
Parallel Algorithms
Granularity

An example: adding together two large vectors, maybe on
shared memory, maybe on distributed memory

Proc 2

Proc 1

Proc 3

Proc 4

Proc 5

Proc 6

Proc 7

Proc 8

Proc 0

+ =

Adding vectors

The simple fine grain allocation of one add per processor might
not be the best if communications costs dictate otherwise



Parallel Algorithms
Granularity

An example: adding together two large vectors, maybe on
shared memory, maybe on distributed memory

Proc 2

Proc 1

Proc 3

Proc 4

Proc 5

Proc 6

Proc 7

Proc 8

Proc 0

+ =

Adding vectors

The simple fine grain allocation of one add per processor might
not be the best if communications costs dictate otherwise



Parallel Algorithms
Granularity

For example, if the time it takes to get the data to the individual
processors is large we would want to reduce the data
movement

And in current memory architectures, it could take roughly the
same amount of time to move one byte as it takes to move 10
or 100 or 1000 bytes

Time = fixed overhead in setting up the transfer +
variable overhead in doing the transfer



Parallel Algorithms
Granularity

For example, if the time it takes to get the data to the individual
processors is large we would want to reduce the data
movement

And in current memory architectures, it could take roughly the
same amount of time to move one byte as it takes to move 10
or 100 or 1000 bytes

Time = fixed overhead in setting up the transfer +
variable overhead in doing the transfer



Parallel Algorithms
Granularity

For example, if the time it takes to get the data to the individual
processors is large we would want to reduce the data
movement

And in current memory architectures, it could take roughly the
same amount of time to move one byte as it takes to move 10
or 100 or 1000 bytes

Time = fixed overhead in setting up the transfer +
variable overhead in doing the transfer



Parallel Algorithms
Granularity

Thus: if we need to move data, move it in large chunks

So, typically, we would have each processor would take a
selection of elements and add them sequentially

Larger grains of computation



Parallel Algorithms
Granularity

Thus: if we need to move data, move it in large chunks

So, typically, we would have each processor would take a
selection of elements and add them sequentially

Larger grains of computation



Parallel Algorithms
Granularity

Thus: if we need to move data, move it in large chunks

So, typically, we would have each processor would take a
selection of elements and add them sequentially

Larger grains of computation



Parallel Algorithms
Granularity

+ =

Proc 2

Proc 1

Proc 0

x

x

Adding contiguous blocks

They might be in contiguous chunks or spread somehow
across the vectors, depending on the memory architecture

For example, CPUs like blocked data (0,1,2,3) (4,5,6,7) . . . ,
while GPUs like strided data (0,4,8,12) (1,5,9,13) . . .



Parallel Algorithms
Granularity

+ =

Proc 2

Proc 1

Proc 0

x

x

Adding contiguous blocks

They might be in contiguous chunks or spread somehow
across the vectors, depending on the memory architecture

For example, CPUs like blocked data (0,1,2,3) (4,5,6,7) . . .

,
while GPUs like strided data (0,4,8,12) (1,5,9,13) . . .



Parallel Algorithms
Granularity

+ =

Proc 2

Proc 1

Proc 0

x

x

Strided data

They might be in contiguous chunks or spread somehow
across the vectors, depending on the memory architecture

For example, CPUs like blocked data (0,1,2,3) (4,5,6,7) . . . ,
while GPUs like strided data (0,4,8,12) (1,5,9,13) . . .



Parallel Algorithms
Divide and Conquer

The size of the grain we need will dictate the number of chunks
we chop the problem into

How many sub-problems should we have on each core?

It is sometimes recommended that you have a “few”
sub-problems per processor

This allows you to overlap communications with computation

While a sub-problem is waiting for some data, the processor
can continue computing on another sub-problem



Parallel Algorithms
Divide and Conquer

The size of the grain we need will dictate the number of chunks
we chop the problem into

How many sub-problems should we have on each core?

It is sometimes recommended that you have a “few”
sub-problems per processor

This allows you to overlap communications with computation

While a sub-problem is waiting for some data, the processor
can continue computing on another sub-problem



Parallel Algorithms
Divide and Conquer

The size of the grain we need will dictate the number of chunks
we chop the problem into

How many sub-problems should we have on each core?

It is sometimes recommended that you have a “few”
sub-problems per processor

This allows you to overlap communications with computation

While a sub-problem is waiting for some data, the processor
can continue computing on another sub-problem



Parallel Algorithms
Divide and Conquer

The size of the grain we need will dictate the number of chunks
we chop the problem into

How many sub-problems should we have on each core?

