
Concurrency Primitives
Locks

Locks are definitely needed when we update (read then modify)
the value of a variable

The question arises regarding whether we need a lock around
a simple read of a multi-byte value, such as a 32-bit (4 byte)
integer

It is easy to believe some bytes of a value might be written
while half-way through being read, resulting in a mix of the bits
of the old and new values

Called read (or write) tearing



Concurrency Primitives
Locks

Locks are definitely needed when we update (read then modify)
the value of a variable

The question arises regarding whether we need a lock around
a simple read of a multi-byte value, such as a 32-bit (4 byte)
integer

It is easy to believe some bytes of a value might be written
while half-way through being read, resulting in a mix of the bits
of the old and new values

Called read (or write) tearing



Concurrency Primitives
Locks

Locks are definitely needed when we update (read then modify)
the value of a variable

The question arises regarding whether we need a lock around
a simple read of a multi-byte value, such as a 32-bit (4 byte)
integer

It is easy to believe some bytes of a value might be written
while half-way through being read, resulting in a mix of the bits
of the old and new values

Called read (or write) tearing



Concurrency Primitives
Locks

Locks are definitely needed when we update (read then modify)
the value of a variable

The question arises regarding whether we need a lock around
a simple read of a multi-byte value, such as a 32-bit (4 byte)
integer

It is easy to believe some bytes of a value might be written
while half-way through being read, resulting in a mix of the bits
of the old and new values

Called read (or write) tearing



Concurrency Primitives
Locks

However, for most (non-embedded) machine architectures
these days it is likely (not certain!) to be safe to read simple
values like integers or doubles that fit in a register: the
hardware read is atomic (another side effect of the caching
mechanism)

Though you do need to be careful on strange machine
architectures, or with compilers that try to be too clever (For
hackers: think about non-aligned accesses)

Certainly, though, for reading all of a larger object or structure,
a lock will be necessary to ensure consistency across the
multiple machine reads it takes to read in the whole structure



Concurrency Primitives
Locks

However, for most (non-embedded) machine architectures
these days it is likely (not certain!) to be safe to read simple
values like integers or doubles that fit in a register: the
hardware read is atomic (another side effect of the caching
mechanism)

Though you do need to be careful on strange machine
architectures, or with compilers that try to be too clever (For
hackers: think about non-aligned accesses)

Certainly, though, for reading all of a larger object or structure,
a lock will be necessary to ensure consistency across the
multiple machine reads it takes to read in the whole structure



Concurrency Primitives
Locks

However, for most (non-embedded) machine architectures
these days it is likely (not certain!) to be safe to read simple
values like integers or doubles that fit in a register: the
hardware read is atomic (another side effect of the caching
mechanism)

Though you do need to be careful on strange machine
architectures, or with compilers that try to be too clever (For
hackers: think about non-aligned accesses)

Certainly, though, for reading all of a larger object or structure,
a lock will be necessary to ensure consistency across the
multiple machine reads it takes to read in the whole structure



Concurrency Primitives
Locks

int x, y;

...

y = x;

Usually safe as reads of ints are generally atomic



Concurrency Primitives
Locks

// Also OO classes or objects

struct rational {

int num, den;

};

struct rational r, s;

...

r = s;

Possibly unsafe, as it could take two machine reads to get all of
s, which might be modified halfway through by another thread

Unlikely, but you can’t rely on that

Analogously for the write of r



Concurrency Primitives
Locks

// Also OO classes or objects

struct rational {

int num, den;

};

struct rational r, s;

...

r = s;

Possibly unsafe, as it could take two machine reads to get all of
s, which might be modified halfway through by another thread

Unlikely, but you can’t rely on that

Analogously for the write of r



Concurrency Primitives
Locks

// Also OO classes or objects

struct rational {

int num, den;

};

struct rational r, s;

...

r = s;

Possibly unsafe, as it could take two machine reads to get all of
s, which might be modified halfway through by another thread

Unlikely, but you can’t rely on that

Analogously for the write of r



Concurrency Primitives
Locks

Exercise For C geeks. There is an aliasing problem with bit
fields in a struct

struct {

int a: 5;

int b: 3;

}

where an update to field a might be implemented as a read of a
byte, modifying the bits of a, then writing a byte. Investigate

Exercise What about a 128-bit long long int on a 64-bit
machine?



Concurrency Primitives
Locks

What about when we need to use more than one lock?

