
Concurrency Control
Compiler Reordering

Thus, to be correct, the programmer needs to inform the
compiler not to do these kinds of “optimisations”

Languages like C and Java have a volatile keyword:

volatile int cont;

tells the compiler not to mess around with such variables and
assume that external operations might change their value

Concurrency Control
Compiler Reordering

Thus, to be correct, the programmer needs to inform the
compiler not to do these kinds of “optimisations”

Languages like C and Java have a volatile keyword:

volatile int cont;

tells the compiler not to mess around with such variables and
assume that external operations might change their value

Concurrency Control
Compiler Reordering

Thus, to be correct, the programmer needs to inform the
compiler not to do these kinds of “optimisations”

Languages like C and Java have a volatile keyword:

volatile int cont;

tells the compiler not to mess around with such variables and
assume that external operations might change their value

Concurrency Control
Compiler Reordering

But volatile was introduced for hardware/peripheral-related
reasons and is not a way of fixing concurrency issues as they
don’t solve the whole problem, as the hardware needs telling,
too

Summary: don’t use volatile to try to solve parallelism
problems, as is sometimes recommended

Concurrency Control
Compiler Reordering

But volatile was introduced for hardware/peripheral-related
reasons and is not a way of fixing concurrency issues as they
don’t solve the whole problem, as the hardware needs telling,
too

Summary: don’t use volatile to try to solve parallelism
problems, as is sometimes recommended

Concurrency Control
Hardware Reordering

Second problem: as it’s not just the compiler that reorders
things

Modern CPUs use out of order execution on machine
instructions to improve efficiency in superscalar architectures,
where the processor can reorder instructions as it sees fit

For example, in the machine code for

x = y + z;

w = 2*u;

Since loading from memory takes a long time the CPU might
decide to start loading u before doing the sum

Again, this reduces the overall time the code takes to run as the
multiply does not have to wait as long for u to arrive

Concurrency Control
Hardware Reordering

Second problem: as it’s not just the compiler that reorders
things

Modern CPUs use out of order execution on machine
instructions to improve efficiency in superscalar architectures,
where the processor can reorder instructions as it sees fit

For example, in the machine code for

x = y + z;

w = 2*u;

Since loading from memory takes a long time the CPU might
decide to start loading u before doing the sum

Again, this reduces the overall time the code takes to run as the
multiply does not have to wait as long for u to arrive

Concurrency Control
Hardware Reordering

Second problem: as it’s not just the compiler that reorders
things

Modern CPUs use out of order execution on machine
instructions to improve efficiency in superscalar architectures,
where the processor can reorder instructions as it sees fit

For example, in the machine code for

x = y + z;

w = 2*u;

Since loading from memory takes a long time the CPU might
decide to start loading u before doing the sum

Again, this reduces the overall time the code takes to run as the
multiply does not have to wait as long for u to arrive

Concurrency Control
Hardware Reordering

Second problem: as it’s not just the compiler that reorders
things

Modern CPUs use out of order execution on machine
instructions to improve efficiency in superscalar architectures,
where the processor can reorder instructions as it sees fit

For example, in the machine code for

x = y + z;

w = 2*u;

Since loading from memory takes a long time the CPU might
decide to start loading u before doing the sum

Again, this reduces the overall time the code takes to run as the
multiply does not have to wait as long for u to arrive

Concurrency Control
Hardware Reordering

Second problem: as it’s not just the compiler that reorders
things

Modern CPUs use out of order execution on machine
instructions to improve efficiency in superscalar architectures,
where the processor can reorder instructions as it sees fit

For example, in the machine code for

x = y + z;

w = 2*u;

Since loading from memory takes a long time the CPU might
decide to start loading u before doing the sum

Again, this reduces the overall time the code takes to run as the
multiply does not have to wait as long for u to arrive

Concurrency Control
Hardware Reordering

Second problem: as it’s not just the compiler that reorders
things

Modern CPUs use out of order execution on machine
instructions to improve efficiency in superscalar architectures,
where the processor can reorder instructions as it sees fit

For example, in the machine code for

x = y + z;

w = 2*u;

Since loading from memory takes a long time the CPU might
decide to start loading u before doing the sum

Again, this reduces the overall time the code takes to run as the
multiply does not have to wait as long for u to arrive

Concurrency Control
Hardware Reordering

So, even given un-reordered code or machine code equivalent
loading registers

cont = 1; load $r1, 1

x = 42; load $r2, 42

the CPU might while running decide the loads look
independent and load x ($r2) first