It is sometimes recommended that you have a “few”
sub-problems per processor

This allows you to overlap communications with computation

While a sub-problem is waiting for some data, the processor
can continue computing on another sub-problem



Parallel Algorithms
Divide and Conquer

The size of the grain we need will dictate the number of chunks
we chop the problem into

How many sub-problems should we have on each core?

It is sometimes recommended that you have a “few”
sub-problems per processor

This allows you to overlap communications with computation

While a sub-problem is waiting for some data, the processor
can continue computing on another sub-problem



Parallel Algorithms
Divide and Conquer

How many is “a few”?

It depends

GPUs like to have very many many sub-problems per cores: as
graphics problems need to push a lot of data around the
processors would need to hang around doing nothing while
waiting for data a lot: unless they have lots of other
sub-problems to work on



Parallel Algorithms
Divide and Conquer

How many is “a few”?

It depends

GPUs like to have very many many sub-problems per cores: as
graphics problems need to push a lot of data around the
processors would need to hang around doing nothing while
waiting for data a lot: unless they have lots of other
sub-problems to work on



Parallel Algorithms
Divide and Conquer

How many is “a few”?

It depends

GPUs like to have very many many sub-problems per cores: as
graphics problems need to push a lot of data around the
processors would need to hang around doing nothing while
waiting for data a lot: unless they have lots of other
sub-problems to work on



Parallel Algorithms
Divide and Conquer

Back to divide and conquer of adding numbers: isn’t the merge
step “add the values together” just another instance of the
original question?

Yes, so a lot of divide and conquer methods are deeply
recursive (not all, though)



Parallel Algorithms
Divide and Conquer

Back to divide and conquer of adding numbers: isn’t the merge
step “add the values together” just another instance of the
original question?

Yes, so a lot of divide and conquer methods are deeply
recursive (not all, though)



Parallel Algorithms
Divide and Conquer

This summation problem is usually regarded as

• if the number of values is small then
• add them directly, sequentially
• return the sum
• else divide them into two chunks
• recursively sum the parts in parallel
• add the two results
• return the sum



Parallel Algorithms
Divide and Conquer

1 2 3 4 5 6 70

1 5 9 13

6 22

28

step 1
4 procs

step 2
2 procs

step 3
1 proc

Add pairs



Parallel Algorithms
Divide and Conquer

1 2 3 4 5 6 70

1 5 9 13

6 22

28

step 1
4 procs

step 2
2 procs

step 3
1 proc

Add pairs of sums



Parallel Algorithms
Divide and Conquer

1 2 3 4 5 6 70

1 5 9 13

6 22

28

step 1
4 procs

step 2
2 procs

step 3
1 proc

Add final pair



Parallel Algorithms
Divide and Conquer

We can compute the speedup and efficiency of this. We ignore
communications overhead, so essentially we are using a PRAM
model

Time on a sequential processor: 7

Time on this parallel system: 3

Speedup = 7/3 = 2.33

Efficiency, using 4 processors: 2.33/4 = 58%

Note we are only using all the processors in the first step:
thereafter there is increasing amounts of idle hardware



Parallel Algorithms
Divide and Conquer

We can compute the speedup and efficiency of this. We ignore
communications overhead, so essentially we are using a PRAM
model

Time on a sequential processor: 7

Time on this parallel system: 3

Speedup = 7/3 = 2.33

Efficiency, using 4 processors: 2.33/4 = 58%

Note we are only using all the processors in the first step:
thereafter there is increasing amounts of idle hardware



Parallel Algorithms
Divide and Conquer

We can compute the speedup and efficiency of this. We ignore
communications overhead, so essentially we are using a PRAM
model

Time on a sequential processor: 7

Time on this parallel system: 3

Speedup = 7/3 = 2.33

Efficiency, using 4 processors: 2.33/4 = 58%

Note we are only using all the processors in the first step:
thereafter there is increasing amounts of idle hardware



Parallel Algorithms
Divide and Conquer

We can compute the speedup and efficiency of this. We ignore
communications overhead, so essentially we are using a PRAM
model

Time on a sequential processor: 7

Time on this parallel system: 3

Speedup = 7/3 = 2.33

Efficiency, using 4 processors: 2.33/4 = 58%

Note we are only using all the processors in the first step:
thereafter there is increasing amounts of idle hardware



Parallel Algorithms
Divide and Conquer

We can compute the speedup and efficiency of this. We ignore
communications overhead, so essentially we are using a PRAM
model

Time on a sequential processor: 7

Time on this parallel system: 3

Speedup = 7/3 = 2.33

Efficiency, using 4 processors: 2.33/4 = 58%

Note we are only using all the processors in the first step:
thereafter there is increasing amounts of idle hardware



