
MPI

Using MPI requires careful thought about messages to get the
maximum efficiency out of the system

For example, we might be able to overcome message latency
by judicious use of non-blocking sends and receives

Rather than waiting for a receive to complete, we carry on
working on some other part of the computation: later, when the
receive has completed, we can go back to that part of the
computation



MPI

Using MPI requires careful thought about messages to get the
maximum efficiency out of the system

For example, we might be able to overcome message latency
by judicious use of non-blocking sends and receives

Rather than waiting for a receive to complete, we carry on
working on some other part of the computation: later, when the
receive has completed, we can go back to that part of the
computation



MPI

Using MPI requires careful thought about messages to get the
maximum efficiency out of the system

For example, we might be able to overcome message latency
by judicious use of non-blocking sends and receives

Rather than waiting for a receive to complete, we carry on
working on some other part of the computation: later, when the
receive has completed, we can go back to that part of the
computation



MPI

This requires careful programming, but can give good results

Sometimes not

In general (not just distributed computing), overlapping
communication and computation is a good thing to do

But hard to program and easy to make errors

Exercise You wish to make a cup of tea and a sandwich. Do
you

(a) make the sandwich then start boiling the kettle; or
(b) start boiling the kettle then make the sandwich?



MPI

This requires careful programming, but can give good results

Sometimes not

In general (not just distributed computing), overlapping
communication and computation is a good thing to do

But hard to program and easy to make errors

Exercise You wish to make a cup of tea and a sandwich. Do
you

(a) make the sandwich then start boiling the kettle; or
(b) start boiling the kettle then make the sandwich?



MPI

This requires careful programming, but can give good results

Sometimes not

In general (not just distributed computing), overlapping
communication and computation is a good thing to do

But hard to program and easy to make errors

Exercise You wish to make a cup of tea and a sandwich. Do
you

(a) make the sandwich then start boiling the kettle; or
(b) start boiling the kettle then make the sandwich?



MPI

This requires careful programming, but can give good results

Sometimes not

In general (not just distributed computing), overlapping
communication and computation is a good thing to do

But hard to program and easy to make errors

Exercise You wish to make a cup of tea and a sandwich. Do
you

(a) make the sandwich then start boiling the kettle; or
(b) start boiling the kettle then make the sandwich?



MPI

This requires careful programming, but can give good results

Sometimes not

In general (not just distributed computing), overlapping
communication and computation is a good thing to do

But hard to program and easy to make errors

Exercise You wish to make a cup of tea and a sandwich. Do
you

(a) make the sandwich then start boiling the kettle; or
(b) start boiling the kettle then make the sandwich?



MPI

Also:

• messaging has a high overhead, so MPI only really works
well on very large programs

• it is hard to program effectively: simple programs are easy
to write, but efficient programs usually need experienced
programmers

• there are a huge number of variations of messaging: quite
often you can replace several calls to MPI functions with
one, more complex, MPI function that is more efficient
overall



MPI

Also:

• messaging has a high overhead, so MPI only really works
well on very large programs

• it is hard to program effectively: simple programs are easy
to write, but efficient programs usually need experienced
programmers

• there are a huge number of variations of messaging: quite
often you can replace several calls to MPI functions with
one, more complex, MPI function that is more efficient
overall



MPI

Also:

• messaging has a high overhead, so MPI only really works
well on very large programs

• it is hard to program effectively: simple programs are easy
to write, but efficient programs usually need experienced
programmers

• there are a huge number of variations of messaging: quite
often you can replace several calls to MPI functions with
one, more complex, MPI function that is more efficient
overall



MPI

Also:

• messaging has a high overhead, so MPI only really works
well on very large programs

• it is hard to program effectively: simple programs are easy
to write, but efficient programs usually need experienced
programmers

• there are a huge number of variations of messaging: quite
often you can replace several calls to MPI functions with
one, more complex, MPI function that is more efficient
overall



MPI

• you need a careful balance of MPI function calls and data
movement: you would generally aim to use as few MPI
calls as possible, but sometimes moving less data with
more calls can be better than moving large amounts of
data with fewer calls

