
OpenMP

There are several useful functions

• int omp get num threads(void) returns the number of
threads in this parallel region

• int omp get thread num(void) returns a per-thread
unique number

• int omp get max threads(void) the maximum number
of threads available (often defaults to the number of cores)

• void omp set num threads(int) set the number of
threads OpenMP can use

• int omp get num procs(void) number of processors in
this system

OpenMP

There are several useful functions

• int omp get num threads(void) returns the number of
threads in this parallel region

• int omp get thread num(void) returns a per-thread
unique number

• int omp get max threads(void) the maximum number
of threads available (often defaults to the number of cores)

• void omp set num threads(int) set the number of
threads OpenMP can use

• int omp get num procs(void) number of processors in
this system

OpenMP

There are several useful functions

• int omp get num threads(void) returns the number of
threads in this parallel region

• int omp get thread num(void) returns a per-thread
unique number

• int omp get max threads(void) the maximum number
of threads available (often defaults to the number of cores)

• void omp set num threads(int) set the number of
threads OpenMP can use

• int omp get num procs(void) number of processors in
this system

OpenMP

There are several useful functions

• int omp get num threads(void) returns the number of
threads in this parallel region

• int omp get thread num(void) returns a per-thread
unique number

• int omp get max threads(void) the maximum number
of threads available (often defaults to the number of cores)

• void omp set num threads(int) set the number of
threads OpenMP can use

• int omp get num procs(void) number of processors in
this system

OpenMP

There are several useful functions

• int omp get num threads(void) returns the number of
threads in this parallel region

• int omp get thread num(void) returns a per-thread
unique number

• int omp get max threads(void) the maximum number
of threads available (often defaults to the number of cores)

• void omp set num threads(int) set the number of
threads OpenMP can use

• int omp get num procs(void) number of processors in
this system

OpenMP

There are several useful functions

• int omp get num threads(void) returns the number of
threads in this parallel region

• int omp get thread num(void) returns a per-thread
unique number

• int omp get max threads(void) the maximum number
of threads available (often defaults to the number of cores)

• void omp set num threads(int) set the number of
threads OpenMP can use

• int omp get num procs(void) number of processors in
this system

OpenMP

And lots more functionality

For example, setting the environment variable
OMP NUM THREADS before running the program sets the default
number of threads

OMP NUM THREADS=7 ./prog

OpenMP is widely supported. For example, to compile under
GCC:
cc -fopenmp -Wall -o prog prog.c

OpenMP

And lots more functionality

For example, setting the environment variable
OMP NUM THREADS before running the program sets the default
number of threads

OMP NUM THREADS=7 ./prog

OpenMP is widely supported. For example, to compile under
GCC:
cc -fopenmp -Wall -o prog prog.c

OpenMP

And lots more functionality

For example, setting the environment variable
OMP NUM THREADS before running the program sets the default
number of threads

OMP NUM THREADS=7 ./prog

OpenMP is widely supported. For example, to compile under
GCC:
cc -fopenmp -Wall -o prog prog.c

OpenMP

And lots more functionality

For example, setting the environment variable
OMP NUM THREADS before running the program sets the default
number of threads

OMP NUM THREADS=7 ./prog

OpenMP is widely supported. For example, to compile under
GCC:
cc -fopenmp -Wall -o prog prog.c

OpenMP

OpenMP is clearly naturally associated with shared memory

There is a distributed memory version from Intel, called Cluster
OpenMP

There is an undercurrent of “if your program doesn’t work well
on normal OpenMP, then it won’t work well on Cluster OpenMP”

OpenMP

OpenMP is clearly naturally associated with shared memory

There is a distributed memory version from Intel, called Cluster
OpenMP

There is an undercurrent of “if your program doesn’t work well
on normal OpenMP, then it won’t work well on Cluster OpenMP”