Parallel Algorithms
Divide and Conquer

We can compute the speedup and efficiency of this. We ignore
communications overhead, so essentially we are using a PRAM
model

Time on a sequential processor: 7

Time on this parallel system: 3

Speedup = 7/3 = 2.33

Efficiency, using 4 processors: 2.33/4 = 58%

Note we are only using all the processors in the first step:
thereafter there is increasing amounts of idle hardware



Parallel Algorithms
Divide and Conquer

Divide and conquer is a good approach as long as you use it
carefully

It is natural and easy to understand

It is fairly easy to program

It scales well to very large problems

But not all problems break up arbitrarily like this

And merging the parts can be as hard as the original problem



Parallel Algorithms
Divide and Conquer

Divide and conquer is a good approach as long as you use it
carefully

It is natural and easy to understand

It is fairly easy to program

It scales well to very large problems

But not all problems break up arbitrarily like this

And merging the parts can be as hard as the original problem



Parallel Algorithms
Divide and Conquer

Divide and conquer is a good approach as long as you use it
carefully

It is natural and easy to understand

It is fairly easy to program

It scales well to very large problems

But not all problems break up arbitrarily like this

And merging the parts can be as hard as the original problem



Parallel Algorithms
Divide and Conquer

Divide and conquer is a good approach as long as you use it
carefully

It is natural and easy to understand

It is fairly easy to program

It scales well to very large problems

But not all problems break up arbitrarily like this

And merging the parts can be as hard as the original problem



Parallel Algorithms
Divide and Conquer

Divide and conquer is a good approach as long as you use it
carefully

It is natural and easy to understand

It is fairly easy to program

It scales well to very large problems

But not all problems break up arbitrarily like this

And merging the parts can be as hard as the original problem



Parallel Algorithms
Divide and Conquer

Divide and conquer is a good approach as long as you use it
carefully

It is natural and easy to understand

It is fairly easy to program

It scales well to very large problems

But not all problems break up arbitrarily like this

And merging the parts can be as hard as the original problem



Parallel Algorithms
Divide and Conquer

It is a good technique to use in sequential systems, too

Recall merge sort (divide and conquer) is much better than
bubble sort

Bubble sort isn’t parallelisable in any meaningful way (while still
remaining essentially a bubble sort)

The Fast Fourier Transform is a prime example of a good
sequential application of divide and conquer



Parallel Algorithms
Divide and Conquer

It is a good technique to use in sequential systems, too

Recall merge sort (divide and conquer) is much better than
bubble sort

Bubble sort isn’t parallelisable in any meaningful way (while still
remaining essentially a bubble sort)

The Fast Fourier Transform is a prime example of a good
sequential application of divide and conquer



Parallel Algorithms
Divide and Conquer

It is a good technique to use in sequential systems, too

Recall merge sort (divide and conquer) is much better than
bubble sort

Bubble sort isn’t parallelisable in any meaningful way (while still
remaining essentially a bubble sort)

The Fast Fourier Transform is a prime example of a good
sequential application of divide and conquer



Parallel Algorithms
Divide and Conquer

It is a good technique to use in sequential systems, too

Recall merge sort (divide and conquer) is much better than
bubble sort

Bubble sort isn’t parallelisable in any meaningful way (while still
remaining essentially a bubble sort)

The Fast Fourier Transform is a prime example of a good
sequential application of divide and conquer



Parallel Algorithms
Divide and Conquer

Of course splitting up isn’t always the best option when
you have a big problem. Counselling often works.
Anonymous. CM30225 exam, January 2011



Parallel Algorithms
Provider/Consumer

Terminology: we shall describe a method that previously was
called “master/slave”: if you need to look it up, you will find it
under this name

Until a generally agreed replacement terminology is decided,
we shall be calling it “provider/consumer”



Parallel Algorithms
Provider/Consumer

Terminology: we shall describe a method that previously was
called “master/slave”: if you need to look it up, you will find it
under this name

Until a generally agreed replacement terminology is decided,
we shall be calling it “provider/consumer”



Parallel Algorithms
Provider/Consumer

Divide and conquer is a way of arranging the problem. We now
look at a way of arranging the control of the processing

Provider/consumer is a technique where there is a single main
thread that determines what many consumer threads do

For example, to do a large matrix multiplication, the main thread
could get many consumer threads to do sub-parts of the
operation

When the consumers are done the main thread can continue



Parallel Algorithms
Provider/Consumer

Divide and conquer is a way of arranging the problem. We now
look at a way of arranging the control of the processing

Provider/consumer is a technique where there is a single main
thread that determines what many consumer threads do

For example, to do a large matrix multiplication, the main thread
could get many consumer threads to do sub-parts of the
operation

