
Concurrency Primitives
Synchronisation

Now we look at some other problems

Consider our original counting code with a shared variable
count. A simple solution might be to make count non-shared:

1 2
for (i = 0; i < 50; i++) { for (j = 50; j < 100; j++) {

if (val[i] > 0) if (val[j] > 0)

count1 = count1 + 1; count2 = count2 + 1;

} }

count = count1 + count2;

There is now another, different, problem with this code!



Concurrency Primitives
Synchronisation

Now we look at some other problems

Consider our original counting code with a shared variable
count. A simple solution might be to make count non-shared:

1 2
for (i = 0; i < 50; i++) { for (j = 50; j < 100; j++) {

if (val[i] > 0) if (val[j] > 0)

count1 = count1 + 1; count2 = count2 + 1;

} }

count = count1 + count2;

There is now another, different, problem with this code!



Concurrency Primitives
Synchronisation

Now we look at some other problems

Consider our original counting code with a shared variable
count. A simple solution might be to make count non-shared:

1 2
for (i = 0; i < 50; i++) { for (j = 50; j < 100; j++) {

if (val[i] > 0) if (val[j] > 0)

count1 = count1 + 1; count2 = count2 + 1;

} }

count = count1 + count2;

There is now another, different, problem with this code!



Concurrency Primitives
Synchronisation

Now we look at some other problems

Consider our original counting code with a shared variable
count. A simple solution might be to make count non-shared:

1 2
for (i = 0; i < 50; i++) { for (j = 50; j < 100; j++) {

if (val[i] > 0) if (val[j] > 0)

count1 = count1 + 1; count2 = count2 + 1;

} }

count = count1 + count2;

There is now another, different, problem with this code!



Concurrency Primitives
Synchronisation

The problem now is when is the count = count1 + count2
executed?

To be correct, it has to happen after both the loops have
finished: any earlier will give a wrong answer

It will definitely happen after loop 1 has finished, but what about
loop 2?

We can’t rely (in a MIMD architecture) on the two loops on
different cores running at the same time and finishing at the
same time

Timings in the system may have the two loops running in any
conceivable arrangement of before, after or overlapped



Concurrency Primitives
Synchronisation

The problem now is when is the count = count1 + count2
executed?

To be correct, it has to happen after both the loops have
finished: any earlier will give a wrong answer

It will definitely happen after loop 1 has finished, but what about
loop 2?

We can’t rely (in a MIMD architecture) on the two loops on
different cores running at the same time and finishing at the
same time

Timings in the system may have the two loops running in any
conceivable arrangement of before, after or overlapped



Concurrency Primitives
Synchronisation

The problem now is when is the count = count1 + count2
executed?

To be correct, it has to happen after both the loops have
finished: any earlier will give a wrong answer

It will definitely happen after loop 1 has finished, but what about
loop 2?

We can’t rely (in a MIMD architecture) on the two loops on
different cores running at the same time and finishing at the
same time

Timings in the system may have the two loops running in any
conceivable arrangement of before, after or overlapped



Concurrency Primitives
Synchronisation

The problem now is when is the count = count1 + count2
executed?

To be correct, it has to happen after both the loops have
finished: any earlier will give a wrong answer

It will definitely happen after loop 1 has finished, but what about
loop 2?

We can’t rely (in a MIMD architecture) on the two loops on
different cores running at the same time and finishing at the
same time

Timings in the system may have the two loops running in any
conceivable arrangement of before, after or overlapped



Concurrency Primitives
Synchronisation

The problem now is when is the count = count1 + count2
executed?

To be correct, it has to happen after both the loops have
finished: any earlier will give a wrong answer

It will definitely happen after loop 1 has finished, but what about
loop 2?

We can’t rely (in a MIMD architecture) on the two loops on
different cores running at the same time and finishing at the
same time

Timings in the system may have the two loops running in any
conceivable arrangement of before, after or overlapped



Concurrency Primitives
Synchronisation

1 2
for (i = 0; i < 50; i++) {

if (val[i] > 0)

count1 = count1 + 1;

} for (j = 50; j < 100; j++) {

count = count1 + count2; if (val[j] > 0)

count2 = count2 + 1;

}



Concurrency Primitives
Synchronisation

So we must explicitly write code to ensure the final sum only
happens when both loops are finished

This is a synchronisation between the two threads

It may mean thread 1 waiting for thread 2

Another sequentialisation!



Concurrency Primitives
Synchronisation

So we must explicitly write code to ensure the final sum only
happens when both loops are finished

This is a synchronisation between the two threads

It may mean thread 1 waiting for thread 2

Another sequentialisation!



Concurrency Primitives
Synchronisation

So we must explicitly write code to ensure the final sum only
happens when both loops are finished

This is a synchronisation between the two threads

It may mean thread 1 waiting for thread 2

Another sequentialisation!



Concurrency Primitives
Synchronisation

So we must explicitly write code to ensure the final sum only
happens when both loops are finished

This is a synchronisation between the two threads

It may mean thread 1 waiting for thread 2

Another sequentialisation!



Concurrency Primitives
Synchronisation

More subtly: if this code is executed more than once (perhaps
counting more than one array), thread 2 ought to wait for thread
1 before starting!

It is possible that 1 is slow or paused for some reason, when 2
might do its bit and come around again on the next call to the
count code, do the count on some other data, updating count2
as it goes

Finally 1 awakes and gets the wrong count2

This does happen and is a source of bugs



Concurrency Primitives
Synchronisation

More subtly: if this code is executed more than once (perhaps
counting more than one array), thread 2 ought to wait for thread
1 before starting!

