
Threads
Aside

Incidentally, using threads as a way of structuring your program
can sometimes be a good approach, even if you are not
concerned with parallelism

For example, have a GUI running on one thread and the
computation it controls on another thread

Called structure by process

Threads
Aside

Incidentally, using threads as a way of structuring your program
can sometimes be a good approach, even if you are not
concerned with parallelism

For example, have a GUI running on one thread and the
computation it controls on another thread

Called structure by process

Threads
Aside

Incidentally, using threads as a way of structuring your program
can sometimes be a good approach, even if you are not
concerned with parallelism

For example, have a GUI running on one thread and the
computation it controls on another thread

Called structure by process

Concurrency Control
POSIX

More realistically we type cast in the create:

void hello(int *n)

{

printf("hello %d\n", *n);

}

int main(void)

{

int m;

pthread_t thr;

m = 1;

pthread_create(&thr, NULL, (void*(*)(void*))hello, (void*)&m);

...

}

Concurrency Control
POSIX

How about two new threads?

void hello(int *n)

{

printf("hello %d\n", *n);

}

int main(void)

{

int m;

pthread_t thr1, thr2;

m = 1;

pthread_create(&thr1, NULL, (void*(*)(void*))hello, (void*)&m);

m = 2;

pthread_create(&thr2, NULL, (void*(*)(void*))hello, (void*)&m);

...

}

Concurrency Control
POSIX

This creates two threads, both running the same code, namely
hello, but on separate threads. Each thread has its own stack,
thus its own copy of n

Unfortunately, it is buggy code!

As usual, it may appear to run correctly several times, printing
"hello 1" and "hello 2" (in either order!)

But sometimes it prints "hello 2" and "hello 2"

Concurrency Control
POSIX

This creates two threads, both running the same code, namely
hello, but on separate threads. Each thread has its own stack,
thus its own copy of n

Unfortunately, it is buggy code!

As usual, it may appear to run correctly several times, printing
"hello 1" and "hello 2" (in either order!)

But sometimes it prints "hello 2" and "hello 2"

Concurrency Control
POSIX

This creates two threads, both running the same code, namely
hello, but on separate threads. Each thread has its own stack,
thus its own copy of n

Unfortunately, it is buggy code!

As usual, it may appear to run correctly several times, printing
"hello 1" and "hello 2" (in either order!)

But sometimes it prints "hello 2" and "hello 2"

Concurrency Control
POSIX

This creates two threads, both running the same code, namely
hello, but on separate threads. Each thread has its own stack,
thus its own copy of n

Unfortunately, it is buggy code!

As usual, it may appear to run correctly several times, printing
"hello 1" and "hello 2" (in either order!)

But sometimes it prints "hello 2" and "hello 2"

Concurrency Control
POSIX

This is another case of sequential assumptions not following
into parallel code: another race condition

It looks like we update m in between the two new threads

But the new threads are in parallel, running asynchronously
with the main thread

Concurrency Control
POSIX

This is another case of sequential assumptions not following
into parallel code: another race condition

It looks like we update m in between the two new threads

But the new threads are in parallel, running asynchronously
with the main thread

Concurrency Control
POSIX

This is another case of sequential assumptions not following
into parallel code: another race condition

It looks like we update m in between the two new threads

But the new threads are in parallel, running asynchronously
with the main thread

Concurrency Control
POSIX

What we expect is

main 1 2
creates 1 1 starts running

reads m=1

updates m prints 1

creates 2 2 starts running

reads m=2

prints 2

Concurrency Control
POSIX

What might happen is

main 1 2
creates 1
updates m 1 starts running

creates 2 reads m=2 2 starts running

prints 2 reads m=2

prints 2

If thread 1 starts running slightly later

In fact, this is quite likely, as creating a new thread takes a fair
amount of time

Concurrency Control
POSIX

What might happen is

main 1 2
creates 1
updates m 1 starts running

creates 2 reads m=2 2 starts running

prints 2 reads m=2

prints 2

If thread 1 starts running slightly later

In fact, this is quite likely, as creating a new thread takes a fair
amount of time