Of course, we can and should have separate locks in order to
protect separate resources: we could use countlock to
protect updates to another shared variable sum, but that would
prevent one thread updating count while another is updating
sum, which is perfectly safe to do

The only real reason to share a lock like this would be in when
there are severe memory limitations: but lock implementations
tend to use only a little memory per lock



Concurrency Primitives
Locks

What about when we need to use more than one lock?

Of course, we can and should have separate locks in order to
protect separate resources: we could use countlock to
protect updates to another shared variable sum, but that would
prevent one thread updating count while another is updating
sum, which is perfectly safe to do

The only real reason to share a lock like this would be in when
there are severe memory limitations: but lock implementations
tend to use only a little memory per lock



Concurrency Primitives
Locks

What about when we need to use more than one lock?

Of course, we can and should have separate locks in order to
protect separate resources: we could use countlock to
protect updates to another shared variable sum, but that would
prevent one thread updating count while another is updating
sum, which is perfectly safe to do

The only real reason to share a lock like this would be in when
there are severe memory limitations: but lock implementations
tend to use only a little memory per lock



Concurrency Primitives
Locks

But we do need to be careful about what we protect from what
as it all has a cost

Getting and releasing a lock can be relatively cheap (in some
architectures and operating systems; expensive in others) but it
is not free: it is an overhead to be taken into account and
avoided if you can

In many implementations these days the cost of getting an
uncontended lock (not already locked) is cheap, while the cost
of getting a lock that is already held is expensive

So the common (you hope) case is cheap



Concurrency Primitives
Locks

But we do need to be careful about what we protect from what
as it all has a cost

Getting and releasing a lock can be relatively cheap (in some
architectures and operating systems; expensive in others) but it
is not free: it is an overhead to be taken into account and
avoided if you can

In many implementations these days the cost of getting an
uncontended lock (not already locked) is cheap, while the cost
of getting a lock that is already held is expensive

So the common (you hope) case is cheap



Concurrency Primitives
Locks

But we do need to be careful about what we protect from what
as it all has a cost

Getting and releasing a lock can be relatively cheap (in some
architectures and operating systems; expensive in others) but it
is not free: it is an overhead to be taken into account and
avoided if you can

In many implementations these days the cost of getting an
uncontended lock (not already locked) is cheap, while the cost
of getting a lock that is already held is expensive

So the common (you hope) case is cheap



Concurrency Primitives
Locks

But we do need to be careful about what we protect from what
as it all has a cost

Getting and releasing a lock can be relatively cheap (in some
architectures and operating systems; expensive in others) but it
is not free: it is an overhead to be taken into account and
avoided if you can

In many implementations these days the cost of getting an
uncontended lock (not already locked) is cheap, while the cost
of getting a lock that is already held is expensive

So the common (you hope) case is cheap



Concurrency Primitives
Locks

Also note, locks can be used to protect anything, not just
variables, e.g., whole function calls or whole loops. But we
should try too keep the regions small

get_lock(mux);

someone_elses_dodgy_code();

free_lock(mux);

Another reason to use a single lock could be that the code you
want to protect is so complicated you are not clear on how to
proceed!



Concurrency Primitives
Locks

Also note, locks can be used to protect anything, not just
variables, e.g., whole function calls or whole loops. But we
should try too keep the regions small

get_lock(mux);

someone_elses_dodgy_code();

free_lock(mux);

Another reason to use a single lock could be that the code you
want to protect is so complicated you are not clear on how to
proceed!



Concurrency Primitives
Locks

Locks are a simple, low level mechanism

Too low level: they are easy to use incorrectly

Suppose we have a couple of variables x and y we are
protecting with mutexes mx and my respectively. We want to
swap their values; elsewhere replace them both by their
average

tmp = x; av = (x+y)/2;

x = y; x = av;

y = tmp; y = av;



Concurrency Primitives
Locks

Locks are a simple, low level mechanism

Too low level: they are easy to use incorrectly

Suppose we have a couple of variables x and y we are
protecting with mutexes mx and my respectively. We want to
swap their values; elsewhere replace them both by their
average

tmp = x; av = (x+y)/2;

x = y; x = av;

y = tmp; y = av;



Concurrency Primitives
Locks

Locks are a simple, low level mechanism

Too low level: they are easy to use incorrectly

Suppose we have a couple of variables x and y we are
protecting with mutexes mx and my respectively. We want to
swap their values; elsewhere replace them both by their
average

tmp = x; av = (x+y)/2;

x = y; x = av;

y = tmp; y = av;



