
Parallel Algorithms
Fork and Join

The next general structuring method to look at is fork and join

We have seen this before, as it is just the superstep

Superstep

Of course, we would like to make the sequential parts between
the forks as small as possible



Parallel Algorithms
Fork and Join

The next general structuring method to look at is fork and join

We have seen this before, as it is just the superstep

Superstep

Of course, we would like to make the sequential parts between
the forks as small as possible



Parallel Algorithms
Fork and Join

The next general structuring method to look at is fork and join

We have seen this before, as it is just the superstep

Superstep

Of course, we would like to make the sequential parts between
the forks as small as possible



Parallel Algorithms
Fork and Join

The next general structuring method to look at is fork and join

We have seen this before, as it is just the superstep

Superstep

Of course, we would like to make the sequential parts between
the forks as small as possible



Parallel Algorithms
Fork and Join

This is quite popular, as many problems decompose this way

For example, multiply two matrices together then add in a third
matrix

The processing forks to multiply the matrices using parallel
sub-tasks, then joins after that

We could use barriers between the two phases



Parallel Algorithms
Fork and Join

This is quite popular, as many problems decompose this way

For example, multiply two matrices together then add in a third
matrix

The processing forks to multiply the matrices using parallel
sub-tasks, then joins after that

We could use barriers between the two phases



Parallel Algorithms
Fork and Join

This is quite popular, as many problems decompose this way

For example, multiply two matrices together then add in a third
matrix

The processing forks to multiply the matrices using parallel
sub-tasks, then joins after that

We could use barriers between the two phases



Parallel Algorithms
Fork and Join

This is quite popular, as many problems decompose this way

For example, multiply two matrices together then add in a third
matrix

The processing forks to multiply the matrices using parallel
sub-tasks, then joins after that

We could use barriers between the two phases



Parallel Algorithms
Fork and Join

Take care not to confuse the structure of fork and join with the
creation and joining of threads

“Fork and join” describes the concurrency in the execution, not
the mechanism for execution

We might want to do the sub-tasks provider/consumer, or
manager/worker or thread pool or whatever

It is very unlikely we would want to use pthread create and
pthread join every time



Parallel Algorithms
Fork and Join

Take care not to confuse the structure of fork and join with the
creation and joining of threads

“Fork and join” describes the concurrency in the execution, not
the mechanism for execution

We might want to do the sub-tasks provider/consumer, or
manager/worker or thread pool or whatever

It is very unlikely we would want to use pthread create and
pthread join every time



Parallel Algorithms
Fork and Join

Take care not to confuse the structure of fork and join with the
creation and joining of threads

“Fork and join” describes the concurrency in the execution, not
the mechanism for execution

We might want to do the sub-tasks provider/consumer, or
manager/worker or thread pool or whatever

It is very unlikely we would want to use pthread create and
pthread join every time



Parallel Algorithms
Fork and Join

Take care not to confuse the structure of fork and join with the
creation and joining of threads

“Fork and join” describes the concurrency in the execution, not
the mechanism for execution

We might want to do the sub-tasks provider/consumer, or
manager/worker or thread pool or whatever

It is very unlikely we would want to use pthread create and
pthread join every time



Parallel Algorithms
Pipelines/Systolic

Another structuring method we have seen before is the
pipeline, also called systolic array

Pipeline

Input data is transformed by several separate stages by several
separate processors

A well-balanced pipeline (eventually) gives perfect speedup and
efficiency



Parallel Algorithms
Pipelines/Systolic

Another structuring method we have seen before is the
pipeline, also called systolic array

Pipeline

Input data is transformed by several separate stages by several
separate processors

A well-balanced pipeline (eventually) gives perfect speedup and
efficiency



Parallel Algorithms
Pipelines/Systolic

Another structuring method we have seen before is the
pipeline, also called systolic array

Pipeline

Input data is transformed by several separate stages by several
separate processors

A well-balanced pipeline (eventually) gives perfect speedup and
efficiency



Parallel Algorithms
MapReduce

Finally, for now, we look at another concept imported from the
functional style: MapReduce

This is a combination of a map and a reduce, and is a kind of
divide and conquer

A map takes a function and a structure (a list or vector or tree
or whatever) of data, and applies that function to each element
in the structure