• it is not naturally dynamic: the number of processors is
effectively fixed and cannot vary during the execution of
the program. This excludes efficient execution of some
kinds of program (later versions of MPI do include
MPI Comm spawn but it’s not easy to use)



MPI

• you need a careful balance of MPI function calls and data
movement: you would generally aim to use as few MPI
calls as possible, but sometimes moving less data with
more calls can be better than moving large amounts of
data with fewer calls

• it is not naturally dynamic: the number of processors is
effectively fixed and cannot vary during the execution of
the program. This excludes efficient execution of some
kinds of program (later versions of MPI do include
MPI Comm spawn but it’s not easy to use)



MPI

MPI has succeeded for many reasons

• An open standard, inviting several competing
implementations

• Thus implementations tend to be optimised and efficient
• MPI is simple in concept, so straightforward to program

(not necessarily easy to program. . . )
• MPI is flexible as it contains lots of kinds of communication
• MPI is supported by many languages and environments
• MPI scales well to very large problems

The MPI standard is still being developed and updated



MPI

MPI has succeeded for many reasons

• An open standard, inviting several competing
implementations

• Thus implementations tend to be optimised and efficient
• MPI is simple in concept, so straightforward to program

(not necessarily easy to program. . . )
• MPI is flexible as it contains lots of kinds of communication
• MPI is supported by many languages and environments
• MPI scales well to very large problems

The MPI standard is still being developed and updated



MPI

MPI has succeeded for many reasons

• An open standard, inviting several competing
implementations

• Thus implementations tend to be optimised and efficient

• MPI is simple in concept, so straightforward to program
(not necessarily easy to program. . . )

• MPI is flexible as it contains lots of kinds of communication
• MPI is supported by many languages and environments
• MPI scales well to very large problems

The MPI standard is still being developed and updated



MPI

MPI has succeeded for many reasons

• An open standard, inviting several competing
implementations

• Thus implementations tend to be optimised and efficient
• MPI is simple in concept, so straightforward to program

(not necessarily easy to program. . . )

• MPI is flexible as it contains lots of kinds of communication
• MPI is supported by many languages and environments
• MPI scales well to very large problems

The MPI standard is still being developed and updated



MPI

MPI has succeeded for many reasons

• An open standard, inviting several competing
implementations

• Thus implementations tend to be optimised and efficient
• MPI is simple in concept, so straightforward to program

(not necessarily easy to program. . . )
• MPI is flexible as it contains lots of kinds of communication

• MPI is supported by many languages and environments
• MPI scales well to very large problems

The MPI standard is still being developed and updated



MPI

MPI has succeeded for many reasons

• An open standard, inviting several competing
implementations

• Thus implementations tend to be optimised and efficient
• MPI is simple in concept, so straightforward to program

(not necessarily easy to program. . . )
• MPI is flexible as it contains lots of kinds of communication
• MPI is supported by many languages and environments

• MPI scales well to very large problems

The MPI standard is still being developed and updated



MPI

MPI has succeeded for many reasons

• An open standard, inviting several competing
implementations

• Thus implementations tend to be optimised and efficient
• MPI is simple in concept, so straightforward to program

(not necessarily easy to program. . . )
• MPI is flexible as it contains lots of kinds of communication
• MPI is supported by many languages and environments
• MPI scales well to very large problems

The MPI standard is still being developed and updated



MPI

MPI has succeeded for many reasons

• An open standard, inviting several competing
implementations

• Thus implementations tend to be optimised and efficient
• MPI is simple in concept, so straightforward to program

(not necessarily easy to program. . . )
• MPI is flexible as it contains lots of kinds of communication
• MPI is supported by many languages and environments
• MPI scales well to very large problems

The MPI standard is still being developed and updated



MPI

Exercise Read about UPC, a (not popular) alternative to MPI,
that presents a virtual shared NUMA architecture



Vector and Array Processors

Moving on from distributed: the next major architecture to
consider is SIMD

Recall: these have many processors all executing the same
thing on different data

