
MPI

In the batch file, mpirun sets up the processors and processes
involved

Depending on the MPI implementation, this might be clever and
sort out the best transport between them, e.g., in memory for
processors on the same node and on the network for
processors on different nodes

Or it might simply use network connections, regardless

The programmer uses the same MPI functions to send
messages whatever the underlying mechanism



MPI

In the batch file, mpirun sets up the processors and processes
involved

Depending on the MPI implementation, this might be clever and
sort out the best transport between them, e.g., in memory for
processors on the same node and on the network for
processors on different nodes

Or it might simply use network connections, regardless

The programmer uses the same MPI functions to send
messages whatever the underlying mechanism



MPI

In the batch file, mpirun sets up the processors and processes
involved

Depending on the MPI implementation, this might be clever and
sort out the best transport between them, e.g., in memory for
processors on the same node and on the network for
processors on different nodes

Or it might simply use network connections, regardless

The programmer uses the same MPI functions to send
messages whatever the underlying mechanism



MPI

In the batch file, mpirun sets up the processors and processes
involved

Depending on the MPI implementation, this might be clever and
sort out the best transport between them, e.g., in memory for
processors on the same node and on the network for
processors on different nodes

Or it might simply use network connections, regardless

The programmer uses the same MPI functions to send
messages whatever the underlying mechanism



MPI
One-to-one messaging

MPI is about sending messages between processes

A basic use scenario is when one processor wants to send a
message (some data) to another

send receive

A B

Simple message send

Processor A sends data (integers, floats, strings, etc.) to B

A can use a send function, while B uses a receive function



MPI
One-to-one messaging

MPI is about sending messages between processes

A basic use scenario is when one processor wants to send a
message (some data) to another

send receive

A B

Simple message send

Processor A sends data (integers, floats, strings, etc.) to B

A can use a send function, while B uses a receive function



MPI
One-to-one messaging

MPI is about sending messages between processes

A basic use scenario is when one processor wants to send a
message (some data) to another

send receive

A B

Simple message send

Processor A sends data (integers, floats, strings, etc.) to B

A can use a send function, while B uses a receive function



MPI
One-to-one messaging

MPI is about sending messages between processes

A basic use scenario is when one processor wants to send a
message (some data) to another

send receive

A B

Simple message send

Processor A sends data (integers, floats, strings, etc.) to B

A can use a send function, while B uses a receive function



MPI
One-to-one messaging

int n[5];

...

if (myrank == 0) {

MPI_Send(n, 5, MPI_INT, 1, 99, MPI_COMM_WORLD);

}

else if (myrank == 1) {

MPI_Status stat;

MPI_Recv(n, 5, MPI_INT, 0, 99, MPI_COMM_WORLD, &stat);

}

We suppose A has rank 0, B rank 1 in WORLD



MPI
One-to-one messaging

MPI Send uses

• n A pointer to a memory location containing the data; can
be a single variable or (more likely) an array of values

• 5 The number of items to send
• MPI INT The type of the items
• 1 The rank of the destination
• 99 A tag As there can be many messages flying around

you can tag them with specific integers. This allows you
match up a particular send with a particular receive

• MPI COMM WORLD The rank is within this communicator



MPI
One-to-one messaging

MPI Send uses

• n A pointer to a memory location containing the data; can
be a single variable or (more likely) an array of values

• 5 The number of items to send
• MPI INT The type of the items
• 1 The rank of the destination
• 99 A tag As there can be many messages flying around

you can tag them with specific integers. This allows you
match up a particular send with a particular receive

• MPI COMM WORLD The rank is within this communicator



MPI
One-to-one messaging

MPI Send uses

• n A pointer to a memory location containing the data; can
be a single variable or (more likely) an array of values

• 5 The number of items to send

• MPI INT The type of the items
• 1 The rank of the destination
• 99 A tag As there can be many messages flying around

you can tag them with specific integers. This allows you
match up a particular send with a particular receive

• MPI COMM WORLD The rank is within this communicator



MPI
One-to-one messaging

MPI Send uses

• n A pointer to a memory location containing the data; can
be a single variable or (more likely) an array of values

• 5 The number of items to send
• MPI INT The type of the items

• 1 The rank of the destination
• 99 A tag As there can be many messages flying around

you can tag them with specific integers. This allows you
match up a particular send with a particular receive