As long as there is no interference between the items of data,
this is trivially parallelisable: stick different items of data on
different processors and execute the function on each



Parallel Algorithms
MapReduce

Finally, for now, we look at another concept imported from the
functional style: MapReduce

This is a combination of a map and a reduce, and is a kind of
divide and conquer

A map takes a function and a structure (a list or vector or tree
or whatever) of data, and applies that function to each element
in the structure

As long as there is no interference between the items of data,
this is trivially parallelisable: stick different items of data on
different processors and execute the function on each



Parallel Algorithms
MapReduce

Finally, for now, we look at another concept imported from the
functional style: MapReduce

This is a combination of a map and a reduce, and is a kind of
divide and conquer

A map takes a function and a structure (a list or vector or tree
or whatever) of data, and applies that function to each element
in the structure

As long as there is no interference between the items of data,
this is trivially parallelisable: stick different items of data on
different processors and execute the function on each



Parallel Algorithms
MapReduce

Finally, for now, we look at another concept imported from the
functional style: MapReduce

This is a combination of a map and a reduce, and is a kind of
divide and conquer

A map takes a function and a structure (a list or vector or tree
or whatever) of data, and applies that function to each element
in the structure

As long as there is no interference between the items of data,
this is trivially parallelisable: stick different items of data on
different processors and execute the function on each



Parallel Algorithms
MapReduce

The reduce step then gathers together all the sub-results and
merges them together to produce the required answer

Depending on what kind of reduction we require, this can be
extensively parallelised, too

E.g., the merge in a parallel sum being done in a tree-like way

E.g., the merge of URLs that result from a Web search can be
done similarly, perhaps a sort in order of relevance

Other reductions might be less or more parallelisable



Parallel Algorithms
MapReduce

The reduce step then gathers together all the sub-results and
merges them together to produce the required answer

Depending on what kind of reduction we require, this can be
extensively parallelised, too

E.g., the merge in a parallel sum being done in a tree-like way

E.g., the merge of URLs that result from a Web search can be
done similarly, perhaps a sort in order of relevance

Other reductions might be less or more parallelisable



Parallel Algorithms
MapReduce

The reduce step then gathers together all the sub-results and
merges them together to produce the required answer

Depending on what kind of reduction we require, this can be
extensively parallelised, too

E.g., the merge in a parallel sum being done in a tree-like way

E.g., the merge of URLs that result from a Web search can be
done similarly, perhaps a sort in order of relevance

Other reductions might be less or more parallelisable



Parallel Algorithms
MapReduce

The reduce step then gathers together all the sub-results and
merges them together to produce the required answer

Depending on what kind of reduction we require, this can be
extensively parallelised, too

E.g., the merge in a parallel sum being done in a tree-like way

E.g., the merge of URLs that result from a Web search can be
done similarly, perhaps a sort in order of relevance

Other reductions might be less or more parallelisable



Parallel Algorithms
MapReduce

The reduce step then gathers together all the sub-results and
merges them together to produce the required answer

Depending on what kind of reduction we require, this can be
extensively parallelised, too

E.g., the merge in a parallel sum being done in a tree-like way

E.g., the merge of URLs that result from a Web search can be
done similarly, perhaps a sort in order of relevance

Other reductions might be less or more parallelisable



Parallel Algorithms
MapReduce

For example, given a vector of numbers compute the sum of
the squares of the values

Map: do the squares in parallel

Reduce: add them together in parallel



Parallel Algorithms
MapReduce

For example, given a vector of numbers compute the sum of
the squares of the values

Map: do the squares in parallel

Reduce: add them together in parallel



Parallel Algorithms
MapReduce

For example, given a vector of numbers compute the sum of
the squares of the values

Map: do the squares in parallel

Reduce: add them together in parallel



Parallel Algorithms
MapReduce

Another example: Web search. The data is distributed in
chunks across many machines

Map: a machine searches its own chunk

Reduce: merging and sorting the partial results

MapReduce is much used by Google for their various services,
not just searching



Parallel Algorithms
MapReduce

Another example: Web search. The data is distributed in
chunks across many machines

Map: a machine searches its own chunk

Reduce: merging and sorting the partial results

MapReduce is much used by Google for their various services,
not just searching



Parallel Algorithms
MapReduce

Another example: Web search. The data is distributed in
chunks across many machines

Map: a machine searches its own chunk

Reduce: merging and sorting the partial results

MapReduce is much used by Google for their various services,
not just searching



Parallel Algorithms
MapReduce

Another example: Web search. The data is distributed in
chunks across many machines

Map: a machine searches its own chunk

Reduce: merging and sorting the partial results

MapReduce is much used by Google for their various services,
not just searching



Parallel Algorithms
MapReduce

This clearly scales well to huge systems!