Concurrency Control
POSIX

There are three threads in the program: the two running hello
and the one running main

The threads are sharing the variable m (via the pointers), so the
behaviour of the program is dependent on what order the
threads happen to access m. This is again bad programming, a
data race

Be very careful about the values you pass into the thread

Concurrency Control
POSIX

There are three threads in the program: the two running hello
and the one running main

The threads are sharing the variable m (via the pointers), so the
behaviour of the program is dependent on what order the
threads happen to access m. This is again bad programming, a
data race

Be very careful about the values you pass into the thread

Concurrency Control
POSIX

There are three threads in the program: the two running hello
and the one running main

The threads are sharing the variable m (via the pointers), so the
behaviour of the program is dependent on what order the
threads happen to access m. This is again bad programming, a
data race

Be very careful about the values you pass into the thread

Concurrency Control
POSIX

We can fix that race by not sharing:

void hello(int *n) {

printf("hello %d\n", *n);

}

int main(void) {

int m1, m2;

pthread_t thr1, thr2;

m1 = 1;

pthread_create(&thr1, NULL, (void*(*)(void*))hello, (void*)&m1);

m2 = 2;

pthread_create(&thr2, NULL, (void*(*)(void*))hello, (void*)&m2);

return 0;

}

Concurrency Control
POSIX

But now we (still) have another race condition, which
fortunately is easier to spot

We might see both hellos, but more likely is we will see nothing
at all

Again, the main thread continues to run and main might return
before the new threads have had chance to get started

In C, when the main function returns the whole process exits,
and all of the threads are terminated, possibly before they have
had chance to print

Concurrency Control
POSIX

But now we (still) have another race condition, which
fortunately is easier to spot

We might see both hellos, but more likely is we will see nothing
at all

Again, the main thread continues to run and main might return
before the new threads have had chance to get started

In C, when the main function returns the whole process exits,
and all of the threads are terminated, possibly before they have
had chance to print

Concurrency Control
POSIX

But now we (still) have another race condition, which
fortunately is easier to spot

We might see both hellos, but more likely is we will see nothing
at all

Again, the main thread continues to run and main might return
before the new threads have had chance to get started

In C, when the main function returns the whole process exits,
and all of the threads are terminated, possibly before they have
had chance to print

Concurrency Control
POSIX

But now we (still) have another race condition, which
fortunately is easier to spot

We might see both hellos, but more likely is we will see nothing
at all

Again, the main thread continues to run and main might return
before the new threads have had chance to get started

In C, when the main function returns the whole process exits,
and all of the threads are terminated, possibly before they have
had chance to print

Concurrency Control
POSIX

To fix this the initial thread should wait for the other threads to
finish

int pthread_join(pthread_t thread, void **retval);

This blocks the calling thread until the named thread exits

This is the main use of the thread identifiers: joining threads
(waiting for threads to finish)

A thread can end by returning from its initial function or by
calling pthread exit(void *retval);

Concurrency Control
POSIX

To fix this the initial thread should wait for the other threads to
finish

int pthread_join(pthread_t thread, void **retval);

This blocks the calling thread until the named thread exits

This is the main use of the thread identifiers: joining threads
(waiting for threads to finish)

A thread can end by returning from its initial function or by
calling pthread exit(void *retval);

Concurrency Control
POSIX

To fix this the initial thread should wait for the other threads to
finish

int pthread_join(pthread_t thread, void **retval);

This blocks the calling thread until the named thread exits

This is the main use of the thread identifiers: joining threads
(waiting for threads to finish)

A thread can end by returning from its initial function or by
calling pthread exit(void *retval);

Concurrency Control
POSIX

To fix this the initial thread should wait for the other threads to
finish

int pthread_join(pthread_t thread, void **retval);

This blocks the calling thread until the named thread exits

This is the main use of the thread identifiers: joining threads
(waiting for threads to finish)

A thread can end by returning from its initial function or by
calling pthread exit(void *retval);

Concurrency Control
POSIX

To fix this the initial thread should wait for the other threads to
finish

int pthread_join(pthread_t thread, void **retval);

This blocks the calling thread until the named thread exits

This is the main use of the thread identifiers: joining threads
(waiting for threads to finish)

A thread can end by returning from its initial function or by
calling pthread exit(void *retval);

Concurrency Control
POSIX

The thread can return a value, which is a pointer. This will be
copied into where retval in pthread join points

Use NULL if you don’t need a return value

Be careful not to return a pointer to something on the stack of
the exiting thread!