Out of order execution is common in modern architectures

Concurrency Control
Hardware Reordering

So, even given un-reordered code or machine code equivalent
loading registers

cont = 1; load $r1, 1

x = 42; load $r2, 42

the CPU might while running decide the loads look
independent and load x ($r2) first

Out of order execution is common in modern architectures

Concurrency Control
Thus we also need special code like

while (cont == 0) {/* nothing */} x = 42;

memory_fence(); memory_fence();

print x; cont = 1;

(details vary according to language and compiler) that tell the
compiler and processor not to reorder things

Firstly, the compiler will know not to try to move reads or writes
across the call to memory fence()

Secondly, the memory fence() would compile to a specific
special machine instruction that tells the CPU’s out of order
mechanism not to move read or writes across this boundary

The first fence says not to read x too early, while the other says
don’t assign cont before x

Concurrency Control
Thus we also need special code like

while (cont == 0) {/* nothing */} x = 42;

memory_fence(); memory_fence();

print x; cont = 1;

(details vary according to language and compiler) that tell the
compiler and processor not to reorder things

Firstly, the compiler will know not to try to move reads or writes
across the call to memory fence()

Secondly, the memory fence() would compile to a specific
special machine instruction that tells the CPU’s out of order
mechanism not to move read or writes across this boundary

The first fence says not to read x too early, while the other says
don’t assign cont before x

Concurrency Control
Thus we also need special code like

while (cont == 0) {/* nothing */} x = 42;

memory_fence(); memory_fence();

print x; cont = 1;

(details vary according to language and compiler) that tell the
compiler and processor not to reorder things

Firstly, the compiler will know not to try to move reads or writes
across the call to memory fence()

Secondly, the memory fence() would compile to a specific
special machine instruction that tells the CPU’s out of order
mechanism not to move read or writes across this boundary

The first fence says not to read x too early, while the other says
don’t assign cont before x

Concurrency Control
Thus we also need special code like

while (cont == 0) {/* nothing */} x = 42;

memory_fence(); memory_fence();

print x; cont = 1;

(details vary according to language and compiler) that tell the
compiler and processor not to reorder things

Firstly, the compiler will know not to try to move reads or writes
across the call to memory fence()

Secondly, the memory fence() would compile to a specific
special machine instruction that tells the CPU’s out of order
mechanism not to move read or writes across this boundary

The first fence says not to read x too early, while the other says
don’t assign cont before x

Concurrency Control
Memory Consistency

In fact, in modern machine architectures you must use some
primitive like a fence, or something that uses a fence (e.g., a
semaphore), to ensure the intended behaviour

Memory fences work (when you remember to use them) but
prevent some correct optimisations. Thus more subtle
mechanisms are also used

Exercise The above stops both reads and writes from being
moved forward or back. Fences also come in variants that only
block movement forward; or only movement back. Read about
these

Concurrency Control
Memory Consistency

In fact, in modern machine architectures you must use some
primitive like a fence, or something that uses a fence (e.g., a
semaphore), to ensure the intended behaviour

Memory fences work (when you remember to use them) but
prevent some correct optimisations. Thus more subtle
mechanisms are also used

Exercise The above stops both reads and writes from being
moved forward or back. Fences also come in variants that only
block movement forward; or only movement back. Read about
these

Concurrency Control
Memory Consistency

In fact, in modern machine architectures you must use some
primitive like a fence, or something that uses a fence (e.g., a
semaphore), to ensure the intended behaviour

Memory fences work (when you remember to use them) but
prevent some correct optimisations. Thus more subtle
mechanisms are also used

Exercise The above stops both reads and writes from being
moved forward or back. Fences also come in variants that only
block movement forward; or only movement back. Read about
these

Concurrency Control

Third problem: other memory effects

It is possible (in some machine architectures) for thread A to
read the wrong value of x, even if there is no out-of order
execution

It could be that B writes x and then writes cont; and A reads
cont before reading x

But, due to caching (or other weirdness) it can be that B’s write
to cont reaches A before its write to x

So A reads the new value of cont but the old value of x, as its
view of x has not yet been updated

Concurrency Control

Third problem: other memory effects

It is possible (in some machine architectures) for thread A to
read the wrong value of x, even if there is no out-of order
execution

It could be that B writes x and then writes cont; and A reads
cont before reading x

But, due to caching (or other weirdness) it can be that B’s write
to cont reaches A before its write to x

So A reads the new value of cont but the old value of x, as its
view of x has not yet been updated

Concurrency Control

Third problem: other memory effects

It is possible (in some machine architectures) for thread A to
read the wrong value of x, even if there is no out-of order
execution