OpenMP

OpenMP is clearly naturally associated with shared memory

There is a distributed memory version from Intel, called Cluster
OpenMP

There is an undercurrent of “if your program doesn’t work well
on normal OpenMP, then it won’t work well on Cluster OpenMP”

OpenMP

OpenMP

• is an evolving standard
• is easy to use; you can modify existing programs

incrementally
• hides messy threads fiddling
• needs compiler support, unlike pthreads (but is supported

by the mainstream compilers, in particular GCC, Clang and
MSVC)

• is dependent on good implementation of the compiler: if
you pass control of the parallelism to a compiler you need
that compiler to be good at it

• is very large and complicated in scope
• still allows trivially buggy programs

OpenMP

OpenMP

• is an evolving standard

• is easy to use; you can modify existing programs
incrementally

• hides messy threads fiddling
• needs compiler support, unlike pthreads (but is supported

by the mainstream compilers, in particular GCC, Clang and
MSVC)

• is dependent on good implementation of the compiler: if
you pass control of the parallelism to a compiler you need
that compiler to be good at it

• is very large and complicated in scope
• still allows trivially buggy programs

OpenMP

OpenMP

• is an evolving standard
• is easy to use; you can modify existing programs

incrementally

• hides messy threads fiddling
• needs compiler support, unlike pthreads (but is supported

by the mainstream compilers, in particular GCC, Clang and
MSVC)

• is dependent on good implementation of the compiler: if
you pass control of the parallelism to a compiler you need
that compiler to be good at it

• is very large and complicated in scope
• still allows trivially buggy programs

OpenMP

OpenMP

• is an evolving standard
• is easy to use; you can modify existing programs

incrementally
• hides messy threads fiddling

• needs compiler support, unlike pthreads (but is supported
by the mainstream compilers, in particular GCC, Clang and
MSVC)

• is dependent on good implementation of the compiler: if
you pass control of the parallelism to a compiler you need
that compiler to be good at it

• is very large and complicated in scope
• still allows trivially buggy programs

OpenMP

OpenMP

• is an evolving standard
• is easy to use; you can modify existing programs

incrementally
• hides messy threads fiddling
• needs compiler support, unlike pthreads (but is supported

by the mainstream compilers, in particular GCC, Clang and
MSVC)

• is dependent on good implementation of the compiler: if
you pass control of the parallelism to a compiler you need
that compiler to be good at it

• is very large and complicated in scope
• still allows trivially buggy programs

OpenMP

OpenMP

• is an evolving standard
• is easy to use; you can modify existing programs

incrementally
• hides messy threads fiddling
• needs compiler support, unlike pthreads (but is supported

by the mainstream compilers, in particular GCC, Clang and
MSVC)

• is dependent on good implementation of the compiler: if
you pass control of the parallelism to a compiler you need
that compiler to be good at it

• is very large and complicated in scope
• still allows trivially buggy programs

OpenMP

OpenMP

• is an evolving standard
• is easy to use; you can modify existing programs

incrementally
• hides messy threads fiddling
• needs compiler support, unlike pthreads (but is supported

by the mainstream compilers, in particular GCC, Clang and
MSVC)

• is dependent on good implementation of the compiler: if
you pass control of the parallelism to a compiler you need
that compiler to be good at it

• is very large and complicated in scope

• still allows trivially buggy programs

OpenMP

OpenMP

• is an evolving standard
• is easy to use; you can modify existing programs

incrementally
• hides messy threads fiddling
• needs compiler support, unlike pthreads (but is supported

by the mainstream compilers, in particular GCC, Clang and
MSVC)

• is dependent on good implementation of the compiler: if
you pass control of the parallelism to a compiler you need
that compiler to be good at it

• is very large and complicated in scope
• still allows trivially buggy programs

OpenMP

Exercise Would the coursework be easier using OpenMP?