It is possible that 1 is slow or paused for some reason, when 2
might do its bit and come around again on the next call to the
count code, do the count on some other data, updating count2
as it goes

Finally 1 awakes and gets the wrong count2

This does happen and is a source of bugs



Concurrency Primitives
Synchronisation

More subtly: if this code is executed more than once (perhaps
counting more than one array), thread 2 ought to wait for thread
1 before starting!

It is possible that 1 is slow or paused for some reason, when 2
might do its bit and come around again on the next call to the
count code, do the count on some other data, updating count2
as it goes

Finally 1 awakes and gets the wrong count2

This does happen and is a source of bugs



Concurrency Primitives
Synchronisation

More subtly: if this code is executed more than once (perhaps
counting more than one array), thread 2 ought to wait for thread
1 before starting!

It is possible that 1 is slow or paused for some reason, when 2
might do its bit and come around again on the next call to the
count code, do the count on some other data, updating count2
as it goes

Finally 1 awakes and gets the wrong count2

This does happen and is a source of bugs



Concurrency Primitives
Semaphores

Semaphores can be used for thread synchronisation

Typically, we might have some thread that can only continue its
work when one (or more) others have finished doing something,
maybe computing some inputs for the thread to process

It can wait on a semaphore, again a simple flag, until another
thread sets the flag. Then it knows it can continue

Note that even though both locks and semaphores are flags,
they are very different things! Beware it is common for people
to confuse the two



Concurrency Primitives
Semaphores

Semaphores can be used for thread synchronisation

Typically, we might have some thread that can only continue its
work when one (or more) others have finished doing something,
maybe computing some inputs for the thread to process

It can wait on a semaphore, again a simple flag, until another
thread sets the flag. Then it knows it can continue

Note that even though both locks and semaphores are flags,
they are very different things! Beware it is common for people
to confuse the two



Concurrency Primitives
Semaphores

Semaphores can be used for thread synchronisation

Typically, we might have some thread that can only continue its
work when one (or more) others have finished doing something,
maybe computing some inputs for the thread to process

It can wait on a semaphore, again a simple flag, until another
thread sets the flag. Then it knows it can continue

Note that even though both locks and semaphores are flags,
they are very different things! Beware it is common for people
to confuse the two



Concurrency Primitives
Semaphores

Semaphores can be used for thread synchronisation

Typically, we might have some thread that can only continue its
work when one (or more) others have finished doing something,
maybe computing some inputs for the thread to process

It can wait on a semaphore, again a simple flag, until another
thread sets the flag. Then it knows it can continue

Note that even though both locks and semaphores are flags,
they are very different things! Beware it is common for people
to confuse the two



Concurrency Primitives
Semaphores

Semaphores are manipulated by two atomic operations P and
V that symbolically act atomically as:

P(s): while (s == 0) { V(s): s = 1;

suspend(); if any process waiting on s

} unblock one

s = 0;



Concurrency Primitives
Semaphores

On finding s = 0 a thread will suspend itself; when awoken it
will re-attempt to set the semaphore: and it will often succeed,
unless a third thread comes along and gets the semaphore first

Like locks, semaphores are not fair on which thread will be
awoken if more than one is waiting

Other names for P are: wait, up, lock, enter, open

Other names for V are: signal, down, unlock, exit, close

P stands for “proberen”, V for “verhogen”, which are Dutch for
“test” and “increase”



Concurrency Primitives
Semaphores

On finding s = 0 a thread will suspend itself; when awoken it
will re-attempt to set the semaphore: and it will often succeed,
unless a third thread comes along and gets the semaphore first

Like locks, semaphores are not fair on which thread will be
awoken if more than one is waiting

Other names for P are: wait, up, lock, enter, open

Other names for V are: signal, down, unlock, exit, close

P stands for “proberen”, V for “verhogen”, which are Dutch for
“test” and “increase”



Concurrency Primitives
Semaphores

On finding s = 0 a thread will suspend itself; when awoken it
will re-attempt to set the semaphore: and it will often succeed,
unless a third thread comes along and gets the semaphore first

Like locks, semaphores are not fair on which thread will be
awoken if more than one is waiting

Other names for P are: wait, up, lock, enter, open

Other names for V are: signal, down, unlock, exit, close

P stands for “proberen”, V for “verhogen”, which are Dutch for
“test” and “increase”



Concurrency Primitives
Semaphores

On finding s = 0 a thread will suspend itself; when awoken it
will re-attempt to set the semaphore: and it will often succeed,
unless a third thread comes along and gets the semaphore first

Like locks, semaphores are not fair on which thread will be
awoken if more than one is waiting

Other names for P are: wait, up, lock, enter, open

Other names for V are: signal, down, unlock, exit, close

P stands for “proberen”, V for “verhogen”, which are Dutch for
“test” and “increase”



Concurrency Primitives
Semaphores

Semaphores synchronise across threads:

do something

wait(s) prepare data

read data signal(s)

carry on

Thread 1 waits until thread 2 has prepared some data before
reading it

The signal and wait might happen in any order



Concurrency Primitives
Semaphores

Semaphores synchronise across threads:

prepare data

do something signal(s)

wait(s) carry on

read data

Thread 1 waits until thread 2 has prepared some data before
reading it

The signal and wait might happen in any order



Concurrency Primitives
Counting Semaphores

The above are called binary semaphores as the idea can be
trivially extended into counting semaphores

P(s): while (s == 0) { V(s): s = s + 1;

suspend(); if any process waiting on s

} unblock one

s = s - 1;

When initialised with the value n, this will allow n threads to
open the semaphore before blocking



Concurrency Primitives
Counting Semaphores

The above are called binary semaphores as the idea can be
trivially extended into counting semaphores

P(s): while (s == 0) { V(s): s = s + 1;

suspend(); if any process waiting on s

} unblock one

s = s - 1;

When initialised with the value n, this will allow n threads to
open the semaphore before blocking



Concurrency Primitives
Counting Semaphores

This allows region access control when there can be one than
one, but fewer than some limit in the region simultaneously

For example, if there are 5 places at a dining table we can allow
no more than 5 people in the room at a time

Or 4 if they are philosophers. . .