It could be that B writes x and then writes cont; and A reads
cont before reading x

But, due to caching (or other weirdness) it can be that B’s write
to cont reaches A before its write to x

So A reads the new value of cont but the old value of x, as its
view of x has not yet been updated

Concurrency Control

Third problem: other memory effects

It is possible (in some machine architectures) for thread A to
read the wrong value of x, even if there is no out-of order
execution

It could be that B writes x and then writes cont; and A reads
cont before reading x

But, due to caching (or other weirdness) it can be that B’s write
to cont reaches A before its write to x

So A reads the new value of cont but the old value of x, as its
view of x has not yet been updated

Concurrency Control

Third problem: other memory effects

It is possible (in some machine architectures) for thread A to
read the wrong value of x, even if there is no out-of order
execution

It could be that B writes x and then writes cont; and A reads
cont before reading x

But, due to caching (or other weirdness) it can be that B’s write
to cont reaches A before its write to x

So A reads the new value of cont but the old value of x, as its
view of x has not yet been updated

Concurrency Control
Memory Consistency

The specification for a parallel language needs a memory
model to describe how memory reads and writes are visible to
multiple processors

This involves the use of special language constructs and
special memory access operations to inform the compiler and
hardware about what kinds of reordering are allowable and
what kinds of memory consistency across processors are
needed

Concurrency Control
Memory Consistency

The specification for a parallel language needs a memory
model to describe how memory reads and writes are visible to
multiple processors

This involves the use of special language constructs and
special memory access operations to inform the compiler and
hardware about what kinds of reordering are allowable and
what kinds of memory consistency across processors are
needed

Concurrency Control
Memory Consistency

And this is the problem: languages like C (and C++, and Java,
and . . .) were conceived before memory models were
necessary

So they didn’t have them

Updates to the language standards are trying to retrofit
memory models, but sometimes it’s very difficult to fit new ideas
into an old language

Further, programmers need to be (re)trained to understand
these things

Concurrency Control
Memory Consistency

And this is the problem: languages like C (and C++, and Java,
and . . .) were conceived before memory models were
necessary

So they didn’t have them

Updates to the language standards are trying to retrofit
memory models, but sometimes it’s very difficult to fit new ideas
into an old language

Further, programmers need to be (re)trained to understand
these things

Concurrency Control
Memory Consistency

And this is the problem: languages like C (and C++, and Java,
and . . .) were conceived before memory models were
necessary

So they didn’t have them

Updates to the language standards are trying to retrofit
memory models, but sometimes it’s very difficult to fit new ideas
into an old language

Further, programmers need to be (re)trained to understand
these things

Concurrency Control
Memory Consistency

And this is the problem: languages like C (and C++, and Java,
and . . .) were conceived before memory models were
necessary

So they didn’t have them

Updates to the language standards are trying to retrofit
memory models, but sometimes it’s very difficult to fit new ideas
into an old language

Further, programmers need to be (re)trained to understand
these things

Concurrency Control
Memory Consistency

So, for example, the programmer may decide that some reads
or some writes may be reordered, while others should not

Generally, the programmer must understand the issues
involved and use the right constructs in the right places

Allowing just enough flexibility for the compiler/hardware to be
efficient, while still correct code

Thus allowing the system to reduce synchronisation and
increase parallelism

Concurrency Control
Memory Consistency

So, for example, the programmer may decide that some reads
or some writes may be reordered, while others should not

Generally, the programmer must understand the issues
involved and use the right constructs in the right places

Allowing just enough flexibility for the compiler/hardware to be
efficient, while still correct code

Thus allowing the system to reduce synchronisation and
increase parallelism

Concurrency Control
Memory Consistency

So, for example, the programmer may decide that some reads
or some writes may be reordered, while others should not

Generally, the programmer must understand the issues
involved and use the right constructs in the right places

Allowing just enough flexibility for the compiler/hardware to be
efficient, while still correct code

Thus allowing the system to reduce synchronisation and
increase parallelism

Concurrency Control
Memory Consistency

So, for example, the programmer may decide that some reads
or some writes may be reordered, while others should not

Generally, the programmer must understand the issues
involved and use the right constructs in the right places

Allowing just enough flexibility for the compiler/hardware to be
efficient, while still correct code

Thus allowing the system to reduce synchronisation and
increase parallelism

Concurrency Control
Memory Consistency

Fortunately for us, if we use primitives (locks, semaphores, and
so on) and higher-level constructs they will look after the details
for us

As long as we use them!