• MPI COMM WORLD The rank is within this communicator



MPI
One-to-one messaging

MPI Send uses

• n A pointer to a memory location containing the data; can
be a single variable or (more likely) an array of values

• 5 The number of items to send
• MPI INT The type of the items
• 1 The rank of the destination

• 99 A tag As there can be many messages flying around
you can tag them with specific integers. This allows you
match up a particular send with a particular receive

• MPI COMM WORLD The rank is within this communicator



MPI
One-to-one messaging

MPI Send uses

• n A pointer to a memory location containing the data; can
be a single variable or (more likely) an array of values

• 5 The number of items to send
• MPI INT The type of the items
• 1 The rank of the destination
• 99 A tag As there can be many messages flying around

you can tag them with specific integers. This allows you
match up a particular send with a particular receive

• MPI COMM WORLD The rank is within this communicator



MPI
One-to-one messaging

MPI Send uses

• n A pointer to a memory location containing the data; can
be a single variable or (more likely) an array of values

• 5 The number of items to send
• MPI INT The type of the items
• 1 The rank of the destination
• 99 A tag As there can be many messages flying around

you can tag them with specific integers. This allows you
match up a particular send with a particular receive

• MPI COMM WORLD The rank is within this communicator



MPI
One-to-one messaging

MPI Recv uses

• n A pointer to a memory location where to store the data: it
need not be the same place as A (n in our example) as B is
a separate process

• 5 The number of items to read
• MPI INT The type of the items
• 0 The rank of the source
• 99 The tag on the message you are waiting for: use
MPI ANY TAG if you don’t care

• MPI COMM WORLD The communicator
• stat A structure contains the status of the transfer, in

particular the source and tag; and the error type in case of
an error



MPI
One-to-one messaging

MPI Recv uses

• n A pointer to a memory location where to store the data: it
need not be the same place as A (n in our example) as B is
a separate process

• 5 The number of items to read
• MPI INT The type of the items
• 0 The rank of the source
• 99 The tag on the message you are waiting for: use
MPI ANY TAG if you don’t care

• MPI COMM WORLD The communicator
• stat A structure contains the status of the transfer, in

particular the source and tag; and the error type in case of
an error



MPI
One-to-one messaging

MPI Recv uses

• n A pointer to a memory location where to store the data: it
need not be the same place as A (n in our example) as B is
a separate process

• 5 The number of items to read

• MPI INT The type of the items
• 0 The rank of the source
• 99 The tag on the message you are waiting for: use
MPI ANY TAG if you don’t care

• MPI COMM WORLD The communicator
• stat A structure contains the status of the transfer, in

particular the source and tag; and the error type in case of
an error



MPI
One-to-one messaging

MPI Recv uses

• n A pointer to a memory location where to store the data: it
need not be the same place as A (n in our example) as B is
a separate process

• 5 The number of items to read
• MPI INT The type of the items

• 0 The rank of the source
• 99 The tag on the message you are waiting for: use
MPI ANY TAG if you don’t care

• MPI COMM WORLD The communicator
• stat A structure contains the status of the transfer, in

particular the source and tag; and the error type in case of
an error



MPI
One-to-one messaging

MPI Recv uses

• n A pointer to a memory location where to store the data: it
need not be the same place as A (n in our example) as B is
a separate process

• 5 The number of items to read
• MPI INT The type of the items
• 0 The rank of the source

• 99 The tag on the message you are waiting for: use
MPI ANY TAG if you don’t care

• MPI COMM WORLD The communicator
• stat A structure contains the status of the transfer, in

particular the source and tag; and the error type in case of
an error



MPI
One-to-one messaging

MPI Recv uses

• n A pointer to a memory location where to store the data: it
need not be the same place as A (n in our example) as B is
a separate process

• 5 The number of items to read
• MPI INT The type of the items
• 0 The rank of the source
• 99 The tag on the message you are waiting for: use
MPI ANY TAG if you don’t care

• MPI COMM WORLD The communicator
• stat A structure contains the status of the transfer, in

particular the source and tag; and the error type in case of
an error



MPI
One-to-one messaging

MPI Recv uses

• n A pointer to a memory location where to store the data: it
need not be the same place as A (n in our example) as B is
a separate process

• 5 The number of items to read
• MPI INT The type of the items
• 0 The rank of the source
• 99 The tag on the message you are waiting for: use
MPI ANY TAG if you don’t care

• MPI COMM WORLD The communicator

• stat A structure contains the status of the transfer, in
particular the source and tag; and the error type in case of
an error