This is helped a lot helped by the source data being stationary
and sending the map function to the machine that hosts the
data: a reversal of the way we normally think about things

MapReduce also copes well with less than 100% reliability of
the hardware



Parallel Algorithms
MapReduce

This clearly scales well to huge systems!

This is helped a lot helped by the source data being stationary
and sending the map function to the machine that hosts the
data: a reversal of the way we normally think about things

MapReduce also copes well with less than 100% reliability of
the hardware



Parallel Algorithms
MapReduce

This clearly scales well to huge systems!

This is helped a lot helped by the source data being stationary
and sending the map function to the machine that hosts the
data: a reversal of the way we normally think about things

MapReduce also copes well with less than 100% reliability of
the hardware



Parallel Algorithms
Aside: Reliability

A quick word on reliability: modern machines are pretty reliable
and we are not used to them breaking down too often

Huge clusters are a different proposition entirely

When you have 100s of thousands of machines in your system,
you must plan for one to break down in the middle of your
computation!

So another issue large systems and the algorithms that run on
them have to contend with is machines failing



Parallel Algorithms
Aside: Reliability

A quick word on reliability: modern machines are pretty reliable
and we are not used to them breaking down too often

Huge clusters are a different proposition entirely

When you have 100s of thousands of machines in your system,
you must plan for one to break down in the middle of your
computation!

So another issue large systems and the algorithms that run on
them have to contend with is machines failing



Parallel Algorithms
Aside: Reliability

A quick word on reliability: modern machines are pretty reliable
and we are not used to them breaking down too often

Huge clusters are a different proposition entirely

When you have 100s of thousands of machines in your system,
you must plan for one to break down in the middle of your
computation!

So another issue large systems and the algorithms that run on
them have to contend with is machines failing



Parallel Algorithms
Aside: Reliability

A quick word on reliability: modern machines are pretty reliable
and we are not used to them breaking down too often

Huge clusters are a different proposition entirely

When you have 100s of thousands of machines in your system,
you must plan for one to break down in the middle of your
computation!

So another issue large systems and the algorithms that run on
them have to contend with is machines failing



Parallel Algorithms
Aside: Reliability

For example, you might want to run the same sub-task on more
than one processor for reliability: if one breaks you’ll still get the
result

At one point Hector, a UK academic cluster, was having a
failure rate of one node per day



Parallel Algorithms
Aside: Reliability

For example, you might want to run the same sub-task on more
than one processor for reliability: if one breaks you’ll still get the
result

At one point Hector, a UK academic cluster, was having a
failure rate of one node per day



Parallel Algorithms
Classical Problems

We now turn to look at a few classical problems that are used to
illustrate the issues that arise in designing parallel programs

The first is readers/writers, which looks at synchronisation in
the shared use of data, in, for example, a database

Some processes may want to simply read data, a reader

Others might want to read and then update data, a writer

To ensure consistency in the data, a writer must have exclusive
access to the database

(A simplification of reality, if you know anything about
databases)



Parallel Algorithms
Classical Problems

We now turn to look at a few classical problems that are used to
illustrate the issues that arise in designing parallel programs

The first is readers/writers, which looks at synchronisation in
the shared use of data, in, for example, a database

Some processes may want to simply read data, a reader

Others might want to read and then update data, a writer

To ensure consistency in the data, a writer must have exclusive
access to the database

(A simplification of reality, if you know anything about
databases)



Parallel Algorithms
Classical Problems

We now turn to look at a few classical problems that are used to
illustrate the issues that arise in designing parallel programs

The first is readers/writers, which looks at synchronisation in
the shared use of data, in, for example, a database

Some processes may want to simply read data, a reader

Others might want to read and then update data, a writer

To ensure consistency in the data, a writer must have exclusive
access to the database

(A simplification of reality, if you know anything about
databases)