So: if you have a cross-thread relationship, use a parallelism
mechanism, don’t just wing it

Concurrency Control
Memory Consistency

Fortunately for us, if we use primitives (locks, semaphores, and
so on) and higher-level constructs they will look after the details
for us

As long as we use them!

So: if you have a cross-thread relationship, use a parallelism
mechanism, don’t just wing it

Concurrency Control
Memory Consistency

Fortunately for us, if we use primitives (locks, semaphores, and
so on) and higher-level constructs they will look after the details
for us

As long as we use them!

So: if you have a cross-thread relationship, use a parallelism
mechanism, don’t just wing it

Concurrency Control
Memory Consistency

Exercise Read about memory consistency. Including: memory
fences, strict consistency, strong consistency, causal
consistency, weak consistency, sequentially consistent,
acquire-release, relaxed, consume, etc.

Exercise Read about how modern C and C++ standards
address the memory consistency issue

Exercise Read about the difference between Java’s memory
model and C/C++’s model (and what volatile does in each)

Concurrency Control
Memory Consistency

Exercise Read about the difference between the Intel (x86)
memory model and the Arm memory model

Exercise And read about the memory problems that Apple’s
Arm M1 and later chips have in trying to support old x86 code
via an instruction translator (Rosetta)

Concurrency Control
Threads

So now you have the tools to hand: thread creation to run
things concurrently/in parallel, and primitives to control races

An important note on the cost of thread creation: they are not
free!

But, in a good OS implementation, they are relatively cheap

Depending on the operating system, it can take hundreds or
thousands of CPU instructions to create or destroy a thread

For the “hello” examples above it probably would not be worth
creating new threads, but be faster to run the printfs
sequentially

(But, remember, raw speed is not necessarily the target for
parallelism)

Concurrency Control
Threads

So now you have the tools to hand: thread creation to run
things concurrently/in parallel, and primitives to control races

An important note on the cost of thread creation: they are not
free!

But, in a good OS implementation, they are relatively cheap

Depending on the operating system, it can take hundreds or
thousands of CPU instructions to create or destroy a thread

For the “hello” examples above it probably would not be worth
creating new threads, but be faster to run the printfs
sequentially

(But, remember, raw speed is not necessarily the target for
parallelism)

Concurrency Control
Threads

So now you have the tools to hand: thread creation to run
things concurrently/in parallel, and primitives to control races

An important note on the cost of thread creation: they are not
free!

But, in a good OS implementation, they are relatively cheap

Depending on the operating system, it can take hundreds or
thousands of CPU instructions to create or destroy a thread

For the “hello” examples above it probably would not be worth
creating new threads, but be faster to run the printfs
sequentially

(But, remember, raw speed is not necessarily the target for
parallelism)

Concurrency Control
Threads

So now you have the tools to hand: thread creation to run
things concurrently/in parallel, and primitives to control races

An important note on the cost of thread creation: they are not
free!

But, in a good OS implementation, they are relatively cheap

Depending on the operating system, it can take hundreds or
thousands of CPU instructions to create or destroy a thread

For the “hello” examples above it probably would not be worth
creating new threads, but be faster to run the printfs
sequentially

(But, remember, raw speed is not necessarily the target for
parallelism)

Concurrency Control
Threads

So now you have the tools to hand: thread creation to run
things concurrently/in parallel, and primitives to control races

An important note on the cost of thread creation: they are not
free!

But, in a good OS implementation, they are relatively cheap

Depending on the operating system, it can take hundreds or
thousands of CPU instructions to create or destroy a thread

For the “hello” examples above it probably would not be worth
creating new threads, but be faster to run the printfs
sequentially

(But, remember, raw speed is not necessarily the target for
parallelism)

Concurrency Control
Threads

So now you have the tools to hand: thread creation to run
things concurrently/in parallel, and primitives to control races

An important note on the cost of thread creation: they are not
free!

But, in a good OS implementation, they are relatively cheap

Depending on the operating system, it can take hundreds or
thousands of CPU instructions to create or destroy a thread

For the “hello” examples above it probably would not be worth
creating new threads, but be faster to run the printfs
sequentially

(But, remember, raw speed is not necessarily the target for
parallelism)

Concurrency Control
Threads

A rough test on my PC indicates that the overhead of creating
and joining one thread is about the same amount of time as
doing 2000 floating point operations

Exercise That is for a particular OS and a particular CPU. Find
out how long it takes to create a thread on your computer and
OS

Concurrency Control
Threads

A rough test on my PC indicates that the overhead of creating
and joining one thread is about the same amount of time as
doing 2000 floating point operations