Cilk Plus

Of course, OpenMP is not the only way of tweaking C

Cilk Plus is somewhat similar in that it adds annotations and is
based on fork and join

But as new keywords in C, not as pragmas (mostly)

Cilk Plus is intended as an extension to C++, but works for C,
too

You may come across other versions named “Cilk” and “Cilk++”

We may have time to talk about Cilk later

Cilk Plus

Of course, OpenMP is not the only way of tweaking C

Cilk Plus is somewhat similar in that it adds annotations and is
based on fork and join

But as new keywords in C, not as pragmas (mostly)

Cilk Plus is intended as an extension to C++, but works for C,
too

You may come across other versions named “Cilk” and “Cilk++”

We may have time to talk about Cilk later

Cilk Plus

Of course, OpenMP is not the only way of tweaking C

Cilk Plus is somewhat similar in that it adds annotations and is
based on fork and join

But as new keywords in C, not as pragmas (mostly)

Cilk Plus is intended as an extension to C++, but works for C,
too

You may come across other versions named “Cilk” and “Cilk++”

We may have time to talk about Cilk later

Cilk Plus

Of course, OpenMP is not the only way of tweaking C

Cilk Plus is somewhat similar in that it adds annotations and is
based on fork and join

But as new keywords in C, not as pragmas (mostly)

Cilk Plus is intended as an extension to C++, but works for C,
too

You may come across other versions named “Cilk” and “Cilk++”

We may have time to talk about Cilk later

Cilk Plus

Of course, OpenMP is not the only way of tweaking C

Cilk Plus is somewhat similar in that it adds annotations and is
based on fork and join

But as new keywords in C, not as pragmas (mostly)

Cilk Plus is intended as an extension to C++, but works for C,
too

You may come across other versions named “Cilk” and “Cilk++”

We may have time to talk about Cilk later

Cilk Plus

Of course, OpenMP is not the only way of tweaking C

Cilk Plus is somewhat similar in that it adds annotations and is
based on fork and join

But as new keywords in C, not as pragmas (mostly)

Cilk Plus is intended as an extension to C++, but works for C,
too

You may come across other versions named “Cilk” and “Cilk++”

We may have time to talk about Cilk later

Shared Memory

This concludes our discussion of the shared memory world

For now

Shared Memory

This concludes our discussion of the shared memory world

For now

Distributed Memory

We now turn to distributed memory programming

We could use interfaces like threads or OpenMP and have an
underlying or virtualising infrastructure that converts them to
message passing between processors over a network

Good programmers don’t like that as it hides the source of the
cost of distributed parallelism from the programmer, making it
harder to design and write efficient programs

So most distributed programs are explicitly message passing,
or have some other way of making the cost of an operation
more clear

Distributed Memory

We now turn to distributed memory programming

We could use interfaces like threads or OpenMP and have an
underlying or virtualising infrastructure that converts them to
message passing between processors over a network

Good programmers don’t like that as it hides the source of the
cost of distributed parallelism from the programmer, making it
harder to design and write efficient programs

So most distributed programs are explicitly message passing,
or have some other way of making the cost of an operation
more clear

Distributed Memory

We now turn to distributed memory programming

We could use interfaces like threads or OpenMP and have an
underlying or virtualising infrastructure that converts them to
message passing between processors over a network

Good programmers don’t like that as it hides the source of the
cost of distributed parallelism from the programmer, making it
harder to design and write efficient programs

So most distributed programs are explicitly message passing,
or have some other way of making the cost of an operation
more clear

Distributed Memory

We now turn to distributed memory programming

We could use interfaces like threads or OpenMP and have an
underlying or virtualising infrastructure that converts them to
message passing between processors over a network

Good programmers don’t like that as it hides the source of the
cost of distributed parallelism from the programmer, making it
harder to design and write efficient programs

So most distributed programs are explicitly message passing,
or have some other way of making the cost of an operation
more clear

Distributed Memory

The big player in this field is Message Passing Interface (MPI)

You may hear about

• PVM: Parallel Virtual Machine, a predecessor to MPI
• SHMEM: SHared MEMory, only on Cray (SGI) machines
• UPC: Unified Parallel C, a supposed successor to MPI