Concurrency Primitives
Counting Semaphores

This allows region access control when there can be one than
one, but fewer than some limit in the region simultaneously

For example, if there are 5 places at a dining table we can allow
no more than 5 people in the room at a time

Or 4 if they are philosophers. . .



Concurrency Primitives
Counting Semaphores

This allows region access control when there can be one than
one, but fewer than some limit in the region simultaneously

For example, if there are 5 places at a dining table we can allow
no more than 5 people in the room at a time

Or 4 if they are philosophers. . .



Concurrency Primitives
Semaphores

Mutual exclusion with semaphores happens to be easy:

wait(s);

<CR>

signal(s);

Wait for the semaphore; signal it’s free when you are done

But don’t do this: it’s better to use locks here. Semaphores are
more general than locks: they allow a thread to suspend itself
and be awoken by another thread when some condition is true



Concurrency Primitives
Semaphores

Mutual exclusion with semaphores happens to be easy:

wait(s);

<CR>

signal(s);

Wait for the semaphore; signal it’s free when you are done

But don’t do this: it’s better to use locks here. Semaphores are
more general than locks: they allow a thread to suspend itself
and be awoken by another thread when some condition is true



Concurrency Primitives
Semaphores

Mutexes: the thread that sets the flag must be the thread that
clears the flag

Semaphores: the thread that sets the flag will generally be
different from the thread that clears the flag

Semaphores should be used across threads, mutexes must not

The locking effect is in some sense incidental: more useful is
using semaphores to synchronise



Concurrency Primitives
Semaphores

Mutexes: the thread that sets the flag must be the thread that
clears the flag

Semaphores: the thread that sets the flag will generally be
different from the thread that clears the flag

Semaphores should be used across threads, mutexes must not

The locking effect is in some sense incidental: more useful is
using semaphores to synchronise



Concurrency Primitives
Semaphores

Mutexes: the thread that sets the flag must be the thread that
clears the flag

Semaphores: the thread that sets the flag will generally be
different from the thread that clears the flag

Semaphores should be used across threads, mutexes must not

The locking effect is in some sense incidental: more useful is
using semaphores to synchronise



Concurrency Primitives
Semaphores

Mutexes: the thread that sets the flag must be the thread that
clears the flag

Semaphores: the thread that sets the flag will generally be
different from the thread that clears the flag

Semaphores should be used across threads, mutexes must not

The locking effect is in some sense incidental: more useful is
using semaphores to synchronise



Concurrency Primitives
POSIX Semaphores

POSIX semaphores:

#include <semaphore.h>

sem_t sem;

int sem_init(sem_t *sem, int pshared, unsigned int value);

int sem_destroy(sem_t *sem);

int sem_wait(sem_t *sem);

int sem_post(sem_t *sem);

int sem_trywait(sem_t *sem);

“post” for signal



Concurrency Primitives
POSIX Semaphores

Exercise Add a semaphore to the count1/count2 example to
get thread 1 to wait for thread 2 before doing the final sum

Exercise Then add another semaphore to get thread 2 to wait
for thread 1 before starting



Concurrency Primitives
Barriers

Another synchronisation primitive is barriers (occasionally
called rendezvous)

A barrier stops threads from continuing until some required
number of threads have all hit the barrier; then they can all
continue together

This allows us to synchronise parts of the program: recall
supersteps



Concurrency Primitives
Barriers

Another synchronisation primitive is barriers (occasionally
called rendezvous)

A barrier stops threads from continuing until some required
number of threads have all hit the barrier; then they can all
continue together

This allows us to synchronise parts of the program: recall
supersteps



Concurrency Primitives
Barriers

Another synchronisation primitive is barriers (occasionally
called rendezvous)

A barrier stops threads from continuing until some required
number of threads have all hit the barrier; then they can all
continue together

This allows us to synchronise parts of the program: recall
supersteps



Concurrency Primitives
Barriers

Suppose we have a list of numbers we want to square then add
in pairs

for (i = 0; i < 100; i++) {

v[i] = v[i]*v[i];

}

for (i = 0; i < 100; i++) {

s[i] = v[i] + v[99-i];

}

We can parallelise this by having (say) 4 threads; each thread
squares a block of values; then they add a block of values



Concurrency Primitives
Barriers

Suppose we have a list of numbers we want to square then add
in pairs

for (i = 0; i < 100; i++) {

v[i] = v[i]*v[i];

}

for (i = 0; i < 100; i++) {

s[i] = v[i] + v[99-i];

}

We can parallelise this by having (say) 4 threads; each thread
squares a block of values; then they add a block of values



Concurrency Primitives
Barriers

1 2 3 4

v[0]^2 v[25]^2 v[50]^2 v[75]^2

v[1]^2 v[26]^2 v[51]^2 v[76]^2

v[2]^2 v[27]^2 v[52]^2 v[77]^2

... ... ... ...

v[24]^2 v[49]^2 v[74]^2 v[99]^2

v[0]+v[99] v[25]+v[74] v[50]+v[49] v[75]+v[24]

v[1]+v[98] v[26]+v[73] v[51]+v[48] v[76]+v[25]

... ... ... ...

v[24]+v[75] v[49]+v[50] v[74]+v[25] v[99]+v[0]



Concurrency Primitives
Barriers

1 2 3...

for (i = 0; i < 25; i++) { for (j = 25; j < 50; j++) {

v[i] = v[i]*v[i]; v[j] = v[j]*v[j];