When the consumers are done the main thread can continue



Parallel Algorithms
Provider/Consumer

Divide and conquer is a way of arranging the problem. We now
look at a way of arranging the control of the processing

Provider/consumer is a technique where there is a single main
thread that determines what many consumer threads do

For example, to do a large matrix multiplication, the main thread
could get many consumer threads to do sub-parts of the
operation

When the consumers are done the main thread can continue



Parallel Algorithms
Provider/Consumer

Divide and conquer is a way of arranging the problem. We now
look at a way of arranging the control of the processing

Provider/consumer is a technique where there is a single main
thread that determines what many consumer threads do

For example, to do a large matrix multiplication, the main thread
could get many consumer threads to do sub-parts of the
operation

When the consumers are done the main thread can continue



Parallel Algorithms
Provider/Consumer

Provider/consumer aligns naturally with divide and conquer, but
usually not in a recursive way: in most uses the consumers
don’t use sub-consumers

Note: these ideas are not mutually exclusive, but they tend to
overlap somewhat



Parallel Algorithms
Provider/Consumer

Provider/consumer aligns naturally with divide and conquer, but
usually not in a recursive way: in most uses the consumers
don’t use sub-consumers

Note: these ideas are not mutually exclusive, but they tend to
overlap somewhat



Parallel Algorithms
Provider/Consumer

Provider/consumer is also related to the server farm, where a
(large) collection of machines waits for problems to be sent to
them

For example, to do a search Google might send out sub-parts
of the search to a collection of machines, and then collate the
results

In any case, in provider/consumer there is an asymmetry of
control: one thread controlling several others



Parallel Algorithms
Provider/Consumer

Provider/consumer is also related to the server farm, where a
(large) collection of machines waits for problems to be sent to
them

For example, to do a search Google might send out sub-parts
of the search to a collection of machines, and then collate the
results

In any case, in provider/consumer there is an asymmetry of
control: one thread controlling several others



Parallel Algorithms
Provider/Consumer

Provider/consumer is also related to the server farm, where a
(large) collection of machines waits for problems to be sent to
them

For example, to do a search Google might send out sub-parts
of the search to a collection of machines, and then collate the
results

In any case, in provider/consumer there is an asymmetry of
control: one thread controlling several others



Parallel Algorithms
Manager/Worker

Provider/consumer is superficially quite similar to
manager/worker, also called bag of tasks

In this, there is a global set of problems to process held by the
manager and the workers request a problem from the manager
as they need

A different control than provider/consumer

This allows easy load balancing on the workers



Parallel Algorithms
Manager/Worker

Provider/consumer is superficially quite similar to
manager/worker, also called bag of tasks

In this, there is a global set of problems to process held by the
manager and the workers request a problem from the manager
as they need

A different control than provider/consumer

This allows easy load balancing on the workers



Parallel Algorithms
Manager/Worker

Provider/consumer is superficially quite similar to
manager/worker, also called bag of tasks

In this, there is a global set of problems to process held by the
manager and the workers request a problem from the manager
as they need

A different control than provider/consumer

This allows easy load balancing on the workers



Parallel Algorithms
Manager/Worker

Provider/consumer is superficially quite similar to
manager/worker, also called bag of tasks

In this, there is a global set of problems to process held by the
manager and the workers request a problem from the manager
as they need

A different control than provider/consumer

This allows easy load balancing on the workers



Parallel Algorithms
Load Balancing

Load balancing is one thing to do to approach a good efficiency

For example, if we have two big (time consuming) problems
and two small ones, and two processors it makes sense to give
each processor one big and one small

If we give one processor both big problems and the other both
the little ones it is clear our speedup and efficiency will both be
lower as the second processor will soon be idling while we wait
for the first to finish



Parallel Algorithms
Load Balancing

Load balancing is one thing to do to approach a good efficiency

For example, if we have two big (time consuming) problems
and two small ones, and two processors it makes sense to give
each processor one big and one small

If we give one processor both big problems and the other both
the little ones it is clear our speedup and efficiency will both be
lower as the second processor will soon be idling while we wait
for the first to finish



Parallel Algorithms
Load Balancing

Load balancing is one thing to do to approach a good efficiency

For example, if we have two big (time consuming) problems
and two small ones, and two processors it makes sense to give
each processor one big and one small

If we give one processor both big problems and the other both
the little ones it is clear our speedup and efficiency will both be
lower as the second processor will soon be idling while we wait
for the first to finish