Any thread can wait for any other thread to terminate, as long
as it knows the thread’s id (the pthread t)

Concurrency Control
POSIX

The thread can return a value, which is a pointer. This will be
copied into where retval in pthread join points

Use NULL if you don’t need a return value

Be careful not to return a pointer to something on the stack of
the exiting thread!

Any thread can wait for any other thread to terminate, as long
as it knows the thread’s id (the pthread t)

Concurrency Control
POSIX

The thread can return a value, which is a pointer. This will be
copied into where retval in pthread join points

Use NULL if you don’t need a return value

Be careful not to return a pointer to something on the stack of
the exiting thread!

Any thread can wait for any other thread to terminate, as long
as it knows the thread’s id (the pthread t)

Concurrency Control
POSIX

The thread can return a value, which is a pointer. This will be
copied into where retval in pthread join points

Use NULL if you don’t need a return value

Be careful not to return a pointer to something on the stack of
the exiting thread!

Any thread can wait for any other thread to terminate, as long
as it knows the thread’s id (the pthread t)

Concurrency Control
POSIX

int main(void)

{

int m1, m2;

pthread_t thr1, thr2;

m1 = 1;

pthread_create(&thr1, NULL, (void*(*)(void*))hello, (void*)&m1);

m2 = 2;

pthread_create(&thr2, NULL, (void*(*)(void*))hello, (void*)&m2);

pthread_join(thr1, NULL);

pthread_join(thr2, NULL);

return 0;

}

Concurrency Control
POSIX

• If any thread calls exit() anywhere, the entire process
dies: the exit function means “exit process”

• if any thread calls pthread exit() anywhere, that thread
dies

• if any thread returns from its initial function, that thread dies
• there is no hierarchy of threads, all threads are equal and

independent once created

Concurrency Control
POSIX

• If any thread calls exit() anywhere, the entire process
dies: the exit function means “exit process”

• if any thread calls pthread exit() anywhere, that thread
dies

• if any thread returns from its initial function, that thread dies
• there is no hierarchy of threads, all threads are equal and

independent once created

Concurrency Control
POSIX

• If any thread calls exit() anywhere, the entire process
dies: the exit function means “exit process”

• if any thread calls pthread exit() anywhere, that thread
dies

• if any thread returns from its initial function, that thread dies

• there is no hierarchy of threads, all threads are equal and
independent once created

Concurrency Control
POSIX

• If any thread calls exit() anywhere, the entire process
dies: the exit function means “exit process”

• if any thread calls pthread exit() anywhere, that thread
dies

• if any thread returns from its initial function, that thread dies
• there is no hierarchy of threads, all threads are equal and

independent once created

Concurrency Control
POSIX

The only thing to watch out for is the thread running main,
because in C the main() function has an implicit exit() after
its end. So if it finishes, the entire process subsequently dies

Exercise (For later) Think about what coding would be needed
if we wanted always to get hello 1 printed first and hello 2
second

Exercise Then generalise to n threads

Concurrency Control
POSIX

The only thing to watch out for is the thread running main,
because in C the main() function has an implicit exit() after
its end. So if it finishes, the entire process subsequently dies

Exercise (For later) Think about what coding would be needed
if we wanted always to get hello 1 printed first and hello 2
second

Exercise Then generalise to n threads

Concurrency Control
POSIX

Advanced Exercise The following code might cause a
segmentation violation. Why?

int main(void)

{

int m1, m2;

pthread_t thr1, thr2;

m1 = 1;

pthread_create(&thr1, NULL, (void*(*)(void*))hello, (void*)&m1);

m2 = 2;

pthread_create(&thr2, NULL, (void*(*)(void*))hello, (void*)&m2);

return 0;