Exercise That is for a particular OS and a particular CPU. Find
out how long it takes to create a thread on your computer and
OS

Concurrency Control
Threads

You have to judge whether it is worthwhile paying the creation
overhead

And there is the additional cost of context switching between
threads when there are more threads than processors

The thread model of parallelism leads one to write programs
with large numbers of threads

Probably more than there are processors in the system,
particularly when you take into account the threads in the other
processes running in the system

Concurrency Control
Threads

You have to judge whether it is worthwhile paying the creation
overhead

And there is the additional cost of context switching between
threads when there are more threads than processors

The thread model of parallelism leads one to write programs
with large numbers of threads

Probably more than there are processors in the system,
particularly when you take into account the threads in the other
processes running in the system

Concurrency Control
Threads

You have to judge whether it is worthwhile paying the creation
overhead

And there is the additional cost of context switching between
threads when there are more threads than processors

The thread model of parallelism leads one to write programs
with large numbers of threads

Probably more than there are processors in the system,
particularly when you take into account the threads in the other
processes running in the system

Concurrency Control
Threads

You have to judge whether it is worthwhile paying the creation
overhead

And there is the additional cost of context switching between
threads when there are more threads than processors

The thread model of parallelism leads one to write programs
with large numbers of threads

Probably more than there are processors in the system,
particularly when you take into account the threads in the other
processes running in the system

Concurrency Control
Threads

This means that threads need to be scheduled, just like
processes

And this has a cost, just like processes

It is easy to make so many threads that the OS starts thrashing

You need to be careful about how many threads to create!

Typically, creating a (POSIX) thread when you need it, and then
destroying it when done is costly and not a good approach

The objective is to give a thread as much computation as
possible, perhaps repeated or multiple tasks

Concurrency Control
Threads

This means that threads need to be scheduled, just like
processes

And this has a cost, just like processes

It is easy to make so many threads that the OS starts thrashing

You need to be careful about how many threads to create!

Typically, creating a (POSIX) thread when you need it, and then
destroying it when done is costly and not a good approach

The objective is to give a thread as much computation as
possible, perhaps repeated or multiple tasks

Concurrency Control
Threads

This means that threads need to be scheduled, just like
processes

And this has a cost, just like processes

It is easy to make so many threads that the OS starts thrashing

You need to be careful about how many threads to create!

Typically, creating a (POSIX) thread when you need it, and then
destroying it when done is costly and not a good approach

The objective is to give a thread as much computation as
possible, perhaps repeated or multiple tasks

Concurrency Control
Threads

This means that threads need to be scheduled, just like
processes

And this has a cost, just like processes

It is easy to make so many threads that the OS starts thrashing

You need to be careful about how many threads to create!

Typically, creating a (POSIX) thread when you need it, and then
destroying it when done is costly and not a good approach

The objective is to give a thread as much computation as
possible, perhaps repeated or multiple tasks

Concurrency Control
Threads

This means that threads need to be scheduled, just like
processes

And this has a cost, just like processes

It is easy to make so many threads that the OS starts thrashing

You need to be careful about how many threads to create!

Typically, creating a (POSIX) thread when you need it, and then
destroying it when done is costly and not a good approach

The objective is to give a thread as much computation as
possible, perhaps repeated or multiple tasks

Concurrency Control
Threads

This means that threads need to be scheduled, just like
processes

And this has a cost, just like processes

It is easy to make so many threads that the OS starts thrashing

You need to be careful about how many threads to create!

Typically, creating a (POSIX) thread when you need it, and then
destroying it when done is costly and not a good approach

The objective is to give a thread as much computation as
possible, perhaps repeated or multiple tasks

Concurrency Control
Thread Pools

Trying to address the cost of thread creation and deletion leads
some people to the thread pool model of parallelism

Your program creates a pool of threads (not too many, not too
few!) once and reuses them multiple times

Each thread is given a task as is necessary; it does it and then
goes back for another task

Concurrency Control
Thread Pools

Trying to address the cost of thread creation and deletion leads
some people to the thread pool model of parallelism

Your program creates a pool of threads (not too many, not too
few!) once and reuses them multiple times

Each thread is given a task as is necessary; it does it and then
goes back for another task

Concurrency Control
Thread Pools

Trying to address the cost of thread creation and deletion leads
some people to the thread pool model of parallelism

Your program creates a pool of threads (not too many, not too
few!) once and reuses them multiple times

Each thread is given a task as is necessary; it does it and then
goes back for another task

Concurrency Control
Thread Pools

You pay the cost of creation just once at the start (and
destruction just once at the end), rather than once per thread
use