Parallel Algorithms
Load Balancing

Task1

Task3 Task4

Task2

Task3

Task4

time

time

Proc1

Proc2

Proc1

Proc2

balanced

unbalanced

idle
Task1

Task2

Balanced and unbalanced computations



Parallel Algorithms
Load Balancing

Load balancing tries to spread out the workload in a sensible
fashion

It requires us to have some idea of how big each sub-problem
is, namely a good estimate of their granularity

Theory tells us that this is impossible in general, but for the
most part in practice we can make a decent guess

Many large problems are quite regular in structure and as so
fairly amenable to this kind of analysis, but there are many
irregular problems that are not so easy



Parallel Algorithms
Load Balancing

Load balancing tries to spread out the workload in a sensible
fashion

It requires us to have some idea of how big each sub-problem
is, namely a good estimate of their granularity

Theory tells us that this is impossible in general, but for the
most part in practice we can make a decent guess

Many large problems are quite regular in structure and as so
fairly amenable to this kind of analysis, but there are many
irregular problems that are not so easy



Parallel Algorithms
Load Balancing

Load balancing tries to spread out the workload in a sensible
fashion

It requires us to have some idea of how big each sub-problem
is, namely a good estimate of their granularity

Theory tells us that this is impossible in general, but for the
most part in practice we can make a decent guess

Many large problems are quite regular in structure and as so
fairly amenable to this kind of analysis, but there are many
irregular problems that are not so easy



Parallel Algorithms
Load Balancing

Load balancing tries to spread out the workload in a sensible
fashion

It requires us to have some idea of how big each sub-problem
is, namely a good estimate of their granularity

Theory tells us that this is impossible in general, but for the
most part in practice we can make a decent guess

Many large problems are quite regular in structure and as so
fairly amenable to this kind of analysis, but there are many
irregular problems that are not so easy



Parallel Algorithms
Load Balancing

And even if we have a good idea of the size of each task,
finding an even balance can be difficult (the multiprocessor
scheduling problem is NP-hard)

Note that load balancing applies to more than just CPU cycles:
there’s memory, network bandwidth and any other limited
resource

And these play off against each other: it may be worthwhile to
put two sub-problems on the same processor if they need to
swap data and this will reduce communications overheads

Load balancing is quite similar to process scheduling in
operating systems: but now we might be working with large
distributed systems



Parallel Algorithms
Load Balancing

And even if we have a good idea of the size of each task,
finding an even balance can be difficult (the multiprocessor
scheduling problem is NP-hard)

Note that load balancing applies to more than just CPU cycles:
there’s memory, network bandwidth and any other limited
resource

And these play off against each other: it may be worthwhile to
put two sub-problems on the same processor if they need to
swap data and this will reduce communications overheads

Load balancing is quite similar to process scheduling in
operating systems: but now we might be working with large
distributed systems



Parallel Algorithms
Load Balancing

And even if we have a good idea of the size of each task,
finding an even balance can be difficult (the multiprocessor
scheduling problem is NP-hard)

Note that load balancing applies to more than just CPU cycles:
there’s memory, network bandwidth and any other limited
resource

And these play off against each other: it may be worthwhile to
put two sub-problems on the same processor if they need to
swap data and this will reduce communications overheads

Load balancing is quite similar to process scheduling in
operating systems: but now we might be working with large
distributed systems



Parallel Algorithms
Load Balancing

And even if we have a good idea of the size of each task,
finding an even balance can be difficult (the multiprocessor
scheduling problem is NP-hard)

Note that load balancing applies to more than just CPU cycles:
there’s memory, network bandwidth and any other limited
resource

And these play off against each other: it may be worthwhile to
put two sub-problems on the same processor if they need to
swap data and this will reduce communications overheads

Load balancing is quite similar to process scheduling in
operating systems: but now we might be working with large
distributed systems



Parallel Algorithms
Manager/Worker

The manager/worker model is good because it is somewhat
self-balancing on average

A worker that happens to get a small task will soon be back for
another task

Provider/consumer might have to take some care over which
tasks it supplies to where

Though this is not a problem if all sub-tasks are the same size.
Provider/consumer is good for this case and might be simpler
to implement than manager/worker



Parallel Algorithms
Manager/Worker

The manager/worker model is good because it is somewhat
self-balancing on average

A worker that happens to get a small task will soon be back for
another task

Provider/consumer might have to take some care over which
tasks it supplies to where

Though this is not a problem if all sub-tasks are the same size.
Provider/consumer is good for this case and might be simpler
to implement than manager/worker



Parallel Algorithms
Manager/Worker

The manager/worker model is good because it is somewhat
self-balancing on average

A worker that happens to get a small task will soon be back for
another task

Provider/consumer might have to take some care over which
tasks it supplies to where

Though this is not a problem if all sub-tasks are the same size.
Provider/consumer is good for this case and might be simpler
to implement than manager/worker