First we need to recall the SIMD architecture and go through
the issues it brings



Vector and Array Processors

Moving on from distributed: the next major architecture to
consider is SIMD

Recall: these have many processors all executing the same
thing on different data

First we need to recall the SIMD architecture and go through
the issues it brings



Vector and Array Processors

Moving on from distributed: the next major architecture to
consider is SIMD

Recall: these have many processors all executing the same
thing on different data

First we need to recall the SIMD architecture and go through
the issues it brings



Vector and Array Processors

ALU

memory

ALU

memory

ALU

memory

ALU

memory

ALU

memory

input output

Memory

Control

SIMD box model

All processors are controlled by just one Control unit, so are all
executing the same instruction

This is data parallelism



Vector and Array Processors

ALU

memory

ALU

memory

ALU

memory

ALU

memory

ALU

memory

input output

Memory

Control

SIMD box model

All processors are controlled by just one Control unit, so are all
executing the same instruction

This is data parallelism



Vector and Array Processors

There is a shared chunk of global memory and each processor
has its own chunk of private memory

Processors can be strung linearly in a vector or in a square
mesh as an array



Vector and Array Processors

There is a shared chunk of global memory and each processor
has its own chunk of private memory

Processors can be strung linearly in a vector or in a square
mesh as an array



Vector and Array Processors

memmemmemmem

ALUALUALUALU

memmemmemmem

memory

memmem mem mem

memmemmemmem

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

control

Array processor

Of course, you can use an array as a vector or a vector as an
array, with a modest loss of efficiency



Vector and Array Processors

memmemmemmem

ALUALUALUALU

memmemmemmem

memory

memmem mem mem

memmemmemmem

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

control

Array processor

Of course, you can use an array as a vector or a vector as an
array, with a modest loss of efficiency



Vector and Array Processors

Vector processors appeared quite early on in computer
architectures (1960s) and were a mainstay in 1980s
supercomputers (Crays), as they are a relatively simple
extension of the uniprocesor

Array processors have come into fashion and gone away again
several times

GPUs owe a lot to array processor design: more on this later



Vector and Array Processors

Vector processors appeared quite early on in computer
architectures (1960s) and were a mainstay in 1980s
supercomputers (Crays), as they are a relatively simple
extension of the uniprocesor

Array processors have come into fashion and gone away again
several times

GPUs owe a lot to array processor design: more on this later



Vector and Array Processors

Vector processors appeared quite early on in computer
architectures (1960s) and were a mainstay in 1980s
supercomputers (Crays), as they are a relatively simple
extension of the uniprocesor

Array processors have come into fashion and gone away again
several times

GPUs owe a lot to array processor design: more on this later



Vector and Array Processors

The basic idea of SIMD is that we can parallelise loops like

for (i = 0; i < 1024; i++) {

c[i] = a[i] + b[i];

}

as

in parallel do c[i] = a[i] + b[i];

Exercise Go back and look at OpenMP



Vector and Array Processors

The basic idea of SIMD is that we can parallelise loops like

for (i = 0; i < 1024; i++) {

c[i] = a[i] + b[i];

}

as

in parallel do c[i] = a[i] + b[i];

Exercise Go back and look at OpenMP



Vector and Array Processors

The important points being

• all elements in the arrays are being treated identically
• there is no interference between any of the operations
• there are no dependencies across iterations of the loop

So no races, thus no serialisation of the operations is needed



Vector and Array Processors

The important points being

• all elements in the arrays are being treated identically

• there is no interference between any of the operations
• there are no dependencies across iterations of the loop

So no races, thus no serialisation of the operations is needed



Vector and Array Processors

The important points being

• all elements in the arrays are being treated identically
• there is no interference between any of the operations

• there are no dependencies across iterations of the loop

So no races, thus no serialisation of the operations is needed



Vector and Array Processors

The important points being

• all elements in the arrays are being treated identically
• there is no interference between any of the operations
• there are no dependencies across iterations of the loop