Concurrency Primitives
Locks

Locks are a simple, low level mechanism

Too low level: they are easy to use incorrectly

Suppose we have a couple of variables x and y we are
protecting with mutexes mx and my respectively. We want to
swap their values; elsewhere replace them both by their
average

tmp = x; av = (x+y)/2;

x = y; x = av;

y = tmp; y = av;



Concurrency Primitives
Locks

To make this safe we have to use both locks

get_lock(mx);

get_lock(my);

tmp = x;

x = y;

y = tmp;

free_lock(my);

free_lock(mx);



Concurrency Primitives
Locks

Some pages of code later

get_lock(my);

get_lock(mx);

av = (x+y)/2;

x = av;

y = av;

free_lock(mx);

free_lock(my);

Spot the bug!



Concurrency Primitives
Locks

This will probably work most of the time, but occasionally just
hangs doing nothing

Sometimes we will get

1 2
get_lock(mx); get_lock(my);

get_lock(my); (waits) get_lock(mx); (waits)

This is simple deadlock, another race condition



Concurrency Primitives
Locks

This will probably work most of the time, but occasionally just
hangs doing nothing

Sometimes we will get

1 2
get_lock(mx); get_lock(my);

get_lock(my); (waits) get_lock(mx); (waits)

This is simple deadlock, another race condition



Concurrency Primitives
Locks

This will probably work most of the time, but occasionally just
hangs doing nothing

Sometimes we will get

1 2
get_lock(mx); get_lock(my);

get_lock(my); (waits) get_lock(mx); (waits)

This is simple deadlock, another race condition



Concurrency Primitives
Locks

This will probably work most of the time, but occasionally just
hangs doing nothing

Sometimes we will get

1 2
get_lock(mx); get_lock(my);

get_lock(my); (waits) get_lock(mx); (waits)

This is simple deadlock, another race condition



Concurrency Primitives
Locks

This will probably work most of the time, but occasionally just
hangs doing nothing

Sometimes we will get

1 2
get_lock(mx); get_lock(my);

get_lock(my); (waits) get_lock(mx); (waits)

This is simple deadlock, another race condition



Concurrency Primitives
Locks

A very easy error to make, but often very difficult to find,
particularly as the locks of mx and my may be widely separated
in the code, or in someone else’s code

The use of locks requires a great deal of careful management
when the code gets large

Exercise Why wouldn’t having another mutex mxy to protect
both x and y solve things?



Concurrency Primitives
Locks

A very easy error to make, but often very difficult to find,
particularly as the locks of mx and my may be widely separated
in the code, or in someone else’s code

The use of locks requires a great deal of careful management
when the code gets large

Exercise Why wouldn’t having another mutex mxy to protect
both x and y solve things?



Concurrency Primitives
Locks

A very easy error to make, but often very difficult to find,
particularly as the locks of mx and my may be widely separated
in the code, or in someone else’s code

The use of locks requires a great deal of careful management
when the code gets large

Exercise Why wouldn’t having another mutex mxy to protect
both x and y solve things?



Concurrency Primitives
Locks

If we want to use a lock in portable code, we can use a library
specification like POSIX

This is a standard that covers a large number of functions,
specifying their use and behaviour



Concurrency Primitives
Locks

If we want to use a lock in portable code, we can use a library
specification like POSIX

This is a standard that covers a large number of functions,
specifying their use and behaviour



Concurrency Primitives
POSIX pthread

The pthread section on the POSIX specification contains
several functions that we shall soon be looking at:

• Locks: pthread mutex init, lock, unlock, destroy
• Barriers: pthread barrier init, wait, destroy
• Condition Variables: pthread cond init, wait, signal,
broadcast, destroy

• Semaphores: sem init, post, wait, destroy
• Management: pthread create, join

And many others



Concurrency Primitives
POSIX pthread

The pthread section on the POSIX specification contains
several functions that we shall soon be looking at:

• Locks: pthread mutex init, lock, unlock, destroy

• Barriers: pthread barrier init, wait, destroy
• Condition Variables: pthread cond init, wait, signal,
broadcast, destroy

• Semaphores: sem init, post, wait, destroy
• Management: pthread create, join

And many others



Concurrency Primitives
POSIX pthread

The pthread section on the POSIX specification contains
several functions that we shall soon be looking at:

• Locks: pthread mutex init, lock, unlock, destroy
• Barriers: pthread barrier init, wait, destroy

• Condition Variables: pthread cond init, wait, signal,
broadcast, destroy

• Semaphores: sem init, post, wait, destroy
• Management: pthread create, join

And many others



Concurrency Primitives
POSIX pthread

The pthread section on the POSIX specification contains
several functions that we shall soon be looking at:

• Locks: pthread mutex init, lock, unlock, destroy
• Barriers: pthread barrier init, wait, destroy
• Condition Variables: pthread cond init, wait, signal,
broadcast, destroy

• Semaphores: sem init, post, wait, destroy
• Management: pthread create, join

And many others



Concurrency Primitives
POSIX pthread

The pthread section on the POSIX specification contains
several functions that we shall soon be looking at:

• Locks: pthread mutex init, lock, unlock, destroy
• Barriers: pthread barrier init, wait, destroy
• Condition Variables: pthread cond init, wait, signal,
broadcast, destroy

• Semaphores: sem init, post, wait, destroy

• Management: pthread create, join

And many others



Concurrency Primitives
POSIX pthread

The pthread section on the POSIX specification contains
several functions that we shall soon be looking at:

• Locks: pthread mutex init, lock, unlock, destroy
• Barriers: pthread barrier init, wait, destroy
• Condition Variables: pthread cond init, wait, signal,
broadcast, destroy

• Semaphores: sem init, post, wait, destroy
• Management: pthread create, join

And many others



Concurrency Primitives
POSIX pthread

The pthread section on the POSIX specification contains
several functions that we shall soon be looking at:

• Locks: pthread mutex init, lock, unlock, destroy
• Barriers: pthread barrier init, wait, destroy
• Condition Variables: pthread cond init, wait, signal,
broadcast, destroy

• Semaphores: sem init, post, wait, destroy
• Management: pthread create, join

And many others



Concurrency Primitives
POSIX pthread

For example, pthread create (we shall come back to this
later)

#include <pthread.h>

int pthread_create(pthread t *thread,

const pthread attr t *attr,

void *(*start_routine) (void *),

void *arg);

is how to create a new thread: it takes an attribute (always
NULL for our purposes), a function of one argument to start
executing, and a value to pass as the argument to that function

It returns a thread identifier in the first argument



Concurrency Primitives
POSIX pthread

For example, pthread create (we shall come back to this
later)

#include <pthread.h>

int pthread_create(pthread t *thread,

const pthread attr t *attr,

void *(*start_routine) (void *),

void *arg);

is how to create a new thread: it takes an attribute (always
NULL for our purposes), a function of one argument to start
executing, and a value to pass as the argument to that function

It returns a thread identifier in the first argument



Concurrency Primitives
POSIX pthread

For example, pthread create (we shall come back to this
later)

#include <pthread.h>

int pthread_create(pthread t *thread,

const pthread attr t *attr,

void *(*start_routine) (void *),

void *arg);

is how to create a new thread: it takes an attribute (always
NULL for our purposes), a function of one argument to start
executing, and a value to pass as the argument to that function

It returns a thread identifier in the first argument



Concurrency Primitives
POSIX pthread

For example, pthread create (we shall come back to this
later)

#include <pthread.h>

int pthread_create(pthread t *thread,

const pthread attr t *attr,

void *(*start_routine) (void *),

void *arg);

is how to create a new thread: it takes an attribute (always
NULL for our purposes), a function of one argument to start
executing, and a value to pass as the argument to that function

It returns a thread identifier in the first argument



Concurrency Primitives
POSIX pthread

Documentation for POSIX pthread functions is available
everywhere, online and possibly on your own computer

For example, on Linux you can use manual pages, e.g.,
man pthread create
to get detailed information



Concurrency Primitives
POSIX pthread

Documentation for POSIX pthread functions is available
everywhere, online and possibly on your own computer

For example, on Linux you can use manual pages, e.g.,
man pthread create
to get detailed information



Concurrency Primitives
POSIX Locks

A real example of locks, as defined by the POSIX standard,
where they are called mutexes

#include <pthread.h>

pthread_mutex_t mutex;

An (uninitialised) mutex



Concurrency Primitives
POSIX Locks

int pthread_mutex_init(pthread_mutex_t *restrict mutex,

const pthread_mutexattr_t

*restrict attr)