Parallel Algorithms
Classical Problems

We now turn to look at a few classical problems that are used to
illustrate the issues that arise in designing parallel programs

The first is readers/writers, which looks at synchronisation in
the shared use of data, in, for example, a database

Some processes may want to simply read data, a reader

Others might want to read and then update data, a writer

To ensure consistency in the data, a writer must have exclusive
access to the database

(A simplification of reality, if you know anything about
databases)



Parallel Algorithms
Classical Problems

We now turn to look at a few classical problems that are used to
illustrate the issues that arise in designing parallel programs

The first is readers/writers, which looks at synchronisation in
the shared use of data, in, for example, a database

Some processes may want to simply read data, a reader

Others might want to read and then update data, a writer

To ensure consistency in the data, a writer must have exclusive
access to the database

(A simplification of reality, if you know anything about
databases)



Parallel Algorithms
Classical Problems

We now turn to look at a few classical problems that are used to
illustrate the issues that arise in designing parallel programs

The first is readers/writers, which looks at synchronisation in
the shared use of data, in, for example, a database

Some processes may want to simply read data, a reader

Others might want to read and then update data, a writer

To ensure consistency in the data, a writer must have exclusive
access to the database

(A simplification of reality, if you know anything about
databases)



Parallel Algorithms
Readers/Writers

When there is no writer using the database, any number of
readers can access it simultaneously

Note, as a consequence of exclusive access, a writer cannot
access the database while there is any reader using it

One solution is to use simple primitives



Parallel Algorithms
Readers/Writers

When there is no writer using the database, any number of
readers can access it simultaneously

Note, as a consequence of exclusive access, a writer cannot
access the database while there is any reader using it

One solution is to use simple primitives



Parallel Algorithms
Readers/Writers

When there is no writer using the database, any number of
readers can access it simultaneously

Note, as a consequence of exclusive access, a writer cannot
access the database while there is any reader using it

One solution is to use simple primitives



Parallel Algorithms
Readers/Writers

int readers = 0;

rlock = make_lock(); // protect readers

wsem = make_semaphore(1);// sync writers

void reader() void writer()

{ {

lock(rlock); wait(wsem);

readers++; ... write ...

if (readers == 1) wait(wsem); signal(wsem);

unlock(rlock); }

... read ...

lock(rlock);

readers--;

if (readers == 0) signal(wsem);

unlock(rlock);

}



Parallel Algorithms
Readers/Writers

The rlock is to protect the count of the number of readers

The wsem synchronises the readers and writers: a writer must
wait until all readers have left, and a reader must wait until a
writer has left

if (readers == 1) wait(wsem); the first reader in sets the
write semaphore

if (readers == 0) signal(wsem); the last reader out
releases the semaphore

This works, but has a problem



Parallel Algorithms
Readers/Writers

The rlock is to protect the count of the number of readers

The wsem synchronises the readers and writers: a writer must
wait until all readers have left, and a reader must wait until a
writer has left

if (readers == 1) wait(wsem); the first reader in sets the
write semaphore

if (readers == 0) signal(wsem); the last reader out
releases the semaphore

This works, but has a problem



Parallel Algorithms
Readers/Writers

The rlock is to protect the count of the number of readers

The wsem synchronises the readers and writers: a writer must
wait until all readers have left, and a reader must wait until a
writer has left

if (readers == 1) wait(wsem); the first reader in sets the
write semaphore

if (readers == 0) signal(wsem); the last reader out
releases the semaphore

This works, but has a problem



Parallel Algorithms
Readers/Writers

The rlock is to protect the count of the number of readers

The wsem synchronises the readers and writers: a writer must
wait until all readers have left, and a reader must wait until a
writer has left

if (readers == 1) wait(wsem); the first reader in sets the
write semaphore

if (readers == 0) signal(wsem); the last reader out
releases the semaphore

This works, but has a problem



Parallel Algorithms
Readers/Writers

The rlock is to protect the count of the number of readers

The wsem synchronises the readers and writers: a writer must
wait until all readers have left, and a reader must wait until a
writer has left

if (readers == 1) wait(wsem); the first reader in sets the
write semaphore

if (readers == 0) signal(wsem); the last reader out
releases the semaphore

This works, but has a problem



Parallel Algorithms
Readers/Writers

The problem is that this code is unfair in the way it treats
readers and writers

A writer can be excluded for an arbitrarily long time while
readers come and go

• reader 1 arrives and sets the wsem

• a writer arrives; it waits on wsem

• reader 2 arrives; it can continue
• reader 1 leaves
• reader 3 arrives; it can continue
• reader 2 leaves
• and so on