So no races, thus no serialisation of the operations is needed



Vector and Array Processors

The important points being

• all elements in the arrays are being treated identically
• there is no interference between any of the operations
• there are no dependencies across iterations of the loop

So no races, thus no serialisation of the operations is needed



Vector and Array Processors

What if there are conflicts? For example

for (i = 1; i < 1024; i++) {

a[i] = a[i] + a[i-1];

}

Here, the new value of a[i] depends on the value of a[i-1];
which will have been updated in the previous iteration of the
loop

In comparison

in parallel do a[i] = a[i] + a[i-1];

takes the original value of a[i-1]



Vector and Array Processors

What if there are conflicts? For example

for (i = 1; i < 1024; i++) {

a[i] = a[i] + a[i-1];

}

Here, the new value of a[i] depends on the value of a[i-1];
which will have been updated in the previous iteration of the
loop

In comparison

in parallel do a[i] = a[i] + a[i-1];

takes the original value of a[i-1]



Vector and Array Processors

What if there are conflicts? For example

for (i = 1; i < 1024; i++) {

a[i] = a[i] + a[i-1];

}

Here, the new value of a[i] depends on the value of a[i-1];
which will have been updated in the previous iteration of the
loop

In comparison

in parallel do a[i] = a[i] + a[i-1];

takes the original value of a[i-1]



Vector and Array Processors

What if there are conflicts? For example

for (i = 1; i < 1024; i++) {

a[i] = a[i] + a[i-1];

}

Here, the new value of a[i] depends on the value of a[i-1];
which will have been updated in the previous iteration of the
loop

In comparison

in parallel do a[i] = a[i] + a[i-1];

takes the original value of a[i-1]



Vector and Array Processors

Starting with a = 1, 1, 1, 1; the sequential loop gives
1 2 1 1

1 2 3 1
1 2 3 4

While the parallel version gives
1 1 1 1

1 1 1 +

1 2 2 2

This is due to the nature of the original loop: it is actually a
prefix scan operation

Prefix scans can be done SIMD, but when parallelising code
you have to be aware that is what is happening!



Vector and Array Processors

Starting with a = 1, 1, 1, 1; the sequential loop gives
1 2 1 1
1 2 3 1

1 2 3 4

While the parallel version gives
1 1 1 1

1 1 1 +

1 2 2 2

This is due to the nature of the original loop: it is actually a
prefix scan operation

Prefix scans can be done SIMD, but when parallelising code
you have to be aware that is what is happening!



Vector and Array Processors

Starting with a = 1, 1, 1, 1; the sequential loop gives
1 2 1 1
1 2 3 1
1 2 3 4

While the parallel version gives
1 1 1 1

1 1 1 +

1 2 2 2

This is due to the nature of the original loop: it is actually a
prefix scan operation

Prefix scans can be done SIMD, but when parallelising code
you have to be aware that is what is happening!



Vector and Array Processors

Starting with a = 1, 1, 1, 1; the sequential loop gives
1 2 1 1
1 2 3 1
1 2 3 4

While the parallel version gives
1 1 1 1

1 1 1 +

1 2 2 2

This is due to the nature of the original loop: it is actually a
prefix scan operation

Prefix scans can be done SIMD, but when parallelising code
you have to be aware that is what is happening!



Vector and Array Processors

Starting with a = 1, 1, 1, 1; the sequential loop gives
1 2 1 1
1 2 3 1
1 2 3 4

While the parallel version gives
1 1 1 1

1 1 1 +

1 2 2 2

This is due to the nature of the original loop: it is actually a
prefix scan operation

Prefix scans can be done SIMD, but when parallelising code
you have to be aware that is what is happening!



Vector and Array Processors

Starting with a = 1, 1, 1, 1; the sequential loop gives
1 2 1 1
1 2 3 1
1 2 3 4

While the parallel version gives
1 1 1 1

1 1 1 +

1 2 2 2

This is due to the nature of the original loop: it is actually a
prefix scan operation

Prefix scans can be done SIMD, but when parallelising code
you have to be aware that is what is happening!