Distributed Memory

The big player in this field is Message Passing Interface (MPI)

You may hear about

• PVM: Parallel Virtual Machine, a predecessor to MPI
• SHMEM: SHared MEMory, only on Cray (SGI) machines
• UPC: Unified Parallel C, a supposed successor to MPI

MPI

MPI is what Big Science uses, when terabytes of data
crunching is needed

And remember distributed systems are not good for small
programs due to the overhead of the messaging outweighing
the parallelism gained

MPI runs the same program on multiple processors (SPMD),
but definitely not in lockstep

The processes communicate via messages

MPI

MPI is what Big Science uses, when terabytes of data
crunching is needed

And remember distributed systems are not good for small
programs due to the overhead of the messaging outweighing
the parallelism gained

MPI runs the same program on multiple processors (SPMD),
but definitely not in lockstep

The processes communicate via messages

MPI

MPI is what Big Science uses, when terabytes of data
crunching is needed

And remember distributed systems are not good for small
programs due to the overhead of the messaging outweighing
the parallelism gained

MPI runs the same program on multiple processors (SPMD),
but definitely not in lockstep

The processes communicate via messages

MPI

MPI is what Big Science uses, when terabytes of data
crunching is needed

And remember distributed systems are not good for small
programs due to the overhead of the messaging outweighing
the parallelism gained

MPI runs the same program on multiple processors (SPMD),
but definitely not in lockstep

The processes communicate via messages

MPI

MPI is “simply” a library of functions to do messaging; you can
use it with normal (unmodified) C, Fortran, etc.

Even Java, Python and other languages less suited to high
performance systems

MPI is actually a standard with several competing
implementations

Code written to the standard should run on any implementation

But frequently doesn’t

The MPI standard specifies a huge number of functions,
covering a wide range of different types of messaging

MPI

MPI is “simply” a library of functions to do messaging; you can
use it with normal (unmodified) C, Fortran, etc.

Even Java, Python and other languages less suited to high
performance systems

MPI is actually a standard with several competing
implementations

Code written to the standard should run on any implementation

But frequently doesn’t

The MPI standard specifies a huge number of functions,
covering a wide range of different types of messaging

MPI

MPI is “simply” a library of functions to do messaging; you can
use it with normal (unmodified) C, Fortran, etc.

Even Java, Python and other languages less suited to high
performance systems

MPI is actually a standard with several competing
implementations

Code written to the standard should run on any implementation

But frequently doesn’t

The MPI standard specifies a huge number of functions,
covering a wide range of different types of messaging

MPI

MPI is “simply” a library of functions to do messaging; you can
use it with normal (unmodified) C, Fortran, etc.

Even Java, Python and other languages less suited to high
performance systems

MPI is actually a standard with several competing
implementations

Code written to the standard should run on any implementation

But frequently doesn’t

The MPI standard specifies a huge number of functions,
covering a wide range of different types of messaging

MPI

MPI is “simply” a library of functions to do messaging; you can
use it with normal (unmodified) C, Fortran, etc.

Even Java, Python and other languages less suited to high
performance systems

MPI is actually a standard with several competing
implementations

Code written to the standard should run on any implementation

But frequently doesn’t

The MPI standard specifies a huge number of functions,
covering a wide range of different types of messaging

MPI

MPI is “simply” a library of functions to do messaging; you can
use it with normal (unmodified) C, Fortran, etc.