}

Concurrency Control
Threads

It’s not just C that invites these kinds of racy bugs, but they are
common to all library-based parallelisms used in sequential
languages

And to sequential-trained programmers

There is nothing in the C language itself to stop parallel
stupidities as it was designed as a sequential language

As were many other languages in popular use today

Concurrency Control
Threads

It’s not just C that invites these kinds of racy bugs, but they are
common to all library-based parallelisms used in sequential
languages

And to sequential-trained programmers

There is nothing in the C language itself to stop parallel
stupidities as it was designed as a sequential language

As were many other languages in popular use today

Concurrency Control
Threads

It’s not just C that invites these kinds of racy bugs, but they are
common to all library-based parallelisms used in sequential
languages

And to sequential-trained programmers

There is nothing in the C language itself to stop parallel
stupidities as it was designed as a sequential language

As were many other languages in popular use today

Concurrency Control
Threads

It’s not just C that invites these kinds of racy bugs, but they are
common to all library-based parallelisms used in sequential
languages

And to sequential-trained programmers

There is nothing in the C language itself to stop parallel
stupidities as it was designed as a sequential language

As were many other languages in popular use today

Concurrency Primitives
Atomic Update

Back to primitives

The problem with updates is that there is more than one
operation involved: first read, then modify, then store

Another thread may access the shared resource in between the
read and store

This leads us to another approach to the update race condition
by having indivisible atomic update

Concurrency Primitives
Atomic Update

Back to primitives

The problem with updates is that there is more than one
operation involved: first read, then modify, then store

Another thread may access the shared resource in between the
read and store

This leads us to another approach to the update race condition
by having indivisible atomic update

Concurrency Primitives
Atomic Update

Back to primitives

The problem with updates is that there is more than one
operation involved: first read, then modify, then store

Another thread may access the shared resource in between the
read and store

This leads us to another approach to the update race condition
by having indivisible atomic update

Concurrency Primitives
Atomic Update

Back to primitives

The problem with updates is that there is more than one
operation involved: first read, then modify, then store

Another thread may access the shared resource in between the
read and store

This leads us to another approach to the update race condition
by having indivisible atomic update

Concurrency Primitives
Atomic Update

This where the hardware supplies a special instruction to, say,
increment an integer as a single atomic operation (read-add
1-store)

This must be in the hardware: the increment instruction must
prevent other modifications of that value while it is being
incremented

The hardware sorts out the sequentialisation in the case of
simultaneous (or near-simultaneous) update by different
threads

The operation is guaranteed not to be interrupted or interleaved
with other threads

Concurrency Primitives
Atomic Update

This where the hardware supplies a special instruction to, say,
increment an integer as a single atomic operation (read-add
1-store)

This must be in the hardware: the increment instruction must
prevent other modifications of that value while it is being
incremented

The hardware sorts out the sequentialisation in the case of
simultaneous (or near-simultaneous) update by different
threads

The operation is guaranteed not to be interrupted or interleaved
with other threads

Concurrency Primitives
Atomic Update

This where the hardware supplies a special instruction to, say,
increment an integer as a single atomic operation (read-add
1-store)

This must be in the hardware: the increment instruction must
prevent other modifications of that value while it is being
incremented

The hardware sorts out the sequentialisation in the case of
simultaneous (or near-simultaneous) update by different
threads

The operation is guaranteed not to be interrupted or interleaved
with other threads

Concurrency Primitives
Atomic Update

This where the hardware supplies a special instruction to, say,
increment an integer as a single atomic operation (read-add
1-store)

This must be in the hardware: the increment instruction must
prevent other modifications of that value while it is being
incremented

The hardware sorts out the sequentialisation in the case of
simultaneous (or near-simultaneous) update by different
threads

The operation is guaranteed not to be interrupted or interleaved
with other threads

Concurrency Primitives
Atomic Update

Note that “atomic” does not mean “fast”

Depending on the cpu architecture, a single atomic instruction
might take possibly hundreds of cpu cycles to execute

The hardware might need to sort out memory buses, or cache
coherence, or pausing other cores trying to do a simultaneous
update, or other low-level stuff

Concurrency Primitives
Atomic Update

Note that “atomic” does not mean “fast”