} }

for (i = 0; i < 25; i++) { for (j = 25; j < 50; j++) { ...

s[i] = v[i] + v[99-i]; s[j] = v[j] + v[99-j];

} }

Again, the above might work sometimes, or many times, but it
is buggy



Concurrency Primitives
Barriers

1 2 3...

for (i = 0; i < 25; i++) { for (j = 25; j < 50; j++) {

v[i] = v[i]*v[i]; v[j] = v[j]*v[j];

} }

for (i = 0; i < 25; i++) { for (j = 25; j < 50; j++) { ...

s[i] = v[i] + v[99-i]; s[j] = v[j] + v[99-j];

} }

Again, the above might work sometimes, or many times, but it
is buggy



Concurrency Primitives
Barriers

The problem here is again that the threads may not all be
running at the same speed: perhaps one thread is interrupted
and descheduled by the OS; or memory access is not uniform
speed; or many other factors

So we can’t rely on all the threads finishing their squares at
precisely the same time: one thread might finish its block and
start adding using values not yet finished squaring

Another synchronisation problem



Concurrency Primitives
Barriers

The problem here is again that the threads may not all be
running at the same speed: perhaps one thread is interrupted
and descheduled by the OS; or memory access is not uniform
speed; or many other factors

So we can’t rely on all the threads finishing their squares at
precisely the same time: one thread might finish its block and
start adding using values not yet finished squaring

Another synchronisation problem



Concurrency Primitives
Barriers

The problem here is again that the threads may not all be
running at the same speed: perhaps one thread is interrupted
and descheduled by the OS; or memory access is not uniform
speed; or many other factors

So we can’t rely on all the threads finishing their squares at
precisely the same time: one thread might finish its block and
start adding using values not yet finished squaring

Another synchronisation problem



Concurrency Primitives
1 2 3 4

v[0]^2 v[25]^2 v[50]^2

v[1]^2 v[26]^2 v[51]^2

v[2]^2 v[27]^2 v[52]^2 v[75]^2

... ... ... v[76]^2

... ... ... ...

v[24]^2 v[49]^2 v[74]^2 v[97]^2

v[0]+ v[99] v[25]+v[74] v[50]+v[49] v[98]^2

v[1]+v[98] v[26]+v[73] v[51]+v[48] v[99]ˆ2
... ... ... v[75]+v[24]

... ... ... ...

v[24]+v[75] v[49]+v[50] v[74]+v[25] v[97]+v[2]

v[98]+v[1]

v[99]+v[0]

This is how we get the wrong answer: again just because the
lines of code for the adds follows the lines of code for the
squares make us believe every add happens after every square



Concurrency Primitives
1 2 3 4

v[0]^2 v[25]^2 v[50]^2

v[1]^2 v[26]^2 v[51]^2

v[2]^2 v[27]^2 v[52]^2 v[75]^2

... ... ... v[76]^2

... ... ... ...

v[24]^2 v[49]^2 v[74]^2 v[97]^2

v[0]+ v[99] v[25]+v[74] v[50]+v[49] v[98]^2

v[1]+v[98] v[26]+v[73] v[51]+v[48] v[99]ˆ2
... ... ... v[75]+v[24]

... ... ... ...

v[24]+v[75] v[49]+v[50] v[74]+v[25] v[97]+v[2]

v[98]+v[1]

v[99]+v[0]

This is how we get the wrong answer: again just because the
lines of code for the adds follows the lines of code for the
squares make us believe every add happens after every square



Concurrency Primitives
Barriers

We need to synchronise all the threads at the end of the
squares before allowing them to continue with the adds

b = make_barrier(4);

<parallel squares> <parallel squares> <parallel squares> ...

barrier_wait(b); barrier_wait(b); barrier_wait(b); ...

<parallel adds> <parallel adds> <parallel adds> ...

Only when all 4 threads have reached the barrier can they all
proceed



Concurrency Primitives
Barriers

Barriers are good for the superstep style of programming

Supersteps

But beware: as a barrier synchronises many threads, there is
potentially a lot of waiting going on: we can’t progress faster
than the slowest thread

Thus barriers are best when all the threads are doing roughly
the same amount of work



Concurrency Primitives
Barriers

Barriers are good for the superstep style of programming

Supersteps

But beware: as a barrier synchronises many threads, there is
potentially a lot of waiting going on: we can’t progress faster
than the slowest thread

Thus barriers are best when all the threads are doing roughly
the same amount of work



Concurrency Primitives
Barriers

Barriers are good for the superstep style of programming

Supersteps

But beware: as a barrier synchronises many threads, there is
potentially a lot of waiting going on: we can’t progress faster
than the slowest thread

Thus barriers are best when all the threads are doing roughly
the same amount of work



Concurrency Primitives
POSIX Barriers

#include <pthread.h>

pthread_barrier_t barrier;

int pthread_barrier_init(

pthread_barrier_t *restrict barrier,

const pthread_barrierattr_t *restrict attr,

unsigned count);

int pthread_barrier_destroy(pthread_barrier_t *barrier);

int pthread_barrier_wait(pthread_barrier_t *barrier);

A barrier can be reused immediately after it has released its
threads; it has a fixed value of n set when it is initialised

Exercise Have a look at the return value from
pthread barrier wait



Concurrency Primitives
POSIX Barriers

#include <pthread.h>

pthread_barrier_t barrier;

int pthread_barrier_init(

pthread_barrier_t *restrict barrier,

const pthread_barrierattr_t *restrict attr,

unsigned count);

int pthread_barrier_destroy(pthread_barrier_t *barrier);

int pthread_barrier_wait(pthread_barrier_t *barrier);