MPI
One-to-one messaging

MPI Recv uses

• n A pointer to a memory location where to store the data: it
need not be the same place as A (n in our example) as B is
a separate process

• 5 The number of items to read
• MPI INT The type of the items
• 0 The rank of the source
• 99 The tag on the message you are waiting for: use
MPI ANY TAG if you don’t care

• MPI COMM WORLD The communicator
• stat A structure contains the status of the transfer, in

particular the source and tag; and the error type in case of
an error



MPI
Messaging Types

Types include
MPI CHAR, MPI SHORT, MPI INT, MPI LONG, MPI FLOAT,
MPI DOUBLE, MPI BYTE
among several others



MPI
Messaging Types

MPI Send and MPI Recv are blocking, meaning MPI Send waits
until the data has been copied out of the buffer n into the
messaging subsystem. The array n in A can be safely reused
immediately after the MPI Send call returns

Note the data itself may not yet have reached or have been
read by B

Or even sent yet by A; all we know is that is has been copied
out of n

Naturally, MPI Recv waits until the data is safely copied into its
buffer



MPI
Messaging Types

MPI Send and MPI Recv are blocking, meaning MPI Send waits
until the data has been copied out of the buffer n into the
messaging subsystem. The array n in A can be safely reused
immediately after the MPI Send call returns

Note the data itself may not yet have reached or have been
read by B

Or even sent yet by A; all we know is that is has been copied
out of n

Naturally, MPI Recv waits until the data is safely copied into its
buffer



MPI
Messaging Types

MPI Send and MPI Recv are blocking, meaning MPI Send waits
until the data has been copied out of the buffer n into the
messaging subsystem. The array n in A can be safely reused
immediately after the MPI Send call returns

Note the data itself may not yet have reached or have been
read by B

Or even sent yet by A; all we know is that is has been copied
out of n

Naturally, MPI Recv waits until the data is safely copied into its
buffer



MPI
Messaging Types

MPI Send and MPI Recv are blocking, meaning MPI Send waits
until the data has been copied out of the buffer n into the
messaging subsystem. The array n in A can be safely reused
immediately after the MPI Send call returns

Note the data itself may not yet have reached or have been
read by B

Or even sent yet by A; all we know is that is has been copied
out of n

Naturally, MPI Recv waits until the data is safely copied into its
buffer



MPI
Messaging Types

This provides a weak synchronisation between A and B

All we know is that B has to wait for A: nothing more than that

B gets the data after A produced it

Beyond this synchronisation we can say little about what the
relationship between A and B is

For example, A won’t know when B actually gets the data; B
doesn’t know when A sent the data



MPI
Messaging Types

This provides a weak synchronisation between A and B

All we know is that B has to wait for A: nothing more than that

B gets the data after A produced it

Beyond this synchronisation we can say little about what the
relationship between A and B is

For example, A won’t know when B actually gets the data; B
doesn’t know when A sent the data



MPI
Messaging Types

This provides a weak synchronisation between A and B

All we know is that B has to wait for A: nothing more than that

B gets the data after A produced it

Beyond this synchronisation we can say little about what the
relationship between A and B is

For example, A won’t know when B actually gets the data; B
doesn’t know when A sent the data



MPI
Messaging Types

This provides a weak synchronisation between A and B

All we know is that B has to wait for A: nothing more than that

B gets the data after A produced it

Beyond this synchronisation we can say little about what the
relationship between A and B is

For example, A won’t know when B actually gets the data; B
doesn’t know when A sent the data



MPI
Messaging Types

This provides a weak synchronisation between A and B

All we know is that B has to wait for A: nothing more than that

B gets the data after A produced it

Beyond this synchronisation we can say little about what the
relationship between A and B is

For example, A won’t know when B actually gets the data; B
doesn’t know when A sent the data



MPI
Asynchronous messaging

In a distributed system you have to be aware of the
asynchronous nature of communication

As messages take a significant time to be transmitted a send
and a receive are certainly non-simultaneous

In comparison, in a shared memory system, once a value is
written to a variable, that value is available essentially instantly
everywhere (ignoring caching and speed of light issues!)



MPI
Asynchronous messaging

In a distributed system you have to be aware of the
asynchronous nature of communication

As messages take a significant time to be transmitted a send
and a receive are certainly non-simultaneous

In comparison, in a shared memory system, once a value is
written to a variable, that value is available essentially instantly
everywhere (ignoring caching and speed of light issues!)