Depending on the cpu architecture, a single atomic instruction
might take possibly hundreds of cpu cycles to execute

The hardware might need to sort out memory buses, or cache
coherence, or pausing other cores trying to do a simultaneous
update, or other low-level stuff

Concurrency Primitives
Atomic Update

Note that “atomic” does not mean “fast”

Depending on the cpu architecture, a single atomic instruction
might take possibly hundreds of cpu cycles to execute

The hardware might need to sort out memory buses, or cache
coherence, or pausing other cores trying to do a simultaneous
update, or other low-level stuff

Concurrency Primitives
Atomic Update

Atomics are indeed a reasonable approach, used by many, but
they have limitations

• Atomic instructions are hard to build in the context of the
complexity of caching and so on in modern architectures

• you would need an atomic instruction for each kind of
update you might want to do

• getting a high-level language compiler to generate code
using that instruction will not be straightforward

• they can be slow to execute

Concurrency Primitives
Atomic Update

Atomics are indeed a reasonable approach, used by many, but
they have limitations

• Atomic instructions are hard to build in the context of the
complexity of caching and so on in modern architectures

• you would need an atomic instruction for each kind of
update you might want to do

• getting a high-level language compiler to generate code
using that instruction will not be straightforward

• they can be slow to execute

Concurrency Primitives
Atomic Update

Atomics are indeed a reasonable approach, used by many, but
they have limitations

• Atomic instructions are hard to build in the context of the
complexity of caching and so on in modern architectures

• you would need an atomic instruction for each kind of
update you might want to do

• getting a high-level language compiler to generate code
using that instruction will not be straightforward

• they can be slow to execute

Concurrency Primitives
Atomic Update

Atomics are indeed a reasonable approach, used by many, but
they have limitations

• Atomic instructions are hard to build in the context of the
complexity of caching and so on in modern architectures

• you would need an atomic instruction for each kind of
update you might want to do

• getting a high-level language compiler to generate code
using that instruction will not be straightforward

• they can be slow to execute

Concurrency Primitives
Atomic Update

Atomics are indeed a reasonable approach, used by many, but
they have limitations

• Atomic instructions are hard to build in the context of the
complexity of caching and so on in modern architectures

• you would need an atomic instruction for each kind of
update you might want to do

• getting a high-level language compiler to generate code
using that instruction will not be straightforward

• they can be slow to execute

Concurrency Primitives
Atomic Update

You do see machine instructions in modern CPUs to do some
selection of atomic increment and decrement of integers, add,
subtract, logical and, logical or, swap a value in a register with a
value in memory, swap two values in memory, and a couple of
conditional tests but usually nothing much more than those

Instead, the best approach is to use a more flexible machine
instruction that you can build on to make more generic
higher-level solutions (see “test and set” and friends, later)

Indeed, we shall soon see how a lock implementation might be
built from atomic operations

Concurrency Primitives
Atomic Update

You do see machine instructions in modern CPUs to do some
selection of atomic increment and decrement of integers, add,
subtract, logical and, logical or, swap a value in a register with a
value in memory, swap two values in memory, and a couple of
conditional tests but usually nothing much more than those

Instead, the best approach is to use a more flexible machine
instruction that you can build on to make more generic
higher-level solutions (see “test and set” and friends, later)

Indeed, we shall soon see how a lock implementation might be
built from atomic operations

Concurrency Primitives
Atomic Update

You do see machine instructions in modern CPUs to do some
selection of atomic increment and decrement of integers, add,
subtract, logical and, logical or, swap a value in a register with a
value in memory, swap two values in memory, and a couple of
conditional tests but usually nothing much more than those

Instead, the best approach is to use a more flexible machine
instruction that you can build on to make more generic
higher-level solutions (see “test and set” and friends, later)

Indeed, we shall soon see how a lock implementation might be
built from atomic operations

Concurrency Primitives
Atomic Update

Do not use atomics for the coursework

To use them effectively you need more more detail that we can’t
go into right now

Concurrency Primitives
Atomic Update

Do not use atomics for the coursework

To use them effectively you need more more detail that we can’t
go into right now