Parallel Algorithms
Manager/Worker

The manager/worker model is good because it is somewhat
self-balancing on average

A worker that happens to get a small task will soon be back for
another task

Provider/consumer might have to take some care over which
tasks it supplies to where

Though this is not a problem if all sub-tasks are the same size.
Provider/consumer is good for this case and might be simpler
to implement than manager/worker



Parallel Algorithms
Thread Pools

A way of implementing manager/worker is to use thread pools

We have a pool of threads that take tasks from one or more
managers

After each task, a thread goes back to the manager for a new
task

We mitigate the overhead of thread creation/deletion

The thread pool can be managed within the program, or
system-wide by the OS



Parallel Algorithms
Thread Pools

A way of implementing manager/worker is to use thread pools

We have a pool of threads that take tasks from one or more
managers

After each task, a thread goes back to the manager for a new
task

We mitigate the overhead of thread creation/deletion

The thread pool can be managed within the program, or
system-wide by the OS



Parallel Algorithms
Thread Pools

A way of implementing manager/worker is to use thread pools

We have a pool of threads that take tasks from one or more
managers

After each task, a thread goes back to the manager for a new
task

We mitigate the overhead of thread creation/deletion

The thread pool can be managed within the program, or
system-wide by the OS



Parallel Algorithms
Thread Pools

A way of implementing manager/worker is to use thread pools

We have a pool of threads that take tasks from one or more
managers

After each task, a thread goes back to the manager for a new
task

We mitigate the overhead of thread creation/deletion

The thread pool can be managed within the program, or
system-wide by the OS



Parallel Algorithms
Thread Pools

A way of implementing manager/worker is to use thread pools

We have a pool of threads that take tasks from one or more
managers

After each task, a thread goes back to the manager for a new
task

We mitigate the overhead of thread creation/deletion

The thread pool can be managed within the program, or
system-wide by the OS



Parallel Algorithms
Thread Pools

If the pool is managed by the operating system it can have a
global view of how the entire system’s resources are being used

Threads can be passed to any program, again reducing the
overall overheads

And the OS can increase or decrease the number of threads
according to how the whole system is loaded

This requires OS support, of course: think of the issues of
access to the program’s address space by each thread



Parallel Algorithms
Thread Pools

If the pool is managed by the operating system it can have a
global view of how the entire system’s resources are being used

Threads can be passed to any program, again reducing the
overall overheads

And the OS can increase or decrease the number of threads
according to how the whole system is loaded

This requires OS support, of course: think of the issues of
access to the program’s address space by each thread



Parallel Algorithms
Thread Pools

If the pool is managed by the operating system it can have a
global view of how the entire system’s resources are being used

Threads can be passed to any program, again reducing the
overall overheads

And the OS can increase or decrease the number of threads
according to how the whole system is loaded

This requires OS support, of course: think of the issues of
access to the program’s address space by each thread



Parallel Algorithms
Thread Pools

If the pool is managed by the operating system it can have a
global view of how the entire system’s resources are being used

Threads can be passed to any program, again reducing the
overall overheads

And the OS can increase or decrease the number of threads
according to how the whole system is loaded

This requires OS support, of course: think of the issues of
access to the program’s address space by each thread



Parallel Algorithms
Thread Pools: GCD

This is the idea of Apple’s “solution” to parallelism: Grand
Central Dispatch (GCD)

Rather than programs creating their own threads, e.g., using
pthreads, they use (and re-use) the OS’s threads from a global
thread pool

A program gets access to a pool thread by putting a task, e.g.,
a function call, on a queue

The worker threads pick tasks off the queues and execute them

Parallelism is obtained by having lots of worker threads taking
tasks



Parallel Algorithms
Thread Pools: GCD

This is the idea of Apple’s “solution” to parallelism: Grand
Central Dispatch (GCD)

Rather than programs creating their own threads, e.g., using
pthreads, they use (and re-use) the OS’s threads from a global
thread pool

A program gets access to a pool thread by putting a task, e.g.,
a function call, on a queue

The worker threads pick tasks off the queues and execute them

Parallelism is obtained by having lots of worker threads taking
tasks



Parallel Algorithms
Thread Pools: GCD

This is the idea of Apple’s “solution” to parallelism: Grand
Central Dispatch (GCD)

Rather than programs creating their own threads, e.g., using
pthreads, they use (and re-use) the OS’s threads from a global
thread pool

A program gets access to a pool thread by putting a task, e.g.,
a function call, on a queue

The worker threads pick tasks off the queues and execute them

Parallelism is obtained by having lots of worker threads taking
tasks



Parallel Algorithms
Thread Pools: GCD

This is the idea of Apple’s “solution” to parallelism: Grand
Central Dispatch (GCD)