MPI
Asynchronous messaging

In a distributed system you have to be aware of the
asynchronous nature of communication

As messages take a significant time to be transmitted a send
and a receive are certainly non-simultaneous

In comparison, in a shared memory system, once a value is
written to a variable, that value is available essentially instantly
everywhere (ignoring caching and speed of light issues!)



MPI
MPI also provides

• MPI Ssend Waits until the destination has started to
receive the message: a stronger synchronisation, not often
needed

• MPI Isend Send, but don’t wait and carry on processing.
A separate thread or DMA subsystem will asynchronously
copy out and send the data. You have to be careful about
reusing the buffer too soon (“I” for “immediate”)

• MPI Irecv Indicate a buffer where data should be read
into, but don’t wait for it; the data will be copied
asynchronously into the buffer at some point in the future

• MPI Wait Block until a given non-blocking send or recv
has completed

And lots more



MPI
MPI also provides

• MPI Ssend Waits until the destination has started to
receive the message: a stronger synchronisation, not often
needed

• MPI Isend Send, but don’t wait and carry on processing.
A separate thread or DMA subsystem will asynchronously
copy out and send the data. You have to be careful about
reusing the buffer too soon (“I” for “immediate”)

• MPI Irecv Indicate a buffer where data should be read
into, but don’t wait for it; the data will be copied
asynchronously into the buffer at some point in the future

• MPI Wait Block until a given non-blocking send or recv
has completed

And lots more



MPI
MPI also provides

• MPI Ssend Waits until the destination has started to
receive the message: a stronger synchronisation, not often
needed

• MPI Isend Send, but don’t wait and carry on processing.
A separate thread or DMA subsystem will asynchronously
copy out and send the data. You have to be careful about
reusing the buffer too soon (“I” for “immediate”)

• MPI Irecv Indicate a buffer where data should be read
into, but don’t wait for it; the data will be copied
asynchronously into the buffer at some point in the future

• MPI Wait Block until a given non-blocking send or recv
has completed

And lots more



MPI
MPI also provides

• MPI Ssend Waits until the destination has started to
receive the message: a stronger synchronisation, not often
needed

• MPI Isend Send, but don’t wait and carry on processing.
A separate thread or DMA subsystem will asynchronously
copy out and send the data. You have to be careful about
reusing the buffer too soon (“I” for “immediate”)

• MPI Irecv Indicate a buffer where data should be read
into, but don’t wait for it; the data will be copied
asynchronously into the buffer at some point in the future

• MPI Wait Block until a given non-blocking send or recv
has completed

And lots more



MPI
MPI also provides

• MPI Ssend Waits until the destination has started to
receive the message: a stronger synchronisation, not often
needed

• MPI Isend Send, but don’t wait and carry on processing.
A separate thread or DMA subsystem will asynchronously
copy out and send the data. You have to be careful about
reusing the buffer too soon (“I” for “immediate”)

• MPI Irecv Indicate a buffer where data should be read
into, but don’t wait for it; the data will be copied
asynchronously into the buffer at some point in the future

• MPI Wait Block until a given non-blocking send or recv
has completed

And lots more



MPI
MPI also provides

• MPI Ssend Waits until the destination has started to
receive the message: a stronger synchronisation, not often
needed

• MPI Isend Send, but don’t wait and carry on processing.
A separate thread or DMA subsystem will asynchronously
copy out and send the data. You have to be careful about
reusing the buffer too soon (“I” for “immediate”)

• MPI Irecv Indicate a buffer where data should be read
into, but don’t wait for it; the data will be copied
asynchronously into the buffer at some point in the future

• MPI Wait Block until a given non-blocking send or recv
has completed

And lots more



MPI
Synchronisation

Simple synchronisation can be achieved by
MPI Barrier(MPI Comm comm);

This blocks until all the processes in the communicator have
reached the barrier

Note that the processes involved in the barrier are specified by
the communicator; compare with pthread barriers that wait for
any n threads that happen to arrive

MPI Barrier is rarely needed as (a) many of the other MPI
functions (MPI Send, MPI Recv etc.) also synchronise already
and (b) SPMD programs generally have less of a need for
barriers anyway

If you find yourself using MPI Barrier, think again!