Though there is a cost in the pool task management
mechanisms

But these threads have a long life, and do many things

Concurrency Control
Thread Pools

You pay the cost of creation just once at the start (and
destruction just once at the end), rather than once per thread
use

Though there is a cost in the pool task management
mechanisms

But these threads have a long life, and do many things

Concurrency Control
Thread Pools

You pay the cost of creation just once at the start (and
destruction just once at the end), rather than once per thread
use

Though there is a cost in the pool task management
mechanisms

But these threads have a long life, and do many things

Concurrency Control
Thread Pools

Apple’s Grand Central Dispatch (GCD) does thread pooling at a
higher level: system-wide

The OS manages threads across all processes running, not
just within each process

More on GCD later (in particular, its costs), but note this is in
contrast to the model of each program creating and destroying
threads as it needs them, as we were doing previously

Concurrency Control
Thread Pools

Apple’s Grand Central Dispatch (GCD) does thread pooling at a
higher level: system-wide

The OS manages threads across all processes running, not
just within each process

More on GCD later (in particular, its costs), but note this is in
contrast to the model of each program creating and destroying
threads as it needs them, as we were doing previously

Concurrency Control
Thread Pools

Apple’s Grand Central Dispatch (GCD) does thread pooling at a
higher level: system-wide

The OS manages threads across all processes running, not
just within each process

More on GCD later (in particular, its costs), but note this is in
contrast to the model of each program creating and destroying
threads as it needs them, as we were doing previously

Concurrency Control
POSIX

As mentioned previously, POSIX pthreads are a very popular
library-based mechanism to support parallelism (actually:
concurrency)

We have just scratched the surface of POSIX

There are lots of other functions described by the POSIX
standard: try
man -k pthread
and
man 7 pthreads
on Linux for an overview

Concurrency Control
POSIX

As mentioned previously, POSIX pthreads are a very popular
library-based mechanism to support parallelism (actually:
concurrency)

We have just scratched the surface of POSIX

There are lots of other functions described by the POSIX
standard: try
man -k pthread
and
man 7 pthreads
on Linux for an overview

Concurrency Control
POSIX

As mentioned previously, POSIX pthreads are a very popular
library-based mechanism to support parallelism (actually:
concurrency)

We have just scratched the surface of POSIX

There are lots of other functions described by the POSIX
standard: try
man -k pthread
and
man 7 pthreads
on Linux for an overview

Concurrency Control
Non-POSIX

Windows has something similar to POSIX threads: different
names for the functions, but similar enough to be confusing

They do provide an implementation of POSIX threads, but MS
would rather you use their own thread library: MS are not
interested in portability across OSs

Apple macOS, like Linux, has good POSIX coverage

Concurrency Control
Non-POSIX

Windows has something similar to POSIX threads: different
names for the functions, but similar enough to be confusing

They do provide an implementation of POSIX threads, but MS
would rather you use their own thread library: MS are not
interested in portability across OSs

Apple macOS, like Linux, has good POSIX coverage

Concurrency Control
Non-POSIX

Windows has something similar to POSIX threads: different
names for the functions, but similar enough to be confusing

They do provide an implementation of POSIX threads, but MS
would rather you use their own thread library: MS are not
interested in portability across OSs

Apple macOS, like Linux, has good POSIX coverage

Concurrency Control
Other Threads

It is worthwhile mentioning that there are many other kinds of
threads, mostly invented to try to overcome the costs of
(a) thread creation/deletion and (b) context switching between
threads

They have names like fibres, coroutines, protothreads,
microthreads, light-weight processes and so on

Concurrency Control
Other Threads

It is worthwhile mentioning that there are many other kinds of
threads, mostly invented to try to overcome the costs of
(a) thread creation/deletion and (b) context switching between
threads

They have names like fibres, coroutines, protothreads,
microthreads, light-weight processes and so on

Concurrency Control
Other Threads

For example, some languages, e.g., Go (“goroutines”) and
Erlang (“processes”), have very lightweight threads as part of
the language

These are scheduled by the language runtime across system
threads

They are very cheap to create, and allow thousands or millions
of “threads” to be active

They encourage the use of massive threading at the cost of
overhead from a more complicated language runtime

More discussion of Go and Erlang later

Concurrency Control
Other Threads

For example, some languages, e.g., Go (“goroutines”) and
Erlang (“processes”), have very lightweight threads as part of
the language

These are scheduled by the language runtime across system
threads

They are very cheap to create, and allow thousands or millions
of “threads” to be active

They encourage the use of massive threading at the cost of
overhead from a more complicated language runtime