Concurrency Primitives
Atomic Update

Exercise For hardware geeks: atomic operations often lock an
entire cache line, and can stall the CPU for hundreds of clock
cycles while the caches synchronise, so they can slow you
down more than you think. Read about this

Exercise For hardware geeks: compare the cost of using a lock
against the cost of using an atomic update (the answer can
depend on the pattern of access)

Exercise Effective use of atomics involves understanding
memory consistency orderings. Read about this

Exercise Some programming languages offer atomic
datatypes, e.g., Java, C++, Rust. These usually eventually just
call the machine instruction atomics. Read about this

Concurrency Primitives
Implementation of Locks

A little more to say about locks. . .

How are locks implemented?

They are a flag: say an integer, or even just one bit

We might use 1 to indicate locked, and 0 to indicate unlocked

Concurrency Primitives
Implementation of Locks

A little more to say about locks. . .

How are locks implemented?

They are a flag: say an integer, or even just one bit

We might use 1 to indicate locked, and 0 to indicate unlocked

Concurrency Primitives
Implementation of Locks

A little more to say about locks. . .

How are locks implemented?

They are a flag: say an integer, or even just one bit

We might use 1 to indicate locked, and 0 to indicate unlocked

Concurrency Primitives
Implementation of Locks

A little more to say about locks. . .

How are locks implemented?

They are a flag: say an integer, or even just one bit

We might use 1 to indicate locked, and 0 to indicate unlocked

Concurrency Primitives
Implementation of Locks

int lock = 0;

void get_lock()

{

while (lock == 1) {

deschedule();

}

lock = 1;

}

i.e., test the flag. If it is already 1, wait; else we can grab it by
setting the flag to 1

Spot the bug!

Concurrency Primitives
Implementation of Locks

int lock = 0;

void get_lock()

{

while (lock == 1) {

deschedule();

}

lock = 1;

}

i.e., test the flag. If it is already 1, wait; else we can grab it by
setting the flag to 1

Spot the bug!

Concurrency Primitives
Implementation of Locks

There is another update race condition

1 2
test flag: OK test flag: OK

set flag set flag

And now both calls to get lock succeed and both threads
proceed to enter the critical region

Concurrency Primitives
Implementation of Locks

There is another update race condition

1 2
test flag: OK test flag: OK

set flag set flag

And now both calls to get lock succeed and both threads
proceed to enter the critical region

Concurrency Primitives
Implementation of Locks

There is another update race condition

1 2
test flag: OK test flag: OK

set flag set flag

And now both calls to get lock succeed and both threads
proceed to enter the critical region

Concurrency Primitives
Implementation of Locks

There is another update race condition

1 2
test flag: OK test flag: OK

set flag set flag

And now both calls to get lock succeed and both threads
proceed to enter the critical region

Concurrency Primitives
Implementation of Locks

In between the testing of the flag and the setting of the flag all
kinds of other things might happen

Code lines that are textually next to each other like this are
widely separated in some sense: what we want is the testing
and setting to be atomic

That is the test and the set are inseparable: nothing can get
between them

This is another kind of critical region, so we could solve it by
using locks. . .

Concurrency Primitives
Implementation of Locks

In between the testing of the flag and the setting of the flag all
kinds of other things might happen

Code lines that are textually next to each other like this are
widely separated in some sense: what we want is the testing
and setting to be atomic

That is the test and the set are inseparable: nothing can get
between them

This is another kind of critical region, so we could solve it by
using locks. . .

Concurrency Primitives
Implementation of Locks

In between the testing of the flag and the setting of the flag all
kinds of other things might happen

Code lines that are textually next to each other like this are
widely separated in some sense: what we want is the testing
and setting to be atomic

That is the test and the set are inseparable: nothing can get
between them

This is another kind of critical region, so we could solve it by
using locks. . .

Concurrency Primitives
Implementation of Locks

In between the testing of the flag and the setting of the flag all
kinds of other things might happen

Code lines that are textually next to each other like this are
widely separated in some sense: what we want is the testing
and setting to be atomic

That is the test and the set are inseparable: nothing can get
between them

This is another kind of critical region, so we could solve it by
using locks. . .