Rather than programs creating their own threads, e.g., using
pthreads, they use (and re-use) the OS’s threads from a global
thread pool

A program gets access to a pool thread by putting a task, e.g.,
a function call, on a queue

The worker threads pick tasks off the queues and execute them

Parallelism is obtained by having lots of worker threads taking
tasks



Parallel Algorithms
Thread Pools: GCD

This is the idea of Apple’s “solution” to parallelism: Grand
Central Dispatch (GCD)

Rather than programs creating their own threads, e.g., using
pthreads, they use (and re-use) the OS’s threads from a global
thread pool

A program gets access to a pool thread by putting a task, e.g.,
a function call, on a queue

The worker threads pick tasks off the queues and execute them

Parallelism is obtained by having lots of worker threads taking
tasks



Parallel Algorithms
Thread Pools: GCD

So GCD gets the automatic load balancing of manager/worker

GCD can also provide mutual exclusion

By creating and using a special queue called a serial queue a
program indicates it wants just one thread to service this new
queue

As only one thread executes tasks from this queue there can be
no issues of interference between threads on that queue



Parallel Algorithms
Thread Pools: GCD

So GCD gets the automatic load balancing of manager/worker

GCD can also provide mutual exclusion

By creating and using a special queue called a serial queue a
program indicates it wants just one thread to service this new
queue

As only one thread executes tasks from this queue there can be
no issues of interference between threads on that queue



Parallel Algorithms
Thread Pools: GCD

So GCD gets the automatic load balancing of manager/worker

GCD can also provide mutual exclusion

By creating and using a special queue called a serial queue a
program indicates it wants just one thread to service this new
queue

As only one thread executes tasks from this queue there can be
no issues of interference between threads on that queue



Parallel Algorithms
Thread Pools: GCD

So GCD gets the automatic load balancing of manager/worker

GCD can also provide mutual exclusion

By creating and using a special queue called a serial queue a
program indicates it wants just one thread to service this new
queue

As only one thread executes tasks from this queue there can be
no issues of interference between threads on that queue



Parallel Algorithms
Thread Pools: GCD

So, roughly speaking, code like

fblock = make_lock();

get_lock(fblock); get_lock(fblock);

foo(); bar();

free_lock(fblock); free_lock(fblock);

becomes

fbqueue = make serial queue();

enqueue(foo, fbqueue); enqueue(bar, fbqueue);



Parallel Algorithms
Thread Pools: GCD

So, roughly speaking, code like

fblock = make_lock();

get_lock(fblock); get_lock(fblock);

foo(); bar();

free_lock(fblock); free_lock(fblock);

becomes

fbqueue = make serial queue();

enqueue(foo, fbqueue); enqueue(bar, fbqueue);



Parallel Algorithms
Thread Pools: GCD

So, roughly speaking, code like

fblock = make_lock();

get_lock(fblock); get_lock(fblock);

foo(); bar();

free_lock(fblock); free_lock(fblock);

becomes

fbqueue = make serial queue();

enqueue(foo, fbqueue); enqueue(bar, fbqueue);



Parallel Algorithms
Thread Pools: GCD

There is no loss of parallelism by using a single thread to
process the queue in this case, as the critical region has to be
serialised anyway

Though you do need to be careful about making the function
called as small as possible, for the usual reasons

Just as each critical resource needs its own lock, in GCD each
critical resource needs its own serial queue

If a resource would need two locks, then you need two queues
and put a function on the first queue that itself puts another
function on the second queue that actually executes the
required critical region

Somewhat fiddly



Parallel Algorithms
Thread Pools: GCD

There is no loss of parallelism by using a single thread to
process the queue in this case, as the critical region has to be
serialised anyway

Though you do need to be careful about making the function
called as small as possible, for the usual reasons

Just as each critical resource needs its own lock, in GCD each
critical resource needs its own serial queue

If a resource would need two locks, then you need two queues
and put a function on the first queue that itself puts another
function on the second queue that actually executes the
required critical region

Somewhat fiddly



Parallel Algorithms
Thread Pools: GCD

There is no loss of parallelism by using a single thread to
process the queue in this case, as the critical region has to be
serialised anyway

Though you do need to be careful about making the function
called as small as possible, for the usual reasons

Just as each critical resource needs its own lock, in GCD each
critical resource needs its own serial queue

If a resource would need two locks, then you need two queues
and put a function on the first queue that itself puts another
function on the second queue that actually executes the
required critical region

Somewhat fiddly



Parallel Algorithms
Thread Pools: GCD

There is no loss of parallelism by using a single thread to
process the queue in this case, as the critical region has to be
serialised anyway