More discussion of Go and Erlang later

Concurrency Control
Other Threads

For example, some languages, e.g., Go (“goroutines”) and
Erlang (“processes”), have very lightweight threads as part of
the language

These are scheduled by the language runtime across system
threads

They are very cheap to create, and allow thousands or millions
of “threads” to be active

They encourage the use of massive threading at the cost of
overhead from a more complicated language runtime

More discussion of Go and Erlang later

Concurrency Control
Other Threads

For example, some languages, e.g., Go (“goroutines”) and
Erlang (“processes”), have very lightweight threads as part of
the language

These are scheduled by the language runtime across system
threads

They are very cheap to create, and allow thousands or millions
of “threads” to be active

They encourage the use of massive threading at the cost of
overhead from a more complicated language runtime

More discussion of Go and Erlang later

Concurrency Control
Other Threads

For example, some languages, e.g., Go (“goroutines”) and
Erlang (“processes”), have very lightweight threads as part of
the language

These are scheduled by the language runtime across system
threads

They are very cheap to create, and allow thousands or millions
of “threads” to be active

They encourage the use of massive threading at the cost of
overhead from a more complicated language runtime

More discussion of Go and Erlang later

More Libraries

We were discussing library-based parallelism

Taking a sequential language and using a parallel library

But this has the dangers of the sequential language not
understanding parallelism and mis-optimising

But library-based parallelism is very popular: particularly if we
avoid shared memory

More Libraries

We were discussing library-based parallelism

Taking a sequential language and using a parallel library

But this has the dangers of the sequential language not
understanding parallelism and mis-optimising

But library-based parallelism is very popular: particularly if we
avoid shared memory

More Libraries

We were discussing library-based parallelism

Taking a sequential language and using a parallel library

But this has the dangers of the sequential language not
understanding parallelism and mis-optimising

But library-based parallelism is very popular: particularly if we
avoid shared memory

More Libraries

We were discussing library-based parallelism

Taking a sequential language and using a parallel library

But this has the dangers of the sequential language not
understanding parallelism and mis-optimising

But library-based parallelism is very popular: particularly if we
avoid shared memory

More Libraries

Another important library-based solution is the Message
Passing Interface (MPI) and we shall look at this later when we
talk about distributed memory systems

We shall just note here that MPI is an example of one
library-based technique that is quite popular: write code that is
sequential, or modestly parallel, but call library functions that do
what we want to achieve that are parallel—and written by
somebody else

Another example, the Basic Linear Algebra Subprograms
(BLAS)

More Libraries

Another important library-based solution is the Message
Passing Interface (MPI) and we shall look at this later when we
talk about distributed memory systems

We shall just note here that MPI is an example of one
library-based technique that is quite popular: write code that is
sequential, or modestly parallel, but call library functions that do
what we want to achieve that are parallel—and written by
somebody else

Another example, the Basic Linear Algebra Subprograms
(BLAS)

More Libraries

Another important library-based solution is the Message
Passing Interface (MPI) and we shall look at this later when we
talk about distributed memory systems

We shall just note here that MPI is an example of one
library-based technique that is quite popular: write code that is
sequential, or modestly parallel, but call library functions that do
what we want to achieve that are parallel—and written by
somebody else

Another example, the Basic Linear Algebra Subprograms
(BLAS)

More Libraries

The BLAS are a (standard for a) collection of functions that
implement various algorithms in linear algebra: vector sums;
matrix multiplication; vector dot products; etc. for various
representations of these datatypes

Implementations are written by people who really understand
what they are doing in terms of making the best use of
hardware: in particular parallel hardware

If you write your application to use the BLAS your code will be
using this expertise

If someone comes out with an improved implementation of the
BLAS that goes twice as fast, your code will automatically go
twice as fast (in the BLAS bit)

More Libraries

The BLAS are a (standard for a) collection of functions that
implement various algorithms in linear algebra: vector sums;
matrix multiplication; vector dot products; etc. for various
representations of these datatypes

Implementations are written by people who really understand
what they are doing in terms of making the best use of
hardware: in particular parallel hardware

If you write your application to use the BLAS your code will be
using this expertise

If someone comes out with an improved implementation of the
BLAS that goes twice as fast, your code will automatically go
twice as fast (in the BLAS bit)

More Libraries

The BLAS are a (standard for a) collection of functions that
implement various algorithms in linear algebra: vector sums;
matrix multiplication; vector dot products; etc. for various
representations of these datatypes

Implementations are written by people who really understand
what they are doing in terms of making the best use of
hardware: in particular parallel hardware