Even Java, Python and other languages less suited to high
performance systems

MPI is actually a standard with several competing
implementations

Code written to the standard should run on any implementation

But frequently doesn’t

The MPI standard specifies a huge number of functions,
covering a wide range of different types of messaging

MPI

#include <stdio.h>

#include <mpi.h>

int main(int argc, char **argv)

{

int rc, myrank, nproc, namelen;

char name[MPI_MAX_PROCESSOR_NAME];

rc = MPI_Init(&argc, &argv);

if (rc != MPI_SUCCESS) {

printf ("Error starting MPI program\n");

MPI_Abort(MPI_COMM_WORLD, rc);

}

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

MPI_Comm_size(MPI_COMM_WORLD, &nproc);

continued

MPI

if (myrank == 0) {

printf("main reports %d procs\n", nproc);

}

namelen = MPI_MAX_PROCESSOR_NAME;

MPI_Get_processor_name(name, &namelen);

printf("hello world %d from ’%s’\n", myrank, name);

MPI_Finalize();

return 0;

}

MPI

Notes:

• MPI Init(&argc, &argv); Set up the system: you must
always do this. A batch processing system (e.g., SLURM)
starts the processes on all the processors, while MPI Init
sets up the connections between them

• Later versions of MPI allow MPI Init(NULL, NULL) but
the above is preferable as it provides more information to
the MPI system

• rc Always check to make sure it worked
• MPI COMM WORLD The system can be sub-divided into

subsets of processors called communicators. The WORLD
communicator is all processors; MPI COMM SELF refers to
just the calling processor

MPI

Notes:

• MPI Init(&argc, &argv); Set up the system: you must
always do this. A batch processing system (e.g., SLURM)
starts the processes on all the processors, while MPI Init
sets up the connections between them

• Later versions of MPI allow MPI Init(NULL, NULL) but
the above is preferable as it provides more information to
the MPI system

• rc Always check to make sure it worked
• MPI COMM WORLD The system can be sub-divided into

subsets of processors called communicators. The WORLD
communicator is all processors; MPI COMM SELF refers to
just the calling processor

MPI

Notes:

• MPI Init(&argc, &argv); Set up the system: you must
always do this. A batch processing system (e.g., SLURM)
starts the processes on all the processors, while MPI Init
sets up the connections between them

• Later versions of MPI allow MPI Init(NULL, NULL) but
the above is preferable as it provides more information to
the MPI system

• rc Always check to make sure it worked
• MPI COMM WORLD The system can be sub-divided into

subsets of processors called communicators. The WORLD
communicator is all processors; MPI COMM SELF refers to
just the calling processor

MPI

Notes:

• MPI Init(&argc, &argv); Set up the system: you must
always do this. A batch processing system (e.g., SLURM)
starts the processes on all the processors, while MPI Init
sets up the connections between them

• Later versions of MPI allow MPI Init(NULL, NULL) but
the above is preferable as it provides more information to
the MPI system

• rc Always check to make sure it worked

• MPI COMM WORLD The system can be sub-divided into
subsets of processors called communicators. The WORLD
communicator is all processors; MPI COMM SELF refers to
just the calling processor

MPI

Notes:

• MPI Init(&argc, &argv); Set up the system: you must
always do this. A batch processing system (e.g., SLURM)
starts the processes on all the processors, while MPI Init
sets up the connections between them

• Later versions of MPI allow MPI Init(NULL, NULL) but
the above is preferable as it provides more information to
the MPI system

• rc Always check to make sure it worked
• MPI COMM WORLD The system can be sub-divided into

subsets of processors called communicators. The WORLD
communicator is all processors; MPI COMM SELF refers to
just the calling processor

MPI

• MPI Comm rank Each process in a communicator has a
unique rank within that communicator: this is just an
integer from 0 to size of the communicator −1. So, for
WORLD the rank ranges from 0 to total number of
processors −1

• MPI Comm size Get the size of the communicator
• if (myrank == 0) All processors run the same code

(SPMD). This is how we get different things happening on
different processors

• MPI Finalize All procs must always call this to tidy up
their MPI state

MPI

• MPI Comm rank Each process in a communicator has a
unique rank within that communicator: this is just an
integer from 0 to size of the communicator −1. So, for
WORLD the rank ranges from 0 to total number of
processors −1