Vector and Array Processors

Having given a warning, SIMD processing is very powerful

Vectors and arrays with thousands of processors are common

If your problem is data parallel, it can get huge speedups by
running SIMD

If you can get your data to the individual processors fast enough



Vector and Array Processors

Having given a warning, SIMD processing is very powerful

Vectors and arrays with thousands of processors are common

If your problem is data parallel, it can get huge speedups by
running SIMD

If you can get your data to the individual processors fast enough



Vector and Array Processors

Having given a warning, SIMD processing is very powerful

Vectors and arrays with thousands of processors are common

If your problem is data parallel, it can get huge speedups by
running SIMD

If you can get your data to the individual processors fast enough



Vector and Array Processors

Having given a warning, SIMD processing is very powerful

Vectors and arrays with thousands of processors are common

If your problem is data parallel, it can get huge speedups by
running SIMD

If you can get your data to the individual processors fast enough



Vector and Array Processors

In SIMD the processing power is not the problem: it’s the data
movement

With thousands of processors, CPU is essentially free

The major way to lose efficiency is through data movement



Vector and Array Processors

In SIMD the processing power is not the problem: it’s the data
movement

With thousands of processors, CPU is essentially free

The major way to lose efficiency is through data movement



Vector and Array Processors

In SIMD the processing power is not the problem: it’s the data
movement

With thousands of processors, CPU is essentially free

The major way to lose efficiency is through data movement



Vector and Array Processors
As usual, the bus bandwidths between the processors and
between the global memory and the processors is much less
than you might wish

The total aggregate bandwidth, adding together all the
individual bandwidths of all the buses can be huge, but this is a
useless statistic (thus is given by marketing)

Careful overlapping of communications and processing is the
way to make these systems work at their best efficiency

Thus, for example, rather than waiting for a read from memory
to return a value, go away and do some other computation
while the read is being processed

This kind of asynchronous programming improves efficiency
but is much harder to do and to get right



Vector and Array Processors
As usual, the bus bandwidths between the processors and
between the global memory and the processors is much less
than you might wish

The total aggregate bandwidth, adding together all the
individual bandwidths of all the buses can be huge, but this is a
useless statistic (thus is given by marketing)

Careful overlapping of communications and processing is the
way to make these systems work at their best efficiency

Thus, for example, rather than waiting for a read from memory
to return a value, go away and do some other computation
while the read is being processed

This kind of asynchronous programming improves efficiency
but is much harder to do and to get right



Vector and Array Processors
As usual, the bus bandwidths between the processors and
between the global memory and the processors is much less
than you might wish

The total aggregate bandwidth, adding together all the
individual bandwidths of all the buses can be huge, but this is a
useless statistic (thus is given by marketing)

Careful overlapping of communications and processing is the
way to make these systems work at their best efficiency

Thus, for example, rather than waiting for a read from memory
to return a value, go away and do some other computation
while the read is being processed

This kind of asynchronous programming improves efficiency
but is much harder to do and to get right



Vector and Array Processors
As usual, the bus bandwidths between the processors and
between the global memory and the processors is much less
than you might wish

The total aggregate bandwidth, adding together all the
individual bandwidths of all the buses can be huge, but this is a
useless statistic (thus is given by marketing)

Careful overlapping of communications and processing is the
way to make these systems work at their best efficiency

Thus, for example, rather than waiting for a read from memory
to return a value, go away and do some other computation
while the read is being processed

This kind of asynchronous programming improves efficiency
but is much harder to do and to get right



Vector and Array Processors
As usual, the bus bandwidths between the processors and
between the global memory and the processors is much less
than you might wish

The total aggregate bandwidth, adding together all the
individual bandwidths of all the buses can be huge, but this is a
useless statistic (thus is given by marketing)

Careful overlapping of communications and processing is the
way to make these systems work at their best efficiency

Thus, for example, rather than waiting for a read from memory
to return a value, go away and do some other computation
while the read is being processed

This kind of asynchronous programming improves efficiency
but is much harder to do and to get right