Concurrency Primitives
Implementation of Locks

Fortunately we don’t have to go into an infinite regression as
there are two kinds of solution: hardware and software

Hardware designers understand mutual exclusion, so the
instruction sets of all modern processors have an instruction
specifically designed for this

For example the compare and swap instruction

Concurrency Primitives
Implementation of Locks

Fortunately we don’t have to go into an infinite regression as
there are two kinds of solution: hardware and software

Hardware designers understand mutual exclusion, so the
instruction sets of all modern processors have an instruction
specifically designed for this

For example the compare and swap instruction

Concurrency Primitives
Implementation of Locks

Fortunately we don’t have to go into an infinite regression as
there are two kinds of solution: hardware and software

Hardware designers understand mutual exclusion, so the
instruction sets of all modern processors have an instruction
specifically designed for this

For example the compare and swap instruction

Concurrency Primitives
Implementation of Locks

Intel has cmpxchgb that atomically operates on a register and a
byte in memory

CMPXCHG r/m8, r8
Compare AL with r/m8. If equal, ZF is set and r8 is
loaded into r/m8. Else, clear ZF and load r/m8 into AL.
This instruction can be used with a LOCK prefix to al-
low the instruction to be executed atomically

Concurrency Primitives
Implementation of Locks

Intel has cmpxchgb that atomically operates on a register and a
byte in memory

CMPXCHG r/m8, r8
Compare AL with r/m8. If equal, ZF is set and r8 is
loaded into r/m8. Else, clear ZF and load r/m8 into AL.
This instruction can be used with a LOCK prefix to al-
low the instruction to be executed atomically

Concurrency Primitives
Implementation of Locks

In C, its action is like

int compare_and_swap(int *reg, int *mem, int new)

{

if (*reg == *mem) {

*mem = new;

return 1; /* got lock */

}

*reg = *mem;

return 0; /* fail */

}

but the entire thing is done atomically

Concurrency Primitives
Implementation of Locks

Using this:

int flag = 0;

...

int reg = 0;

// try to set flag to 1

while (compare_and_swap(®, &flag, 1) == 0) {

reg = 0; // try again

}

<CR>

flag = 0;

This implements a busy wait

You should spend some time going through this!

Concurrency Primitives
Implementation of Locks

Using this:

int flag = 0;

...

int reg = 0;

// try to set flag to 1

while (compare_and_swap(®, &flag, 1) == 0) {

reg = 0; // try again

}

<CR>

flag = 0;

This implements a busy wait

You should spend some time going through this!

Concurrency Primitives
Implementation of Locks

Instructions found in other architectures include test and set
and an atomic swap

Early architectures did not have such instructions, so software
versions were devised

These include: Dekker, Dijkstra and Lamport

They are very subtle as they must construct an atomic effect
from non-atomic code

Exercise Go and read about these

Concurrency Primitives
Implementation of Locks

Instructions found in other architectures include test and set
and an atomic swap

Early architectures did not have such instructions, so software
versions were devised

These include: Dekker, Dijkstra and Lamport

They are very subtle as they must construct an atomic effect
from non-atomic code

Exercise Go and read about these

Concurrency Primitives
Implementation of Locks

Instructions found in other architectures include test and set
and an atomic swap

Early architectures did not have such instructions, so software
versions were devised

These include: Dekker, Dijkstra and Lamport

They are very subtle as they must construct an atomic effect
from non-atomic code

Exercise Go and read about these

Concurrency Primitives
Implementation of Locks

Instructions found in other architectures include test and set
and an atomic swap

Early architectures did not have such instructions, so software
versions were devised

These include: Dekker, Dijkstra and Lamport

They are very subtle as they must construct an atomic effect
from non-atomic code

Exercise Go and read about these

Concurrency Primitives
Implementation of Locks

Instructions found in other architectures include test and set
and an atomic swap

Early architectures did not have such instructions, so software
versions were devised

These include: Dekker, Dijkstra and Lamport

They are very subtle as they must construct an atomic effect
from non-atomic code

Exercise Go and read about these