MPI
Synchronisation

Simple synchronisation can be achieved by
MPI Barrier(MPI Comm comm);

This blocks until all the processes in the communicator have
reached the barrier

Note that the processes involved in the barrier are specified by
the communicator; compare with pthread barriers that wait for
any n threads that happen to arrive

MPI Barrier is rarely needed as (a) many of the other MPI
functions (MPI Send, MPI Recv etc.) also synchronise already
and (b) SPMD programs generally have less of a need for
barriers anyway

If you find yourself using MPI Barrier, think again!



MPI
Synchronisation

Simple synchronisation can be achieved by
MPI Barrier(MPI Comm comm);

This blocks until all the processes in the communicator have
reached the barrier

Note that the processes involved in the barrier are specified by
the communicator; compare with pthread barriers that wait for
any n threads that happen to arrive

MPI Barrier is rarely needed as (a) many of the other MPI
functions (MPI Send, MPI Recv etc.) also synchronise already
and (b) SPMD programs generally have less of a need for
barriers anyway

If you find yourself using MPI Barrier, think again!



MPI
Synchronisation

Simple synchronisation can be achieved by
MPI Barrier(MPI Comm comm);

This blocks until all the processes in the communicator have
reached the barrier

Note that the processes involved in the barrier are specified by
the communicator; compare with pthread barriers that wait for
any n threads that happen to arrive

MPI Barrier is rarely needed as (a) many of the other MPI
functions (MPI Send, MPI Recv etc.) also synchronise already
and (b) SPMD programs generally have less of a need for
barriers anyway

If you find yourself using MPI Barrier, think again!



MPI
Synchronisation

Simple synchronisation can be achieved by
MPI Barrier(MPI Comm comm);

This blocks until all the processes in the communicator have
reached the barrier

Note that the processes involved in the barrier are specified by
the communicator; compare with pthread barriers that wait for
any n threads that happen to arrive

MPI Barrier is rarely needed as (a) many of the other MPI
functions (MPI Send, MPI Recv etc.) also synchronise already
and (b) SPMD programs generally have less of a need for
barriers anyway

If you find yourself using MPI Barrier, think again!



MPI

A quick note on messages:

Messages in MPI are reliable, in order, but not fair

Reliable: messages don’t get lost in the network

In order: if A sends message 1 then message 2 to B, then B will
get message 1 before message 2: messages from one source
to the same destination do not overtake each other

However, a message from A to B may be overtaken by a later
message from C to B: there is no guarantee of order on
messages from different sources (e.g., A to B is over the
network, but C to B is in shared memory)



MPI

A quick note on messages:

Messages in MPI are reliable, in order, but not fair

Reliable: messages don’t get lost in the network

In order: if A sends message 1 then message 2 to B, then B will
get message 1 before message 2: messages from one source
to the same destination do not overtake each other

However, a message from A to B may be overtaken by a later
message from C to B: there is no guarantee of order on
messages from different sources (e.g., A to B is over the
network, but C to B is in shared memory)



MPI

A quick note on messages:

Messages in MPI are reliable, in order, but not fair

Reliable: messages don’t get lost in the network

In order: if A sends message 1 then message 2 to B, then B will
get message 1 before message 2: messages from one source
to the same destination do not overtake each other

However, a message from A to B may be overtaken by a later
message from C to B: there is no guarantee of order on
messages from different sources (e.g., A to B is over the
network, but C to B is in shared memory)



MPI

A quick note on messages:

Messages in MPI are reliable, in order, but not fair

Reliable: messages don’t get lost in the network

In order: if A sends message 1 then message 2 to B, then B will
get message 1 before message 2: messages from one source
to the same destination do not overtake each other

However, a message from A to B may be overtaken by a later
message from C to B: there is no guarantee of order on
messages from different sources (e.g., A to B is over the
network, but C to B is in shared memory)



MPI

A quick note on messages:

Messages in MPI are reliable, in order, but not fair

Reliable: messages don’t get lost in the network

In order: if A sends message 1 then message 2 to B, then B will
get message 1 before message 2: messages from one source
to the same destination do not overtake each other

However, a message from A to B may be overtaken by a later
message from C to B: there is no guarantee of order on
messages from different sources (e.g., A to B is over the
network, but C to B is in shared memory)



MPI

As usual, “not fair” means “not guaranteed fair”. Mostly things
will happen in the expected orders, but you should not rely on it

If you need a specific order, use tags

A blocking receive with a tag will wait until a message with that
tag arrives, even if other messages are ready waiting