Initialises the mutex pointed at by the first argument, returns a 0
that indicates success or non-0 to indicate failure

POSIX locks come with various attributes: the default (NULL) is
normally what you want

pthread_mutex_t mut;

if (pthread_mutex_init(&mut, NULL) != 0) { ...error... }



Concurrency Primitives
POSIX Locks

int pthread_mutex_init(pthread_mutex_t *restrict mutex,

const pthread_mutexattr_t

*restrict attr)

Initialises the mutex pointed at by the first argument, returns a 0
that indicates success or non-0 to indicate failure

POSIX locks come with various attributes: the default (NULL) is
normally what you want

pthread_mutex_t mut;

if (pthread_mutex_init(&mut, NULL) != 0) { ...error... }



Concurrency Primitives
POSIX Locks

int pthread_mutex_init(pthread_mutex_t *restrict mutex,

const pthread_mutexattr_t

*restrict attr)

Initialises the mutex pointed at by the first argument, returns a 0
that indicates success or non-0 to indicate failure

POSIX locks come with various attributes: the default (NULL) is
normally what you want

pthread_mutex_t mut;

if (pthread_mutex_init(&mut, NULL) != 0) { ...error... }



Concurrency Primitives
POSIX Locks

There is a alternative static way to initialise mutexes if all you
need is a basic lock:

// declare and initialise

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;



Concurrency Primitives
POSIX Locks

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

The main grab and free functions

It is an error to try and unlock a mutex that is held by another
thread: the thread that locks must be the thread that unlocks

This is a POSIX specification designed to make locks widely
implementable of a variety of architectures

And this is not a limitation: it is a desired behaviour. If you
allowed another thread to unlock a mutex you can bet this
would be misused by some programmers thus opening a new
opportunity to write buggy code



Concurrency Primitives
POSIX Locks

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

The main grab and free functions

It is an error to try and unlock a mutex that is held by another
thread: the thread that locks must be the thread that unlocks

This is a POSIX specification designed to make locks widely
implementable of a variety of architectures

And this is not a limitation: it is a desired behaviour. If you
allowed another thread to unlock a mutex you can bet this
would be misused by some programmers thus opening a new
opportunity to write buggy code



Concurrency Primitives
POSIX Locks

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

The main grab and free functions

It is an error to try and unlock a mutex that is held by another
thread: the thread that locks must be the thread that unlocks

This is a POSIX specification designed to make locks widely
implementable of a variety of architectures

And this is not a limitation: it is a desired behaviour. If you
allowed another thread to unlock a mutex you can bet this
would be misused by some programmers thus opening a new
opportunity to write buggy code



Concurrency Primitives
POSIX Locks

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

The main grab and free functions

It is an error to try and unlock a mutex that is held by another
thread: the thread that locks must be the thread that unlocks

This is a POSIX specification designed to make locks widely
implementable of a variety of architectures

And this is not a limitation: it is a desired behaviour. If you
allowed another thread to unlock a mutex you can bet this
would be misused by some programmers thus opening a new
opportunity to write buggy code



Concurrency Primitives
POSIX Locks

“It is an error”: some implementations return an error value,
while others (depending on the OS) have undefined behaviour

Some versions of mutexes also allow recursive (or reentrant)
locking, where a thread that already owns a lock can lock it
again; it needs to do the same number of unlocks to free the
lock

Non-recursive versions just self-deadlock, or have undefined
behaviour



Concurrency Primitives
POSIX Locks

“It is an error”: some implementations return an error value,
while others (depending on the OS) have undefined behaviour

Some versions of mutexes also allow recursive (or reentrant)
locking, where a thread that already owns a lock can lock it
again; it needs to do the same number of unlocks to free the
lock

Non-recursive versions just self-deadlock, or have undefined
behaviour



Concurrency Primitives
POSIX Locks

“It is an error”: some implementations return an error value,
while others (depending on the OS) have undefined behaviour

Some versions of mutexes also allow recursive (or reentrant)
locking, where a thread that already owns a lock can lock it
again; it needs to do the same number of unlocks to free the
lock

Non-recursive versions just self-deadlock, or have undefined
behaviour



Concurrency Primitives
POSIX Locks

On fairness of POSIX mutexes:

Posix says “the scheduling policy shall determine which thread
shall acquire the mutex” if more than one is waiting

This allows implementations to take
pthread attr setschedpolicy and thread priorities into
account: we shall not talk about that here!