• MPI Comm size Get the size of the communicator

• if (myrank == 0) All processors run the same code
(SPMD). This is how we get different things happening on
different processors

• MPI Finalize All procs must always call this to tidy up
their MPI state

MPI

• MPI Comm rank Each process in a communicator has a
unique rank within that communicator: this is just an
integer from 0 to size of the communicator −1. So, for
WORLD the rank ranges from 0 to total number of
processors −1

• MPI Comm size Get the size of the communicator
• if (myrank == 0) All processors run the same code

(SPMD). This is how we get different things happening on
different processors

• MPI Finalize All procs must always call this to tidy up
their MPI state

MPI

• MPI Comm rank Each process in a communicator has a
unique rank within that communicator: this is just an
integer from 0 to size of the communicator −1. So, for
WORLD the rank ranges from 0 to total number of
processors −1

• MPI Comm size Get the size of the communicator
• if (myrank == 0) All processors run the same code

(SPMD). This is how we get different things happening on
different processors

• MPI Finalize All procs must always call this to tidy up
their MPI state

MPI

Compile using mpicc:

mpicc -Wall -o hellompi hellompi.c

MPI

Batch file runnit.slm:

#!/bin/sh

#SBATCH --account=cm30225

#SBATCH --partition=teaching

#SBATCH --job-name=HelloMPI

#SBATCH --nodes=2

#SBATCH --ntasks-per-node=8

mpirun ./hellompi

MPI

The lines of note here are:

• --nodes=2 we want two nodes
• --ntasks-per-node=8 we will be using just 8 of the 44

cores on each node

MPI

The lines of note here are:

• --nodes=2 we want two nodes

• --ntasks-per-node=8 we will be using just 8 of the 44
cores on each node

MPI

The lines of note here are:

• --nodes=2 we want two nodes
• --ntasks-per-node=8 we will be using just 8 of the 44

cores on each node

Recall we had:

if (myrank == 0) {

printf("main reports %d procs\n", nproc);

}

namelen = MPI_MAX_PROCESSOR_NAME;

MPI_Get_processor_name(name, &namelen);

printf("hello world %d from ’%s’\n", myrank, name);

MPI
Output:

hello world 3 from ’ip-AC125409’

hello world 5 from ’ip-AC125409’

hello world 4 from ’ip-AC125409’

hello world 11 from ’ip-AC125408’

hello world 6 from ’ip-AC125409’

hello world 9 from ’ip-AC125408’

hello world 1 from ’ip-AC125409’

hello world 15 from ’ip-AC125408’

hello world 7 from ’ip-AC125409’

hello world 12 from ’ip-AC125408’

hello world 2 from ’ip-AC125409’

hello world 10 from ’ip-AC125408’

main reports 16 procs

hello world 0 from ’ip-AC125409’

hello world 14 from ’ip-AC125408’

hello world 13 from ’ip-AC125408’

hello world 8 from ’ip-AC125408’

MPI

Notes:

• ip-AC125408 and ip-AC125409 are the names of the two
nodes that happened to be allocated; the next run may well
get different nodes

• Processes 0–8 are on ip-AC125409 while processes 9-15
are on ip-AC125408, but it might happen the other way
around

• ntasks-per-node is important here as sometimes you
want fewer MPI tasks on a node than there are cores on
that node: an MPI task can itself be multithreaded (not
your coursework!)

MPI

Notes:

• ip-AC125408 and ip-AC125409 are the names of the two
nodes that happened to be allocated; the next run may well
get different nodes

• Processes 0–8 are on ip-AC125409 while processes 9-15
are on ip-AC125408, but it might happen the other way
around

• ntasks-per-node is important here as sometimes you
want fewer MPI tasks on a node than there are cores on
that node: an MPI task can itself be multithreaded (not
your coursework!)