Parallel Algorithms
Readers/Writers

The problem is that this code is unfair in the way it treats
readers and writers

A writer can be excluded for an arbitrarily long time while
readers come and go

• reader 1 arrives and sets the wsem

• a writer arrives; it waits on wsem

• reader 2 arrives; it can continue
• reader 1 leaves
• reader 3 arrives; it can continue
• reader 2 leaves
• and so on



Parallel Algorithms
Readers/Writers

The problem is that this code is unfair in the way it treats
readers and writers

A writer can be excluded for an arbitrarily long time while
readers come and go

• reader 1 arrives and sets the wsem

• a writer arrives; it waits on wsem

• reader 2 arrives; it can continue
• reader 1 leaves
• reader 3 arrives; it can continue
• reader 2 leaves
• and so on



Parallel Algorithms
Readers/Writers

The problem is that this code is unfair in the way it treats
readers and writers

A writer can be excluded for an arbitrarily long time while
readers come and go

• reader 1 arrives and sets the wsem

• a writer arrives; it waits on wsem

• reader 2 arrives; it can continue
• reader 1 leaves
• reader 3 arrives; it can continue
• reader 2 leaves
• and so on



Parallel Algorithms
Readers/Writers

The problem is that this code is unfair in the way it treats
readers and writers

A writer can be excluded for an arbitrarily long time while
readers come and go

• reader 1 arrives and sets the wsem

• a writer arrives; it waits on wsem

• reader 2 arrives; it can continue

• reader 1 leaves
• reader 3 arrives; it can continue
• reader 2 leaves
• and so on



Parallel Algorithms
Readers/Writers

The problem is that this code is unfair in the way it treats
readers and writers

A writer can be excluded for an arbitrarily long time while
readers come and go

• reader 1 arrives and sets the wsem

• a writer arrives; it waits on wsem

• reader 2 arrives; it can continue
• reader 1 leaves

• reader 3 arrives; it can continue
• reader 2 leaves
• and so on



Parallel Algorithms
Readers/Writers

The problem is that this code is unfair in the way it treats
readers and writers

A writer can be excluded for an arbitrarily long time while
readers come and go

• reader 1 arrives and sets the wsem

• a writer arrives; it waits on wsem

• reader 2 arrives; it can continue
• reader 1 leaves
• reader 3 arrives; it can continue

• reader 2 leaves
• and so on



Parallel Algorithms
Readers/Writers

The problem is that this code is unfair in the way it treats
readers and writers

A writer can be excluded for an arbitrarily long time while
readers come and go

• reader 1 arrives and sets the wsem

• a writer arrives; it waits on wsem

• reader 2 arrives; it can continue
• reader 1 leaves
• reader 3 arrives; it can continue
• reader 2 leaves

• and so on



Parallel Algorithms
Readers/Writers

The problem is that this code is unfair in the way it treats
readers and writers

A writer can be excluded for an arbitrarily long time while
readers come and go

• reader 1 arrives and sets the wsem

• a writer arrives; it waits on wsem

• reader 2 arrives; it can continue
• reader 1 leaves
• reader 3 arrives; it can continue
• reader 2 leaves
• and so on



Parallel Algorithms
Readers/Writers

This is called readers’ preference

The continuing stream of readers conspire to keep out the
writer: the readers never signal the wsem

With low probability, but it happens

This is starvation of the writer



Parallel Algorithms
Readers/Writers

This is called readers’ preference

The continuing stream of readers conspire to keep out the
writer: the readers never signal the wsem

With low probability, but it happens

This is starvation of the writer



Parallel Algorithms
Readers/Writers

This is called readers’ preference

The continuing stream of readers conspire to keep out the
writer: the readers never signal the wsem

With low probability, but it happens

This is starvation of the writer



Parallel Algorithms
Readers/Writers

This is called readers’ preference

The continuing stream of readers conspire to keep out the
writer: the readers never signal the wsem

With low probability, but it happens

This is starvation of the writer



Parallel Algorithms
Readers/Writers

We might try to fix the writer starvation by having a writer
pending count, and have readers wait if there is a writer (or
some suitable number of writers) waiting