Though you do need to be careful about making the function
called as small as possible, for the usual reasons

Just as each critical resource needs its own lock, in GCD each
critical resource needs its own serial queue

If a resource would need two locks, then you need two queues
and put a function on the first queue that itself puts another
function on the second queue that actually executes the
required critical region

Somewhat fiddly



Parallel Algorithms
Thread Pools: GCD

There is no loss of parallelism by using a single thread to
process the queue in this case, as the critical region has to be
serialised anyway

Though you do need to be careful about making the function
called as small as possible, for the usual reasons

Just as each critical resource needs its own lock, in GCD each
critical resource needs its own serial queue

If a resource would need two locks, then you need two queues
and put a function on the first queue that itself puts another
function on the second queue that actually executes the
required critical region

Somewhat fiddly



Parallel Algorithms
Thread Pools: GCD

Rather than placing functions in queues, Apple’s
implementation makes extensive use of closures, a feature they
have added to their version of C

They call them blocks, but they are similar to lambdas in other
languages

Of course, closures were imported from the functional
programming style: as long as we have referential transparency
the individual tasks can run completely independently



Parallel Algorithms
Thread Pools: GCD

Rather than placing functions in queues, Apple’s
implementation makes extensive use of closures, a feature they
have added to their version of C

They call them blocks, but they are similar to lambdas in other
languages

Of course, closures were imported from the functional
programming style: as long as we have referential transparency
the individual tasks can run completely independently



Parallel Algorithms
Thread Pools: GCD

Rather than placing functions in queues, Apple’s
implementation makes extensive use of closures, a feature they
have added to their version of C

They call them blocks, but they are similar to lambdas in other
languages

Of course, closures were imported from the functional
programming style: as long as we have referential transparency
the individual tasks can run completely independently



Parallel Algorithms
Thread Pools: GCD

Apple’s claim is that queues are cheap to create and use, while
threads and mutexes are expensive

They are less effusive on costs like mutual exclusion on the
queue itself; costs of the OS deciding on which thread services
which queue; costs of the virtual address mapping of the
threads as they get assigned to processes; cost of creation and
manipulation of closures; and so on

We are still waiting to see if the GCD paradigm is easy to use in
real programs or not!



Parallel Algorithms
Thread Pools: GCD

Apple’s claim is that queues are cheap to create and use, while
threads and mutexes are expensive

They are less effusive on costs like mutual exclusion on the
queue itself; costs of the OS deciding on which thread services
which queue; costs of the virtual address mapping of the
threads as they get assigned to processes; cost of creation and
manipulation of closures; and so on

We are still waiting to see if the GCD paradigm is easy to use in
real programs or not!



Parallel Algorithms
Thread Pools: GCD

Apple’s claim is that queues are cheap to create and use, while
threads and mutexes are expensive

They are less effusive on costs like mutual exclusion on the
queue itself; costs of the OS deciding on which thread services
which queue; costs of the virtual address mapping of the
threads as they get assigned to processes; cost of creation and
manipulation of closures; and so on

We are still waiting to see if the GCD paradigm is easy to use in
real programs or not!



Parallel Algorithms
Thread Pools

While GCD uses thread pools at the OS level, the approach of
a program implementing its own pool is quite common

Again, and this is true for all these concurrency paradigms, this
only works well if your problem happens to fit well into the pool
or manager/worker patterns

One of the many issues encountered when designing parallel
programs is choosing the right parallelism pattern



Parallel Algorithms
Thread Pools

While GCD uses thread pools at the OS level, the approach of
a program implementing its own pool is quite common

Again, and this is true for all these concurrency paradigms, this
only works well if your problem happens to fit well into the pool
or manager/worker patterns

One of the many issues encountered when designing parallel
programs is choosing the right parallelism pattern



Parallel Algorithms
Thread Pools

While GCD uses thread pools at the OS level, the approach of
a program implementing its own pool is quite common

Again, and this is true for all these concurrency paradigms, this
only works well if your problem happens to fit well into the pool
or manager/worker patterns

One of the many issues encountered when designing parallel
programs is choosing the right parallelism pattern



Parallel Algorithms
Thread Pools

Exercise There is a Linux library libdispatch that
implements (per process) GCD. Write some programs using it

Disadvantages include that it is managed by Apple. No
more needs to be said.
Anon, Jan 2023 CM30225 exam



Parallel Algorithms
Thread Pools

Exercise There is a Linux library libdispatch that
implements (per process) GCD. Write some programs using it

Disadvantages include that it is managed by Apple. No
more needs to be said.
Anon, Jan 2023 CM30225 exam