MPI

As usual, “not fair” means “not guaranteed fair”. Mostly things
will happen in the expected orders, but you should not rely on it

If you need a specific order, use tags

A blocking receive with a tag will wait until a message with that
tag arrives, even if other messages are ready waiting



MPI

As usual, “not fair” means “not guaranteed fair”. Mostly things
will happen in the expected orders, but you should not rely on it

If you need a specific order, use tags

A blocking receive with a tag will wait until a message with that
tag arrives, even if other messages are ready waiting



MPI
Multiple participant messaging

The above send and receive are point-to-point messages,
namely one source and one destination

MPI provides many more general kinds of messaging

Point-to-point turns out to be much less useful than you might
think



MPI
Multiple participant messaging

The above send and receive are point-to-point messages,
namely one source and one destination

MPI provides many more general kinds of messaging

Point-to-point turns out to be much less useful than you might
think



MPI
Multiple participant messaging

The above send and receive are point-to-point messages,
namely one source and one destination

MPI provides many more general kinds of messaging

Point-to-point turns out to be much less useful than you might
think



MPI

Broadcast:
MPI Bcast(void* buffer, int count, MPI Datatype datatype,

int root, MPI Comm comm);

The buffer of data is sent from the process with rank root to all
processes in the communicator

4223

4223 4223 4223 4223

root

before0 1 7 11 3 4

after

MPI broadcast



MPI

Note: all processes, including the receivers, should call
MPI Bcast with the same value for root

The destination buffer can be different on each processor, but is
typically the “same” buffer (in an SPMD sense)



MPI

Note: all processes, including the receivers, should call
MPI Bcast with the same value for root

The destination buffer can be different on each processor, but is
typically the “same” buffer (in an SPMD sense)



MPI

int n[2];

if (myrank == 1) {

n[0] = 23;

n[1] = 42;

}

...

MPI_Bcast(n, 2, MPI_INT, 1, MPI_COMM_WORLD);

All processes will now have the same values for their versions
of n



MPI
MPI Scatter(void* sendbuf,int sendcount, MPI Datatype

sendtype, void* recvbuf, int recvcount, MPI Datatype

recvtype, int root, MPI Comm comm);

This takes the data sendbuf, an array, in processor with rank
root, and sends sendcount items from the array to each other
processor (and to itself) to end up in recvbuf

3 1 4 1 9 2 7 1 8 4 1 4 1 4 6 6 2 0 0 8

root

3 1 4 1 2 7 1 8 1 4 1 4 6 2 0 0 82 7 1

before

after

Scattering single values



MPI

The processor with rank 0 (in the specified communicator) gets
the first sendcount items from sendbuf; processor 1 gets the
next sendcount items; and so on

Just as in broadcast, every processor executes SCATTER with
the same root

Note: recvtype can be different from sendtype, but you had
better be sure you understand what you are doing

recvcount can be different from sendcount, but you had
better be sure you understand what you are doing

Don’t do that!



MPI

The processor with rank 0 (in the specified communicator) gets
the first sendcount items from sendbuf; processor 1 gets the
next sendcount items; and so on

Just as in broadcast, every processor executes SCATTER with
the same root

Note: recvtype can be different from sendtype, but you had
better be sure you understand what you are doing

recvcount can be different from sendcount, but you had
better be sure you understand what you are doing

Don’t do that!



MPI

The processor with rank 0 (in the specified communicator) gets
the first sendcount items from sendbuf; processor 1 gets the
next sendcount items; and so on

Just as in broadcast, every processor executes SCATTER with
the same root

Note: recvtype can be different from sendtype, but you had
better be sure you understand what you are doing

recvcount can be different from sendcount, but you had
better be sure you understand what you are doing

Don’t do that!



MPI

The processor with rank 0 (in the specified communicator) gets
the first sendcount items from sendbuf; processor 1 gets the
next sendcount items; and so on

Just as in broadcast, every processor executes SCATTER with
the same root

Note: recvtype can be different from sendtype, but you had
better be sure you understand what you are doing

recvcount can be different from sendcount, but you had
better be sure you understand what you are doing

Don’t do that!



MPI

The processor with rank 0 (in the specified communicator) gets
the first sendcount items from sendbuf; processor 1 gets the
next sendcount items; and so on

Just as in broadcast, every processor executes SCATTER with
the same root

Note: recvtype can be different from sendtype, but you had
better be sure you understand what you are doing

recvcount can be different from sendcount, but you had
better be sure you understand what you are doing

Don’t do that!