Exercise Do this

But now we have a writers’ preference and readers can be
starved



Parallel Algorithms
Readers/Writers

We might try to fix the writer starvation by having a writer
pending count, and have readers wait if there is a writer (or
some suitable number of writers) waiting

Exercise Do this

But now we have a writers’ preference and readers can be
starved



Parallel Algorithms
Readers/Writers

We might try to fix the writer starvation by having a writer
pending count, and have readers wait if there is a writer (or
some suitable number of writers) waiting

Exercise Do this

But now we have a writers’ preference and readers can be
starved



Parallel Algorithms
Readers/Writers

Making this fair for both readers and writers is harder than you
think

Though having a readers’ preference is not as bad as you
might think, as typical code has more reads than writes

Exercise Go and read up on the many suggested solutions to
readers/writers

Exercise Read about the POSIX pthread rwlock

Exercise Read about read-copy-update (RCU) and its choice
of compromises

Exercise Think about how you might use GCD queues



Parallel Algorithms
Readers/Writers

Making this fair for both readers and writers is harder than you
think

Though having a readers’ preference is not as bad as you
might think, as typical code has more reads than writes

Exercise Go and read up on the many suggested solutions to
readers/writers

Exercise Read about the POSIX pthread rwlock

Exercise Read about read-copy-update (RCU) and its choice
of compromises

Exercise Think about how you might use GCD queues



Parallel Algorithms
Readers/Writers

Making this fair for both readers and writers is harder than you
think

Though having a readers’ preference is not as bad as you
might think, as typical code has more reads than writes

Exercise Go and read up on the many suggested solutions to
readers/writers

Exercise Read about the POSIX pthread rwlock

Exercise Read about read-copy-update (RCU) and its choice
of compromises

Exercise Think about how you might use GCD queues



Parallel Algorithms
Producers/Consumers

The next classical problem looks at how two or more processes
can communicate: passing data between processes

For example, how a manager might feed data to a worker

Producer Consumer

Producer/Consumer

If the producer sends directly to the consumer, this would
require a synchronisation between them for every data item

And it would require the consumer to process data at the same
rate as the producer produces it (as in a pipeline)

Exercise Compare with MPI



Parallel Algorithms
Producers/Consumers

The next classical problem looks at how two or more processes
can communicate: passing data between processes

For example, how a manager might feed data to a worker

Producer Consumer

Producer/Consumer

If the producer sends directly to the consumer, this would
require a synchronisation between them for every data item

And it would require the consumer to process data at the same
rate as the producer produces it (as in a pipeline)

Exercise Compare with MPI



Parallel Algorithms
Producers/Consumers

The next classical problem looks at how two or more processes
can communicate: passing data between processes

For example, how a manager might feed data to a worker

Producer Consumer

Producer/Consumer

If the producer sends directly to the consumer, this would
require a synchronisation between them for every data item

And it would require the consumer to process data at the same
rate as the producer produces it (as in a pipeline)

Exercise Compare with MPI



Parallel Algorithms
Producers/Consumers

The next classical problem looks at how two or more processes
can communicate: passing data between processes

For example, how a manager might feed data to a worker

Producer Consumer

Producer/Consumer

If the producer sends directly to the consumer, this would
require a synchronisation between them for every data item

And it would require the consumer to process data at the same
rate as the producer produces it (as in a pipeline)

Exercise Compare with MPI



Parallel Algorithms
Producers/Consumers

The next classical problem looks at how two or more processes
can communicate: passing data between processes

For example, how a manager might feed data to a worker

Producer Consumer

Producer/Consumer

If the producer sends directly to the consumer, this would
require a synchronisation between them for every data item

And it would require the consumer to process data at the same
rate as the producer produces it (as in a pipeline)

Exercise Compare with MPI



Parallel Algorithms
Producers/Consumers

The next classical problem looks at how two or more processes
can communicate: passing data between processes

For example, how a manager might feed data to a worker

Producer Consumer

Producer/Consumer

If the producer sends directly to the consumer, this would
require a synchronisation between them for every data item

And it would require the consumer to process data at the same
rate as the producer produces it (as in a pipeline)