Concurrency Primitives
POSIX Locks

On fairness of POSIX mutexes:

Posix says “the scheduling policy shall determine which thread
shall acquire the mutex” if more than one is waiting

This allows implementations to take
pthread attr setschedpolicy and thread priorities into
account: we shall not talk about that here!



Concurrency Primitives
POSIX Locks

On fairness of POSIX mutexes:

Posix says “the scheduling policy shall determine which thread
shall acquire the mutex” if more than one is waiting

This allows implementations to take
pthread attr setschedpolicy and thread priorities into
account: we shall not talk about that here!



Concurrency Primitives
POSIX Locks

int pthread_mutex_trylock(pthread_mutex_t *mutex);

Like pthread mutex lock but return immediately (without
getting the lock) if the lock was already held. It returns a value
of 0 if it got the lock, a non-zero otherwise

This function is occasionally useful, but less than you might
believe, as the result doesn’t quite mean what people think it
means (sequential assumptions. . . )



Concurrency Primitives
POSIX Locks

int pthread_mutex_trylock(pthread_mutex_t *mutex);

Like pthread mutex lock but return immediately (without
getting the lock) if the lock was already held. It returns a value
of 0 if it got the lock, a non-zero otherwise

This function is occasionally useful, but less than you might
believe, as the result doesn’t quite mean what people think it
means (sequential assumptions. . . )



Concurrency Primitives
POSIX Locks

It doesn’t say “the mutex is locked”, but really says “the mutex
was locked”

It gives the instantaneous state of the lock at the time of the
trylock function call: it is possible that by the time the calling
thread looks at the value that was returned by trylock the lock
is already free



Concurrency Primitives
POSIX Locks

It doesn’t say “the mutex is locked”, but really says “the mutex
was locked”

It gives the instantaneous state of the lock at the time of the
trylock function call: it is possible that by the time the calling
thread looks at the value that was returned by trylock the lock
is already free



Concurrency Primitives
POSIX Locks

int pthread_mutex_destroy(pthread_mutex_t *mutex);

It’s good to clear up when you no longer need the mutex as this
may free up some system resources



Concurrency Primitives
POSIX Locks

int pthread_mutex_destroy(pthread_mutex_t *mutex);

It’s good to clear up when you no longer need the mutex as this
may free up some system resources



Concurrency Primitives
POSIX Locks

Example code:

#include <pthread.h>

...

pthread_mutex_t m;

/* ought to check values returned by these calls */

pthread_mutex_init(&m, NULL);

...

pthread_mutex_lock(&m);

... <CR> ...

pthread_mutex_unlock(&m);

...

pthread_mutex_destroy(&m);

We can lock and unlock a mutex as often as we wish: we would
typically create it once and use it many times before tidying up



Concurrency Primitives
POSIX Locks

The properties of POSIX locks are specified just to the point to
make them useful: in a portable program you can’t rely on any
feature not explicitly mentioned

For example, calling destroy on an uninitialised lock; or calling
init on an already-initialised lock; or destroying a lock while
another thread holds it; or using a bitwise copy of a lock
structure; and so on

Remember that a lot of machines don’t have the nice
predictable architecture of a PC

And even PC architectures are very complicated these days



Concurrency Primitives
POSIX Locks

The properties of POSIX locks are specified just to the point to
make them useful: in a portable program you can’t rely on any
feature not explicitly mentioned

For example, calling destroy on an uninitialised lock; or calling
init on an already-initialised lock; or destroying a lock while
another thread holds it; or using a bitwise copy of a lock
structure; and so on

Remember that a lot of machines don’t have the nice
predictable architecture of a PC

And even PC architectures are very complicated these days



Concurrency Primitives
POSIX Locks

The properties of POSIX locks are specified just to the point to
make them useful: in a portable program you can’t rely on any
feature not explicitly mentioned

For example, calling destroy on an uninitialised lock; or calling
init on an already-initialised lock; or destroying a lock while
another thread holds it; or using a bitwise copy of a lock
structure; and so on

Remember that a lot of machines don’t have the nice
predictable architecture of a PC

And even PC architectures are very complicated these days



Concurrency Primitives
POSIX Locks

The properties of POSIX locks are specified just to the point to
make them useful: in a portable program you can’t rely on any
feature not explicitly mentioned