MPI

MPI Gather(void* sendbuf, int sendcount, MPI Datatype

sendtype, void* recvbuf, int recvcount, MPI Datatype

recvtype, int root, MPI Comm comm);

Takes sendcount elements of data sendbuf from each
processor and puts them in the array recvbuf on processor
root

3 1 4 1 1 4 1 4 6 2 0 0 82 7 1

after

before

root

3 1 4 1 2 7 1 8 1 4 1 4 6 2 0 0 82 7 1

1 8 52

Gathering single values



MPI

MPI Gather is the “opposite” of MPI Scatter

The recvbuf on the root processor is filled, in order, with the
specified number of items from processors rank 0, 1, etc.

Type and counts can vary across processors

But don’t do that



MPI

MPI Gather is the “opposite” of MPI Scatter

The recvbuf on the root processor is filled, in order, with the
specified number of items from processors rank 0, 1, etc.

Type and counts can vary across processors

But don’t do that



MPI

MPI Gather is the “opposite” of MPI Scatter

The recvbuf on the root processor is filled, in order, with the
specified number of items from processors rank 0, 1, etc.

Type and counts can vary across processors

But don’t do that



MPI

MPI Gather is the “opposite” of MPI Scatter

The recvbuf on the root processor is filled, in order, with the
specified number of items from processors rank 0, 1, etc.

Type and counts can vary across processors

But don’t do that



MPI

MPI Reduce(void* sendbuf, void* recvbuf, int count,

MPI Datatype datatype, MPI Op op, int root, MPI Comm comm);

Applies a reduction of operation op to each value in sendbuf,
putting the result(s) into recvbuf on processor root

MPI_SUM

MPI_MAX

1 23 117 3

33

9923

990 42

153

MPI reduce



MPI

Operations include
MPI MAX, MPI MIN, MP SUM, MPI PROD, MPI LAND (logical
AND), MPI LOR (logical OR)
amongst others

You can also define your own reduction operators



MPI

Operations include
MPI MAX, MPI MIN, MP SUM, MPI PROD, MPI LAND (logical
AND), MPI LOR (logical OR)
amongst others

You can also define your own reduction operators



MPI
MPI Scan(void* sendbuf, void* recvbuf, int count,

MPI Datatype datatype, MPI Op op, MPI Comm comm);

A prefix scan of the source sendbuf. Processor of rank i gets
the reduction of values from processors 0 . . . i stored in its
recvbuf

MPI_MAX

MPI_SUM10

1 990

23 3354

23 42 42 23

117 990 42

43 30 153

23

23 31

MPI scan

Prefix scans turn out to be a very useful tool in parallel
algorithms



MPI

As usual with MPI, there are many other combinations of
blocking and non-blocking messages possible

Note these functions are not cheap: they hide a lot of
messaging, which you should be aware of when you are using
them

For example, a MPI Bcast of a large datastructure can be very
slow



MPI

As usual with MPI, there are many other combinations of
blocking and non-blocking messages possible

Note these functions are not cheap: they hide a lot of
messaging, which you should be aware of when you are using
them

For example, a MPI Bcast of a large datastructure can be very
slow



MPI

As usual with MPI, there are many other combinations of
blocking and non-blocking messages possible

Note these functions are not cheap: they hide a lot of
messaging, which you should be aware of when you are using
them

For example, a MPI Bcast of a large datastructure can be very
slow



MPI

For timing, MPI Wtime() returns a “high precision” elapsed
time in seconds on the calling processor

It returns a double, with precision as given by MPI Wtick()

This might be, say, 0.000001 (1 microsecond)



MPI

For timing, MPI Wtime() returns a “high precision” elapsed
time in seconds on the calling processor

It returns a double, with precision as given by MPI Wtick()

This might be, say, 0.000001 (1 microsecond)



MPI

For timing, MPI Wtime() returns a “high precision” elapsed
time in seconds on the calling processor

It returns a double, with precision as given by MPI Wtick()

This might be, say, 0.000001 (1 microsecond)



MPI

MPI also provides

• defining new MPI datatypes including arrays and
structures;

• means of creating communicators;
• processor groups (communicators contain one or more

groups);
• processor topologies (ways of arranging processors into

particular geometric shapes that might fit a certain problem
or hardware);