A barrier can be reused immediately after it has released its
threads; it has a fixed value of n set when it is initialised

Exercise Have a look at the return value from
pthread barrier wait



Concurrency Primitives
POSIX Barriers

Exercise Fix the count1/count2 problem with barriers

Exercise Both semaphores and barriers are about
synchronisation. Think about how you might implement barriers
using semaphores

Exercise Think about how you might implement semaphores
using barriers



Concurrency Primitives
Condition Variables

One last primitive we are going to look at is condition variables

As the name suggests, it is a way a thread can wait until some
condition is true

The idea is that one or more threads can wait on a condition
variable until another signals that the required condition is now
true

The signal can either let just one thread continue, or be a
broadcast that lets all waiting threads continue

Condition variables are normally associated with a mutex, and
are used inside a critical region protected by that mutex



Concurrency Primitives
Condition Variables

One last primitive we are going to look at is condition variables

As the name suggests, it is a way a thread can wait until some
condition is true

The idea is that one or more threads can wait on a condition
variable until another signals that the required condition is now
true

The signal can either let just one thread continue, or be a
broadcast that lets all waiting threads continue

Condition variables are normally associated with a mutex, and
are used inside a critical region protected by that mutex



Concurrency Primitives
Condition Variables

One last primitive we are going to look at is condition variables

As the name suggests, it is a way a thread can wait until some
condition is true

The idea is that one or more threads can wait on a condition
variable until another signals that the required condition is now
true

The signal can either let just one thread continue, or be a
broadcast that lets all waiting threads continue

Condition variables are normally associated with a mutex, and
are used inside a critical region protected by that mutex



Concurrency Primitives
Condition Variables

One last primitive we are going to look at is condition variables

As the name suggests, it is a way a thread can wait until some
condition is true

The idea is that one or more threads can wait on a condition
variable until another signals that the required condition is now
true

The signal can either let just one thread continue, or be a
broadcast that lets all waiting threads continue

Condition variables are normally associated with a mutex, and
are used inside a critical region protected by that mutex



Concurrency Primitives
Condition Variables

One last primitive we are going to look at is condition variables

As the name suggests, it is a way a thread can wait until some
condition is true

The idea is that one or more threads can wait on a condition
variable until another signals that the required condition is now
true

The signal can either let just one thread continue, or be a
broadcast that lets all waiting threads continue

Condition variables are normally associated with a mutex, and
are used inside a critical region protected by that mutex



Concurrency Primitives
Condition Variables

1 2
get_lock(mx); get_lock(mx);

<CR> <CR>

condvar_wait(cv, mx); condvar_signal(cv);

(wait) free_lock(mx);

<CR>

free_lock(mx);

condvar wait releases the mutex and waits on the condition
variable

When the other thread signal signals and releases the mutex,
the first thread regains the mutex and continues within the
critical region



Concurrency Primitives
Condition Variables

1 2
get_lock(mx); get_lock(mx);

<CR> <CR>

condvar_wait(cv, mx); condvar_signal(cv);

(wait) free_lock(mx);

<CR>

free_lock(mx);

condvar wait releases the mutex and waits on the condition
variable

When the other thread signal signals and releases the mutex,
the first thread regains the mutex and continues within the
critical region



Concurrency Primitives
Condition Variables

The condition variable allows thread 1 to “step outside” the
critical region, letting another thread to enter and do something

Conditions variables combine mutual exclusion and
synchronisation

Again, not fair on which thread gets to continue if more than
one is waiting

With a broadcast all other threads are marked as ready to
run, but only one will regain the lock; the others will blocked on
the lock as normal

One will get the lock when the first thread releases it; and so on



Concurrency Primitives
Condition Variables

The condition variable allows thread 1 to “step outside” the
critical region, letting another thread to enter and do something

Conditions variables combine mutual exclusion and
synchronisation

Again, not fair on which thread gets to continue if more than
one is waiting

With a broadcast all other threads are marked as ready to
run, but only one will regain the lock; the others will blocked on
the lock as normal

One will get the lock when the first thread releases it; and so on



Concurrency Primitives
Condition Variables

The condition variable allows thread 1 to “step outside” the
critical region, letting another thread to enter and do something

Conditions variables combine mutual exclusion and
synchronisation

Again, not fair on which thread gets to continue if more than
one is waiting

With a broadcast all other threads are marked as ready to
run, but only one will regain the lock; the others will blocked on
the lock as normal

One will get the lock when the first thread releases it; and so on



Concurrency Primitives
Condition Variables

The condition variable allows thread 1 to “step outside” the
critical region, letting another thread to enter and do something

Conditions variables combine mutual exclusion and
synchronisation

Again, not fair on which thread gets to continue if more than
one is waiting

With a broadcast all other threads are marked as ready to
run, but only one will regain the lock; the others will blocked on
the lock as normal

One will get the lock when the first thread releases it; and so on



Concurrency Primitives
Condition Variables

The condition variable allows thread 1 to “step outside” the
critical region, letting another thread to enter and do something

Conditions variables combine mutual exclusion and
synchronisation

Again, not fair on which thread gets to continue if more than
one is waiting

With a broadcast all other threads are marked as ready to
run, but only one will regain the lock; the others will blocked on
the lock as normal

One will get the lock when the first thread releases it; and so on



Concurrency Primitives
POSIX Condition Variables

#include <pthread.h>

int pthread_cond_init(pthread_cond_t *restrict cond,

const pthread_condattr_t *restrict attr);

int pthread_cond_destroy(pthread_cond_t *cond);

int pthread_cond_wait(pthread_cond_t *restrict cond,

pthread_mutex_t *restrict mutex);

int pthread_cond_timedwait(pthread_cond_t *restrict cond,

pthread_mutex_t *restrict mutex,

const struct timespec *restrict abstime);

int pthread_cond_signal(pthread_cond_t *cond);

int pthread_cond_broadcast(pthread_cond_t *cond);



