
Vector and Array Processors

Back to the SIMD architecture: now is the point where need to
talk about an interesting feature of SIMD processing

The main feature of SIMD is that all processors are doing the
same thing. . .

. . . so how can conditionals work?

Here is an example, written using a fictional SIMD C
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Suppose we have a get proc() function (“get processor
number”) that returns the index of the processor:

int me;

me = get_proc();

...

This allows us to distinguish between processors; the value of
me is different on each processor

We could use me to index into a vector, so each processor
operates on a different element

v[me] = (v[me - 1] + v[me + 1])/2.0;
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Vector and Array Processors

So what does this code do?

int me, n;

me = get_proc();

if (me > 512) {

n = 1;

}

else {

n = -1;

}
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Instinctively you think it sets n in processors above 512 to 1 and
in the other processors n is set to -1

And this is what it does do

But a SIMD machine executes the same code in all processors,
so how can it execute the n = 1 assignment on some and the
n = -1 assignment on others?
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It doesn’t: at any point in time each processor is executing the
current instruction

or doing nothing at all

Processors can be inhibited, meaning not participating in the
current instruction

There is a per-processor inhibit flag to say whether this
processor is on or off

This is how we get different code paths on different processors
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We must modify our description of SIMD machines:

Each processor either executes the same instruction
as the others; or does nothing at all
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Returning to the code

if (me > 512) {

n = 1;

}

else {

n = -1;

}

This is executed as follows:

• All processors execute the test in the if

• In those processors for which the test fails, the inhibit flag
is set

• All processors move to the n = 1; the inhibited processors
do nothing while the others execute the assignment
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• All processors move to the else; all inhibit flags are
inverted

• All processors move to the n = -1; the inhibited
processors do nothing while the others execute the
assignment

• All inhibit flags are cleared
• All processors move on to after the if

Both branches of an if always taken by all processors!
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The time taken for an if is the sum of the times of both
branches

Quite different from sequential code

Reality is a little more complicated: think about nested ifs

There is actually a stack of inhibit flags!

Exercise Think this through for yourself!
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Vector and Array Processors

This seems like poor use of our processors if lots of them are
inhibited

True, so SIMD code should be written to minimise conditional
branches

But with thousands of CPUs, processing power is cheap, so
inhibiting some of them is not as bad as it seems, as long as it
is not overdone

if (me > 512) foo();

else bar();

is not good code: all of foo must be executed before bar can
start, so there is a large amount of inhibition
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Inhibition applies to all conditional code, like loops:

int i, n;

...

for (i = 0; i < n; i++) {

...

}

All processors start the loop

As i increases, some processors pass their exit test and are
inhibited; other processors continue executing; all processors
continue looping

Note no processor starts executing after the loop until all
processors have exited
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Loops must wait until all processors have completed: they take
time the maximum of the individual processors

SIMD loops are most efficient when all the loops are of the
same size

Similarly for all conditional constructs: if there is a choice all
processors will take all the choices, but some are appropriately
inhibited
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Connection Machines had a lightbulb per processor: initially
they set it so the light was on when the processor was active

After a while they fixed it so the light was on when the
processor was inhibited. . .

We shall return to SIMD programming with CUDA, later, when
we talk about parallel languages
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We have seen a variety of machine architectures, but primarily
people use:

• shared memory
• distributed memory
• SIMD

Quite often, all at once!

It is time to move from the machines to the code running on
them
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The first will look at a few general techniques and some classic
problems in parallelism

The second will be a couple of specific algorithms, such as a
parallel sort
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Parallel Algorithms
Divide and Conquer

Perhaps the simplest way to parallelise a problem is divide and
conquer

• subdivide the problem into smaller parts
• process the parts in parallel
• merge the results back together

Of course, this only applies if you have a problem that you can
subdivide!

And it works best if the parts are independent of each other:
less communication
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• subdivide the values into smaller chunks, sending the
chunks to separate processors

• each processor sums its chunk (process in parallel)
• return the results to the main processor and add the values

together (merge)
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Too small and we spend all our time in communication
overhead; plus the merge step gets bigger

Too large, thus fewer chunks, and we might not get the
parallelism we want
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Granularity

This is the question of granularity, or “chunk size”

A big problem in programming parallelism is deciding on the
choice of granularity of a sub-problem, for exactly the reasons
given above

Computing a single sum is a small grain; while averaging a row
of a large matrix is a big grain

The former you might not want to parallelise; the latter you
would
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You will see “small grain” and “large grain”; alternatively “fine
grain” and “coarse grain”

Granularity: the ability of a problem (data or computation) to be
divided into fine or only coarse grains

Some programs may only admit a coarse granularity

Some may admit a fine grain, but should we split it up into small
grains?
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Coarse: less parallelism, less communications
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It’s the grey area in the middle that is the issue: how large
should a grain be before we consider running it in parallel?

The answer: it depends

On everything, but particularly the ratio of computation time to
communications speed on the particular hardware we have
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For fast communications (shared memory, perhaps) we would
chop our problem up into relatively small grains

For slow communications (distributed memory, perhaps) the
sub-problems need to be larger before we benefit from
parallelising

Often, the best way of working it out is just to try some test
programs and measure the result
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