• more kinds of scatter/gather/reduce/scan;
• all-to-all broadcasts;
• and so on



MPI

MPI is used extensively out there in the big world of Real
Science

It is very well suited for when there is so much computation
needed that the overhead of a bunch of messages is well worth
paying

The large (100k core) clusters will be running jobs using MPI

MPI scales very well to large systems



MPI

MPI is used extensively out there in the big world of Real
Science

It is very well suited for when there is so much computation
needed that the overhead of a bunch of messages is well worth
paying

The large (100k core) clusters will be running jobs using MPI

MPI scales very well to large systems



MPI

MPI is used extensively out there in the big world of Real
Science

It is very well suited for when there is so much computation
needed that the overhead of a bunch of messages is well worth
paying

The large (100k core) clusters will be running jobs using MPI

MPI scales very well to large systems



MPI

MPI is used extensively out there in the big world of Real
Science

It is very well suited for when there is so much computation
needed that the overhead of a bunch of messages is well worth
paying

The large (100k core) clusters will be running jobs using MPI

MPI scales very well to large systems



MPI

And, of course, you can mix shared and distributed memory:
running shared memory OpenMP tasks communicating across
nodes via MPI

Don’t use OpenMP in the coursework: that should be pure MPI



MPI

And, of course, you can mix shared and distributed memory:
running shared memory OpenMP tasks communicating across
nodes via MPI

Don’t use OpenMP in the coursework: that should be pure MPI



MPI

MPI requires you to make sure all your MPI function calls are
coordinated across the processes: every processor must call
the appropriate same or matching functions at the appropriate
times

This the programmer’s problem: it’s a bug if you get it wrong



MPI

MPI requires you to make sure all your MPI function calls are
coordinated across the processes: every processor must call
the appropriate same or matching functions at the appropriate
times

This the programmer’s problem: it’s a bug if you get it wrong



MPI

For example, you can still easily deadlock. Suppose A and B
wish to exchange messages:

A B
MPI_Recv(...); MPI_Recv(...);

... ...

MPI_Send(...); MPI_Send(...);

This is slightly more obvious when it happens since MPI is
SPMD and has a single program source

Careful use of message tags helps structuring

As is common, MPI provides easy mechanism but no analysis



MPI

For example, you can still easily deadlock. Suppose A and B
wish to exchange messages:

A B
MPI_Recv(...); MPI_Recv(...);

... ...

MPI_Send(...); MPI_Send(...);

This is slightly more obvious when it happens since MPI is
SPMD and has a single program source

Careful use of message tags helps structuring

As is common, MPI provides easy mechanism but no analysis



MPI

For example, you can still easily deadlock. Suppose A and B
wish to exchange messages:

A B
MPI_Recv(...); MPI_Recv(...);

... ...

MPI_Send(...); MPI_Send(...);

This is slightly more obvious when it happens since MPI is
SPMD and has a single program source

Careful use of message tags helps structuring

As is common, MPI provides easy mechanism but no analysis



MPI

For example, you can still easily deadlock. Suppose A and B
wish to exchange messages:

A B
MPI_Recv(...); MPI_Recv(...);

... ...

MPI_Send(...); MPI_Send(...);

This is slightly more obvious when it happens since MPI is
SPMD and has a single program source

Careful use of message tags helps structuring

As is common, MPI provides easy mechanism but no analysis



MPI

In fact, for this case, MPI provides MPI Sendrecv which
combines a send with a receive that is guaranteed not to
deadlock

A B
MPI Sendrecv(...); MPI Sendrecv(...);

This function is recommended in cases of swapping data

And it can connect any pair of processes; is not limited to
simple swapping between two processes. For example, A
sends to B but receives from C; while B sends to C but receives
from A; etc.



MPI

In fact, for this case, MPI provides MPI Sendrecv which
combines a send with a receive that is guaranteed not to
deadlock

A B
MPI Sendrecv(...); MPI Sendrecv(...);

This function is recommended in cases of swapping data

And it can connect any pair of processes; is not limited to
simple swapping between two processes. For example, A
sends to B but receives from C; while B sends to C but receives
from A; etc.



MPI

In fact, for this case, MPI provides MPI Sendrecv which
combines a send with a receive that is guaranteed not to
deadlock

A B
MPI Sendrecv(...); MPI Sendrecv(...);

This function is recommended in cases of swapping data

And it can connect any pair of processes; is not limited to
simple swapping between two processes. For example, A
sends to B but receives from C; while B sends to C but receives
from A; etc.