If you write your application to use the BLAS your code will be
using this expertise

If someone comes out with an improved implementation of the
BLAS that goes twice as fast, your code will automatically go
twice as fast (in the BLAS bit)

More Libraries

The BLAS are a (standard for a) collection of functions that
implement various algorithms in linear algebra: vector sums;
matrix multiplication; vector dot products; etc. for various
representations of these datatypes

Implementations are written by people who really understand
what they are doing in terms of making the best use of
hardware: in particular parallel hardware

If you write your application to use the BLAS your code will be
using this expertise

If someone comes out with an improved implementation of the
BLAS that goes twice as fast, your code will automatically go
twice as fast (in the BLAS bit)

More Libraries

They really can be a factor of two difference on the same
hardware

BLAS libraries are typically tuned to the version of the
processor in your machine, taking into account cache sizes;
memory speeds and so on

The GotoBLAS, written by Goto, are recognised as being
particularly good

His implementation contains chunks of processor-specific
assembler and pays particular attention to the sizes of blocks of
data, matching them carefully to cache sizes

More Libraries

They really can be a factor of two difference on the same
hardware

BLAS libraries are typically tuned to the version of the
processor in your machine, taking into account cache sizes;
memory speeds and so on

The GotoBLAS, written by Goto, are recognised as being
particularly good

His implementation contains chunks of processor-specific
assembler and pays particular attention to the sizes of blocks of
data, matching them carefully to cache sizes

More Libraries

They really can be a factor of two difference on the same
hardware

BLAS libraries are typically tuned to the version of the
processor in your machine, taking into account cache sizes;
memory speeds and so on

The GotoBLAS, written by Goto, are recognised as being
particularly good

His implementation contains chunks of processor-specific
assembler and pays particular attention to the sizes of blocks of
data, matching them carefully to cache sizes

More Libraries

They really can be a factor of two difference on the same
hardware

BLAS libraries are typically tuned to the version of the
processor in your machine, taking into account cache sizes;
memory speeds and so on

The GotoBLAS, written by Goto, are recognised as being
particularly good

His implementation contains chunks of processor-specific
assembler and pays particular attention to the sizes of blocks of
data, matching them carefully to cache sizes

More Libraries

Many other libraries exist: for example, the template approach

This is a standard header file with a library of code behind it that
introduces a bunch of new classes to aid parallel computation

For example, C++ AMP (Accelerated Massive Parallelism) from
Microsoft defines some parallel container types with methods
that act concurrently on them

E.g., concurrency::parallel for each(...)

The details are hidden from the programmer, who gets a fairly
simple API to work with

More Libraries

Many other libraries exist: for example, the template approach

This is a standard header file with a library of code behind it that
introduces a bunch of new classes to aid parallel computation

For example, C++ AMP (Accelerated Massive Parallelism) from
Microsoft defines some parallel container types with methods
that act concurrently on them

E.g., concurrency::parallel for each(...)

The details are hidden from the programmer, who gets a fairly
simple API to work with

More Libraries

Many other libraries exist: for example, the template approach

This is a standard header file with a library of code behind it that
introduces a bunch of new classes to aid parallel computation

For example, C++ AMP (Accelerated Massive Parallelism) from
Microsoft defines some parallel container types with methods
that act concurrently on them

E.g., concurrency::parallel for each(...)

The details are hidden from the programmer, who gets a fairly
simple API to work with

More Libraries

Many other libraries exist: for example, the template approach

This is a standard header file with a library of code behind it that
introduces a bunch of new classes to aid parallel computation

For example, C++ AMP (Accelerated Massive Parallelism) from
Microsoft defines some parallel container types with methods
that act concurrently on them

E.g., concurrency::parallel for each(...)

The details are hidden from the programmer, who gets a fairly
simple API to work with

More Libraries

Many other libraries exist: for example, the template approach

This is a standard header file with a library of code behind it that
introduces a bunch of new classes to aid parallel computation

For example, C++ AMP (Accelerated Massive Parallelism) from
Microsoft defines some parallel container types with methods
that act concurrently on them

E.g., concurrency::parallel for each(...)

The details are hidden from the programmer, who gets a fairly
simple API to work with

More Libraries

There are many other template libraries for C++ (a language
very suited to this approach):

• Parallel Patterns Library (PPL) from Microsoft
• Thrust from Nividia
• Intel Threading Building Blocks (TBB)
• Boost
• Etc.

But you do need to be careful using them: they do make writing
parallel code simpler, but they don’t necessarily prevent you
from using them incorrectly!