MPI

Notes:

• ip-AC125408 and ip-AC125409 are the names of the two
nodes that happened to be allocated; the next run may well
get different nodes

• Processes 0–8 are on ip-AC125409 while processes 9-15
are on ip-AC125408, but it might happen the other way
around

• ntasks-per-node is important here as sometimes you
want fewer MPI tasks on a node than there are cores on
that node: an MPI task can itself be multithreaded (not
your coursework!)

MPI

Notes:

• ip-AC125408 and ip-AC125409 are the names of the two
nodes that happened to be allocated; the next run may well
get different nodes

• Processes 0–8 are on ip-AC125409 while processes 9-15
are on ip-AC125408, but it might happen the other way
around

• ntasks-per-node is important here as sometimes you
want fewer MPI tasks on a node than there are cores on
that node: an MPI task can itself be multithreaded (not
your coursework!)

MPI

• Output in a random order, even for the “main reports 16
procs” which we might think happens first!

• We do see “main reports” before “hello world 0”, though!
• MPI has a mechanism for routing prints on any node back

via the network to a single point: this results in all kinds of
timing variations in output

MPI

• Output in a random order, even for the “main reports 16
procs” which we might think happens first!

• We do see “main reports” before “hello world 0”, though!

• MPI has a mechanism for routing prints on any node back
via the network to a single point: this results in all kinds of
timing variations in output

MPI

• Output in a random order, even for the “main reports 16
procs” which we might think happens first!

• We do see “main reports” before “hello world 0”, though!
• MPI has a mechanism for routing prints on any node back

via the network to a single point: this results in all kinds of
timing variations in output

MPI

• MPI is SPMD, so this code is not synchronised across
processors

• For example, when proc 0 is doing its printf the other
processors may well already be doing
MPI Get processor name

• Or perhaps still MPI Comm size

• But many MPI function calls do have a built-in
synchronisation and block the calling processor until all
processors involved in that call are done

• Each MPI “task” is a separate process, not sharing
anything with any other task: in particular, not sharing any
variables (e.g., myrank), even if the tasks happen to be on
the same node

MPI

• MPI is SPMD, so this code is not synchronised across
processors

• For example, when proc 0 is doing its printf the other
processors may well already be doing
MPI Get processor name

• Or perhaps still MPI Comm size

• But many MPI function calls do have a built-in
synchronisation and block the calling processor until all
processors involved in that call are done

• Each MPI “task” is a separate process, not sharing
anything with any other task: in particular, not sharing any
variables (e.g., myrank), even if the tasks happen to be on
the same node

MPI

• MPI is SPMD, so this code is not synchronised across
processors

• For example, when proc 0 is doing its printf the other
processors may well already be doing
MPI Get processor name

• Or perhaps still MPI Comm size

• But many MPI function calls do have a built-in
synchronisation and block the calling processor until all
processors involved in that call are done

• Each MPI “task” is a separate process, not sharing
anything with any other task: in particular, not sharing any
variables (e.g., myrank), even if the tasks happen to be on
the same node

MPI

• MPI is SPMD, so this code is not synchronised across
processors

• For example, when proc 0 is doing its printf the other
processors may well already be doing
MPI Get processor name

• Or perhaps still MPI Comm size

• But many MPI function calls do have a built-in
synchronisation and block the calling processor until all
processors involved in that call are done

• Each MPI “task” is a separate process, not sharing
anything with any other task: in particular, not sharing any
variables (e.g., myrank), even if the tasks happen to be on
the same node

MPI

• MPI is SPMD, so this code is not synchronised across
processors

• For example, when proc 0 is doing its printf the other
processors may well already be doing
MPI Get processor name

• Or perhaps still MPI Comm size

• But many MPI function calls do have a built-in
synchronisation and block the calling processor until all
processors involved in that call are done

• Each MPI “task” is a separate process, not sharing
anything with any other task: in particular, not sharing any
variables (e.g., myrank), even if the tasks happen to be on
the same node

MPI

Exercise Does adding a MPI Barrier after the “main reports”
conditional ensure the message comes out first?