Concurrency Primitives
POSIX Condition Variables

As an example of the kind of grungy detail that parallelism has
to address: POSIX recognises that there is a nasty
implementation detail that would otherwise make implementing
condition variables impractical

The specification for pthread cond signal says

The pthread cond signal() function shall unblock
at least one of the threads that are blocked on the spec-
ified condition variable cond

“at least one”: there is a (rare) problem of spurious wakeups
that is in general too expensive to avoid



Concurrency Primitives
POSIX Condition Variables

As an example of the kind of grungy detail that parallelism has
to address: POSIX recognises that there is a nasty
implementation detail that would otherwise make implementing
condition variables impractical

The specification for pthread cond signal says

The pthread cond signal() function shall unblock
at least one of the threads that are blocked on the spec-
ified condition variable cond

“at least one”: there is a (rare) problem of spurious wakeups
that is in general too expensive to avoid



Concurrency Primitives
POSIX Condition Variables

As an example of the kind of grungy detail that parallelism has
to address: POSIX recognises that there is a nasty
implementation detail that would otherwise make implementing
condition variables impractical

The specification for pthread cond signal says

The pthread cond signal() function shall unblock
at least one of the threads that are blocked on the spec-
ified condition variable cond

“at least one”: there is a (rare) problem of spurious wakeups
that is in general too expensive to avoid



Concurrency Primitives
POSIX Condition Variables

This just means you have to be a bit formulaic about the use of
condition variables and always have a condition to test before
continuing

1 2
iteration = 0;

get_lock(mx); get_lock(mx);

<CR> <CR>

it = iteration; iteration++;

while (it == iteration) condvar_signal(cv, mx);

condvar_wait(cv, mx); free_lock(mx);

<CR>

free_lock(mx);

Thread 1 might get awoken spuriously but it doesn’t want to
continue until the next iteration



Concurrency Primitives
POSIX Condition Variables

In general you would test for whatever condition you were
waiting for: thread 2 sets the condition, thread 1 should test for
it

Condition variables are very useful, but a bit of a pain to use



Concurrency Primitives
POSIX Condition Variables

In general you would test for whatever condition you were
waiting for: thread 2 sets the condition, thread 1 should test for
it

Condition variables are very useful, but a bit of a pain to use



Concurrency Primitives
Concurrency Primitives

We have called these things primitives, but we can implement
them in terms of each other

Exercise Do this

All eventually go back to the underlying hardware or software
support

“Primitive” is actually a good description as they are all very low
level



Concurrency Primitives
Concurrency Primitives

We have called these things primitives, but we can implement
them in terms of each other

Exercise Do this

All eventually go back to the underlying hardware or software
support

“Primitive” is actually a good description as they are all very low
level



Concurrency Primitives
Concurrency Primitives

We have called these things primitives, but we can implement
them in terms of each other

Exercise Do this

All eventually go back to the underlying hardware or software
support

“Primitive” is actually a good description as they are all very low
level



Concurrency Primitives
Concurrency Primitives

We have called these things primitives, but we can implement
them in terms of each other

Exercise Do this

All eventually go back to the underlying hardware or software
support

“Primitive” is actually a good description as they are all very low
level



Concurrency Primitives
Concurrency Primitives

And they do have a cost, thus their use does limit the speedup
available

Their overhead can be divided into two parts

(a) the time spent blocked as a necessary part of its function,
e.g., wait on a lock

(b) the time spent in executing the code of the primitive

Note part (a) isn’t really a limitation of the primitive: it’s
necessary if it is to work at all. It is (b) that the implementation
of a primitive seeks to minimise



Concurrency Primitives
Concurrency Primitives

And they do have a cost, thus their use does limit the speedup
available

Their overhead can be divided into two parts

(a) the time spent blocked as a necessary part of its function,
e.g., wait on a lock

(b) the time spent in executing the code of the primitive

Note part (a) isn’t really a limitation of the primitive: it’s
necessary if it is to work at all. It is (b) that the implementation
of a primitive seeks to minimise



Concurrency Primitives
Concurrency Primitives

And they do have a cost, thus their use does limit the speedup
available

Their overhead can be divided into two parts

(a) the time spent blocked as a necessary part of its function,
e.g., wait on a lock

(b) the time spent in executing the code of the primitive

Note part (a) isn’t really a limitation of the primitive: it’s
necessary if it is to work at all. It is (b) that the implementation
of a primitive seeks to minimise



Concurrency Primitives
Concurrency Primitives

And they do have a cost, thus their use does limit the speedup
available

Their overhead can be divided into two parts

(a) the time spent blocked as a necessary part of its function,
e.g., wait on a lock

(b) the time spent in executing the code of the primitive

Note part (a) isn’t really a limitation of the primitive: it’s
necessary if it is to work at all. It is (b) that the implementation
of a primitive seeks to minimise



Concurrency Primitives
Concurrency Primitives

And they do have a cost, thus their use does limit the speedup
available

Their overhead can be divided into two parts

(a) the time spent blocked as a necessary part of its function,
e.g., wait on a lock

(b) the time spent in executing the code of the primitive

Note part (a) isn’t really a limitation of the primitive: it’s
necessary if it is to work at all. It is (b) that the implementation
of a primitive seeks to minimise



Concurrency Control
Higher Level

Semaphores, locks, barriers, etc., and even threads are likened
to assembler: low-level, fast, fine control, but very likely to
encourage buggy programs

While many programmers are happy using them, others need
higher level solutions

These come in many forms



Concurrency Control
Higher Level

Semaphores, locks, barriers, etc., and even threads are likened
to assembler: low-level, fast, fine control, but very likely to
encourage buggy programs

