For most programming languages it is the responsibility of the
programmer to spot all the shared resources that need this
treatment and to write correct code to enforce exclusive access

Getting this wrong (e.g., overlooking an update to count and
not putting in the lock) is the source of one of the most common
bugs in parallel programming

Particularly for programmers trained in sequential
programming; for sequential programs all accesses are already
sequential!



Concurrency Primitives
Locks

Also, be careful not to over-lock

We don’t need locks when there can only be one thread
updating count, e.g., in a non-parallel part of the code, or we
are already in some protected larger critical region

Over-locking is safe, but simply wastes time and thereby
reduces speedup



Concurrency Primitives
Locks

Also, be careful not to over-lock

We don’t need locks when there can only be one thread
updating count, e.g., in a non-parallel part of the code, or we
are already in some protected larger critical region

Over-locking is safe, but simply wastes time and thereby
reduces speedup



Concurrency Primitives
Locks

Also, be careful not to over-lock

We don’t need locks when there can only be one thread
updating count, e.g., in a non-parallel part of the code, or we
are already in some protected larger critical region

Over-locking is safe, but simply wastes time and thereby
reduces speedup