For example, calling destroy on an uninitialised lock; or calling
init on an already-initialised lock; or destroying a lock while
another thread holds it; or using a bitwise copy of a lock
structure; and so on

Remember that a lot of machines don’t have the nice
predictable architecture of a PC

And even PC architectures are very complicated these days



Concurrency Primitives
POSIX pthread

Exercise Read about pthread_spin_lock and
pthread_rwlock

Advanced Exercise Think about mutexes in the context of
async programming, where we have concurrency (but not
necessarily parallelism) and we require threads never to block

pthread_spin_lock
pthread_rwlock


How to make threads

Now we have been introduced to POSIX, we need to take a
little diversion from talking about primitives to cover something
essential to parallelism

Namely, how do we create new threads to run?

As always, a simple idea that can have unexpected
consequences

We shall look at the POSIX mechanism



How to make threads

Now we have been introduced to POSIX, we need to take a
little diversion from talking about primitives to cover something
essential to parallelism

Namely, how do we create new threads to run?

As always, a simple idea that can have unexpected
consequences

We shall look at the POSIX mechanism



How to make threads

Now we have been introduced to POSIX, we need to take a
little diversion from talking about primitives to cover something
essential to parallelism

Namely, how do we create new threads to run?

As always, a simple idea that can have unexpected
consequences

We shall look at the POSIX mechanism



How to make threads

Now we have been introduced to POSIX, we need to take a
little diversion from talking about primitives to cover something
essential to parallelism

Namely, how do we create new threads to run?

As always, a simple idea that can have unexpected
consequences

We shall look at the POSIX mechanism



Concurrency Control
POSIX

Creating threads:

#include <pthread.h>

int pthread_create(pthread_t *thread,

const pthread_attr_t *attr,

void *(*start_routine) (void *),

void *arg);

Link with -lpthread

This looks ugly, but is quite simple in practice: it creates a new
thread running the function start routine on the argument
arg



Concurrency Control
POSIX

Creating threads:

#include <pthread.h>

int pthread_create(pthread_t *thread,

const pthread_attr_t *attr,

void *(*start_routine) (void *),

void *arg);

Link with -lpthread

This looks ugly, but is quite simple in practice: it creates a new
thread running the function start routine on the argument
arg



Concurrency Control
POSIX

It returns a thread identifier in argument thread. This can be
used to do things to the thread

attr is a thread attribute: you probably will never need more
than the default (NULL), but occasionally you might (stack size;
detached thread)

The start routine names a function of one argument that
the thread will start executing when it begins running

The arg is the argument passed to the function (a pointer)



Concurrency Control
POSIX

It returns a thread identifier in argument thread. This can be
used to do things to the thread

attr is a thread attribute: you probably will never need more
than the default (NULL), but occasionally you might (stack size;
detached thread)

The start routine names a function of one argument that
the thread will start executing when it begins running

The arg is the argument passed to the function (a pointer)



Concurrency Control
POSIX

It returns a thread identifier in argument thread. This can be
used to do things to the thread

attr is a thread attribute: you probably will never need more
than the default (NULL), but occasionally you might (stack size;
detached thread)

The start routine names a function of one argument that
the thread will start executing when it begins running

The arg is the argument passed to the function (a pointer)



Concurrency Control
POSIX

It returns a thread identifier in argument thread. This can be
used to do things to the thread

attr is a thread attribute: you probably will never need more
than the default (NULL), but occasionally you might (stack size;
detached thread)

The start routine names a function of one argument that
the thread will start executing when it begins running

The arg is the argument passed to the function (a pointer)



Concurrency Control
POSIX

Roughly:

void *hello(void *n)

{

printf("hello %d\n", *(int*)n);

return n;

}

int main(void)

{

int m;

pthread_t thr;

m = 1;

// should check return value from create ...

pthread_create(&thr, NULL, hello, (void*)&m);

...