While many programmers are happy using them, others need
higher level solutions

These come in many forms



Concurrency Control
Higher Level

Semaphores, locks, barriers, etc., and even threads are likened
to assembler: low-level, fast, fine control, but very likely to
encourage buggy programs

While many programmers are happy using them, others need
higher level solutions

These come in many forms



Concurrency Control
Higher Level

Concurrency control can be supported in a high-level language
as

• added in to an existing language, in library support. We
have seen some of this already: the POSIX examples

• fudged into the syntax of an existing language
• part of the initial design of a new language

We shall be looking at all of these approaches



Concurrency Control
Higher Level

Concurrency control can be supported in a high-level language
as

• added in to an existing language, in library support. We
have seen some of this already: the POSIX examples

• fudged into the syntax of an existing language
• part of the initial design of a new language

We shall be looking at all of these approaches



Concurrency Control
Higher Level

Concurrency control can be supported in a high-level language
as

• added in to an existing language, in library support. We
have seen some of this already: the POSIX examples

• fudged into the syntax of an existing language

• part of the initial design of a new language

We shall be looking at all of these approaches



Concurrency Control
Higher Level

Concurrency control can be supported in a high-level language
as

• added in to an existing language, in library support. We
have seen some of this already: the POSIX examples

• fudged into the syntax of an existing language
• part of the initial design of a new language

We shall be looking at all of these approaches



Concurrency Control
Higher Level

Concurrency control can be supported in a high-level language
as

• added in to an existing language, in library support. We
have seen some of this already: the POSIX examples

• fudged into the syntax of an existing language
• part of the initial design of a new language

We shall be looking at all of these approaches



Concurrency Control
Higher Level

There is a lot of sequential code out there that people would
like to run faster on parallel hardware

While there is a lot of effort being put into automatic analysis of
code to discover and exploit parallelism, the results are
sporadic

Functional languages offer a decent hope here, but not much
code is functional style

So code needs to be rewritten to make best advantage of
parallelism

The hope (and economics) is we can take existing code using
an existing language and modify it



Concurrency Control
Higher Level

There is a lot of sequential code out there that people would
like to run faster on parallel hardware

While there is a lot of effort being put into automatic analysis of
code to discover and exploit parallelism, the results are
sporadic

Functional languages offer a decent hope here, but not much
code is functional style

So code needs to be rewritten to make best advantage of
parallelism

The hope (and economics) is we can take existing code using
an existing language and modify it



Concurrency Control
Higher Level

There is a lot of sequential code out there that people would
like to run faster on parallel hardware

While there is a lot of effort being put into automatic analysis of
code to discover and exploit parallelism, the results are
sporadic

Functional languages offer a decent hope here, but not much
code is functional style

So code needs to be rewritten to make best advantage of
parallelism

The hope (and economics) is we can take existing code using
an existing language and modify it



Concurrency Control
Higher Level

There is a lot of sequential code out there that people would
like to run faster on parallel hardware

While there is a lot of effort being put into automatic analysis of
code to discover and exploit parallelism, the results are
sporadic

Functional languages offer a decent hope here, but not much
code is functional style

So code needs to be rewritten to make best advantage of
parallelism

The hope (and economics) is we can take existing code using
an existing language and modify it



Concurrency Control
Higher Level

There is a lot of sequential code out there that people would
like to run faster on parallel hardware

While there is a lot of effort being put into automatic analysis of
code to discover and exploit parallelism, the results are
sporadic

Functional languages offer a decent hope here, but not much
code is functional style

So code needs to be rewritten to make best advantage of
parallelism

The hope (and economics) is we can take existing code using
an existing language and modify it



Concurrency Control
Libraries

It’s not a good way of doing things, but rewriting from scratch is
just too expensive

Of course, new projects ought to be written with parallelism in
mind from their start

Also, there are lots of programmers with extensive expertise in
languages like C, Java and C++ — meaning such programmers
are cheaper to employ

So we are led to the approach of taking, say C, and adding
parallelism to it

The easiest way is to leave the language itself untouched, just
adding a library of functions that do parallelism



Concurrency Control
Libraries

It’s not a good way of doing things, but rewriting from scratch is
just too expensive

Of course, new projects ought to be written with parallelism in
mind from their start

Also, there are lots of programmers with extensive expertise in
languages like C, Java and C++ — meaning such programmers
are cheaper to employ

So we are led to the approach of taking, say C, and adding
parallelism to it

The easiest way is to leave the language itself untouched, just
adding a library of functions that do parallelism



Concurrency Control
Libraries

It’s not a good way of doing things, but rewriting from scratch is
just too expensive

Of course, new projects ought to be written with parallelism in
mind from their start

Also, there are lots of programmers with extensive expertise in
languages like C, Java and C++ — meaning such programmers
are cheaper to employ

So we are led to the approach of taking, say C, and adding
parallelism to it

The easiest way is to leave the language itself untouched, just
adding a library of functions that do parallelism



Concurrency Control
Libraries

It’s not a good way of doing things, but rewriting from scratch is
just too expensive

Of course, new projects ought to be written with parallelism in
mind from their start

Also, there are lots of programmers with extensive expertise in
languages like C, Java and C++ — meaning such programmers
are cheaper to employ

So we are led to the approach of taking, say C, and adding
parallelism to it

The easiest way is to leave the language itself untouched, just
adding a library of functions that do parallelism



Concurrency Control
Libraries

It’s not a good way of doing things, but rewriting from scratch is
just too expensive

Of course, new projects ought to be written with parallelism in
mind from their start

Also, there are lots of programmers with extensive expertise in
languages like C, Java and C++ — meaning such programmers
are cheaper to employ

So we are led to the approach of taking, say C, and adding
parallelism to it

The easiest way is to leave the language itself untouched, just
adding a library of functions that do parallelism



Concurrency Control
Libraries

For example, the POSIX pthread approach

Note: We have been using C and the POSIX library to illustrate
points, but this library technique applies to all sensible
languages

But you can’t just add a parallel library to a sequential language
and hope everything is OK



Concurrency Control
Libraries

For example, the POSIX pthread approach

Note: We have been using C and the POSIX library to illustrate
points, but this library technique applies to all sensible
languages

But you can’t just add a parallel library to a sequential language
and hope everything is OK



Concurrency Control
Libraries

For example, the POSIX pthread approach

Note: We have been using C and the POSIX library to illustrate
points, but this library technique applies to all sensible
languages

But you can’t just add a parallel library to a sequential language
and hope everything is OK



Concurrency Control
Threads again

Modern compilers and modern hardware both try their best to
execute your code as fast as possible

But in doing so, they can break parallel code

For example, some compiler optimisations can break parallel
code

And some hardware optimisations can break parallel code



Concurrency Control
Threads again

Modern compilers and modern hardware both try their best to
execute your code as fast as possible

But in doing so, they can break parallel code

For example, some compiler optimisations can break parallel
code

And some hardware optimisations can break parallel code



Concurrency Control
Threads again

Modern compilers and modern hardware both try their best to
execute your code as fast as possible

But in doing so, they can break parallel code

For example, some compiler optimisations can break parallel
code

And some hardware optimisations can break parallel code



Concurrency Control
Threads again

Modern compilers and modern hardware both try their best to
execute your code as fast as possible

But in doing so, they can break parallel code

For example, some compiler optimisations can break parallel
code

And some hardware optimisations can break parallel code



Concurrency Control
Compiler Reordering

Modern compilers often reorder code to make things more
efficient

For example, main memory access is (relatively) slow, so if the
value of a variable is needed, the compiler might try to start
loading it earlier than the code might suggest



Concurrency Control
Compiler Reordering

Modern compilers often reorder code to make things more
efficient

For example, main memory access is (relatively) slow, so if the
value of a variable is needed, the compiler might try to start
loading it earlier than the code might suggest



Concurrency Control
Compiler Reordering

Given code

y = 2;

x = z;

x += y; // need to wait for z before we can do this

The compiler might spot it can start loading z earlier, so there is
less of a wait before it can do the increment:

x = z;

y = 2; // do this without waiting for z to be loaded

x += y;

The effect is the same, but it goes a little faster. The compiler in
effect rewrites your code



Concurrency Control
Compiler Reordering

Given code

y = 2;

x = z;

x += y; // need to wait for z before we can do this

The compiler might spot it can start loading z earlier, so there is
less of a wait before it can do the increment:

x = z;

y = 2; // do this without waiting for z to be loaded

x += y;

The effect is the same, but it goes a little faster. The compiler in
effect rewrites your code



Concurrency Control
Compiler Reordering

Given code

y = 2;

x = z;

x += y; // need to wait for z before we can do this

The compiler might spot it can start loading z earlier, so there is
less of a wait before it can do the increment:

x = z;

y = 2; // do this without waiting for z to be loaded

x += y;

The effect is the same, but it goes a little faster. The compiler in
effect rewrites your code



Concurrency Control
Compiler Reordering

Given code

y = 2;

x = z;

x += y; // need to wait for z before we can do this

The compiler might spot it can start loading z earlier, so there is
less of a wait before it can do the increment:

x = z;

y = 2; // do this without waiting for z to be loaded

x += y;

The effect is the same, but it goes a little faster. The compiler in
effect rewrites your code



Concurrency Control
Compiler Reordering

This could break things. Consider

A B

while (cont == 0) {/* nothing */} x = 42;

print x; cont = 1;

where the intent was to have thread A to wait for thread B to set
the cont flag before continuing to print 42

A compiler only seeing the code for B may conclude that the
variables cont and x are independent and so (perhaps for
whatever reason) it can rearrange the code as

cont = 1;

x = 42;



Concurrency Control
Compiler Reordering

This could break things. Consider

A B

while (cont == 0) {/* nothing */} x = 42;

print x; cont = 1;

where the intent was to have thread A to wait for thread B to set
the cont flag before continuing to print 42

A compiler only seeing the code for B may conclude that the
variables cont and x are independent and so (perhaps for
whatever reason) it can rearrange the code as

cont = 1;

x = 42;



Concurrency Control
Compiler Reordering

Similarly for A: it is possible that the read of x can done before
the loop

Note: never write code like this in the hope that it might work: it
is simply buggy code! Use a semaphore or equivalent

The problem is that there is a hidden relationship between the
variables x and cont that is in the mind of the programmer, but
is not expressed in the code



Concurrency Control
Compiler Reordering

Similarly for A: it is possible that the read of x can done before
the loop

Note: never write code like this in the hope that it might work: it
is simply buggy code! Use a semaphore or equivalent

The problem is that there is a hidden relationship between the
variables x and cont that is in the mind of the programmer, but
is not expressed in the code



Concurrency Control
Compiler Reordering

Similarly for A: it is possible that the read of x can done before
the loop

Note: never write code like this in the hope that it might work: it
is simply buggy code! Use a semaphore or equivalent

The problem is that there is a hidden relationship between the
variables x and cont that is in the mind of the programmer, but
is not expressed in the code



Concurrency Control
Compiler Reordering

Example. Consider the code:

int a = 0;

int b = 0;

A B

a = 42; b = 42;

printf("%d\n", b); printf("%d\n", a);

Explain how it might print 0 twice, even though it appears we
always print after an update