}



Concurrency Control
POSIX

pthread create returns (pretty much) immediately with an
error code, 0 indicating success

It makes a new thread that runs separately from the main
thread

Possibly simultaneously with the main thread, depending on the
number of cores and the OS’s scheduling



Concurrency Control
POSIX

pthread create returns (pretty much) immediately with an
error code, 0 indicating success

It makes a new thread that runs separately from the main
thread

Possibly simultaneously with the main thread, depending on the
number of cores and the OS’s scheduling



Concurrency Control
POSIX

pthread create returns (pretty much) immediately with an
error code, 0 indicating success

It makes a new thread that runs separately from the main
thread

Possibly simultaneously with the main thread, depending on the
number of cores and the OS’s scheduling



Concurrency Control
POSIX

It runs the function hello with argument a pointer to m

It does this concurrently with the main function, which
continues to run

The start function will generally call lots of other functions
to perform whatever the thread needs to do

Ugly type casting is common in C



Concurrency Control
POSIX

It runs the function hello with argument a pointer to m

It does this concurrently with the main function, which
continues to run

The start function will generally call lots of other functions
to perform whatever the thread needs to do

Ugly type casting is common in C



Concurrency Control
POSIX

It runs the function hello with argument a pointer to m

It does this concurrently with the main function, which
continues to run

The start function will generally call lots of other functions
to perform whatever the thread needs to do

Ugly type casting is common in C



Concurrency Control
POSIX

It runs the function hello with argument a pointer to m

It does this concurrently with the main function, which
continues to run

The start function will generally call lots of other functions
to perform whatever the thread needs to do

Ugly type casting is common in C



Threads
Aside

This also works on uniprocessor systems: the threads are
scheduled in a similar way to processes

You can debug a concurrent program on a sequential machine,
but it may not exhibit some of the more subtle race conditions
or deadlocks as the threads won’t truly be running in parallel



Threads
Aside

This also works on uniprocessor systems: the threads are
scheduled in a similar way to processes

You can debug a concurrent program on a sequential machine,
but it may not exhibit some of the more subtle race conditions
or deadlocks as the threads won’t truly be running in parallel



Threads
Aside

You can make more threads than there are cores: for example,
run 10 (or 1000) threads on a 4 core machine

And the OS will schedule between the threads

A thread that is blocked (e.g., waiting on a lock) typically would
not be scheduled, so it uses no CPU cycles

The question remains whether that is worth it or not to have
more threads than cores, as both creating threads and OS
scheduling eats up CPU time

A common error is to create hundreds of threads and then
wonder why everything is running slowly

Threads create concurrency, not parallelism



Threads
Aside

You can make more threads than there are cores: for example,
run 10 (or 1000) threads on a 4 core machine

And the OS will schedule between the threads

A thread that is blocked (e.g., waiting on a lock) typically would
not be scheduled, so it uses no CPU cycles

The question remains whether that is worth it or not to have
more threads than cores, as both creating threads and OS
scheduling eats up CPU time

A common error is to create hundreds of threads and then
wonder why everything is running slowly

Threads create concurrency, not parallelism



Threads
Aside

You can make more threads than there are cores: for example,
run 10 (or 1000) threads on a 4 core machine

And the OS will schedule between the threads

A thread that is blocked (e.g., waiting on a lock) typically would
not be scheduled, so it uses no CPU cycles

The question remains whether that is worth it or not to have
more threads than cores, as both creating threads and OS
scheduling eats up CPU time

A common error is to create hundreds of threads and then
wonder why everything is running slowly

Threads create concurrency, not parallelism



Threads
Aside

You can make more threads than there are cores: for example,
run 10 (or 1000) threads on a 4 core machine

And the OS will schedule between the threads

A thread that is blocked (e.g., waiting on a lock) typically would
not be scheduled, so it uses no CPU cycles

The question remains whether that is worth it or not to have
more threads than cores, as both creating threads and OS
scheduling eats up CPU time

A common error is to create hundreds of threads and then
wonder why everything is running slowly

Threads create concurrency, not parallelism



Threads
Aside

You can make more threads than there are cores: for example,
run 10 (or 1000) threads on a 4 core machine

And the OS will schedule between the threads

A thread that is blocked (e.g., waiting on a lock) typically would
not be scheduled, so it uses no CPU cycles

The question remains whether that is worth it or not to have
more threads than cores, as both creating threads and OS
scheduling eats up CPU time

A common error is to create hundreds of threads and then
wonder why everything is running slowly

Threads create concurrency, not parallelism



Threads
Aside

You can make more threads than there are cores: for example,
run 10 (or 1000) threads on a 4 core machine

And the OS will schedule between the threads

A thread that is blocked (e.g., waiting on a lock) typically would
not be scheduled, so it uses no CPU cycles

The question remains whether that is worth it or not to have
more threads than cores, as both creating threads and OS
scheduling eats up CPU time

A common error is to create hundreds of threads and then
wonder why everything is running slowly

Threads create concurrency, not parallelism