Exercise Compare with MPI



Parallel Algorithms
Producers/Consumers

So, typically, there is a buffer between them

Producer Consumerbuffer

Buffered Producer/Consumer

This is just some area of memory in a shared memory system;
or a message queue for a distributed memory system



Parallel Algorithms
Producers/Consumers

So, typically, there is a buffer between them

Producer Consumerbuffer

Buffered Producer/Consumer

This is just some area of memory in a shared memory system;
or a message queue for a distributed memory system



Parallel Algorithms
Producers/Consumers

So, typically, there is a buffer between them

Producer Consumerbuffer

Buffered Producer/Consumer

This is just some area of memory in a shared memory system;
or a message queue for a distributed memory system



Parallel Algorithms
Producers/Consumers

The advantage is that we can decouple the producer and
consumer

• each can work at their own rate, until the buffer fills or
empties

• there is less synchronisation, thus less waiting around
• the producer and consumer are now working

asynchronously : not synchronising on every message



Parallel Algorithms
Producers/Consumers

The advantage is that we can decouple the producer and
consumer

• each can work at their own rate, until the buffer fills or
empties

• there is less synchronisation, thus less waiting around
• the producer and consumer are now working

asynchronously : not synchronising on every message



Parallel Algorithms
Producers/Consumers

The advantage is that we can decouple the producer and
consumer

• each can work at their own rate, until the buffer fills or
empties

• there is less synchronisation, thus less waiting around

• the producer and consumer are now working
asynchronously : not synchronising on every message



Parallel Algorithms
Producers/Consumers

The advantage is that we can decouple the producer and
consumer

• each can work at their own rate, until the buffer fills or
empties

• there is less synchronisation, thus less waiting around
• the producer and consumer are now working

asynchronously : not synchronising on every message



Parallel Algorithms
Producers/Consumers

When the producer produces data, it writes it into the next free
place in the buffer

Unless the buffer is full, when the producer must wait until a
place becomes free by the consumer reading some data

Symmetrically, when the consumer want to consume data, it
reads it from the next position in the buffer

Unless the buffer is empty, when the consumer must wait until
some data arrives by the producer writing it

So there is synchronisation, but only when necessary, dictated
by the size of the buffer

We need to see how to manage this synchronisation



Parallel Algorithms
Producers/Consumers

When the producer produces data, it writes it into the next free
place in the buffer

Unless the buffer is full, when the producer must wait until a
place becomes free by the consumer reading some data

Symmetrically, when the consumer want to consume data, it
reads it from the next position in the buffer

Unless the buffer is empty, when the consumer must wait until
some data arrives by the producer writing it

So there is synchronisation, but only when necessary, dictated
by the size of the buffer

We need to see how to manage this synchronisation



Parallel Algorithms
Producers/Consumers

When the producer produces data, it writes it into the next free
place in the buffer

Unless the buffer is full, when the producer must wait until a
place becomes free by the consumer reading some data

Symmetrically, when the consumer want to consume data, it
reads it from the next position in the buffer

Unless the buffer is empty, when the consumer must wait until
some data arrives by the producer writing it

So there is synchronisation, but only when necessary, dictated
by the size of the buffer

We need to see how to manage this synchronisation



Parallel Algorithms
Producers/Consumers

When the producer produces data, it writes it into the next free
place in the buffer

Unless the buffer is full, when the producer must wait until a
place becomes free by the consumer reading some data

Symmetrically, when the consumer want to consume data, it
reads it from the next position in the buffer

Unless the buffer is empty, when the consumer must wait until
some data arrives by the producer writing it

So there is synchronisation, but only when necessary, dictated
by the size of the buffer

We need to see how to manage this synchronisation



Parallel Algorithms
Producers/Consumers

When the producer produces data, it writes it into the next free
place in the buffer

Unless the buffer is full, when the producer must wait until a
place becomes free by the consumer reading some data

Symmetrically, when the consumer want to consume data, it
reads it from the next position in the buffer

Unless the buffer is empty, when the consumer must wait until
some data arrives by the producer writing it

So there is synchronisation, but only when necessary, dictated
by the size of the buffer

We need to see how to manage this synchronisation



Parallel Algorithms
Producers/Consumers

When the producer produces data, it writes it into the next free
place in the buffer

Unless the buffer is full, when the producer must wait until a
place becomes free by the consumer reading some data

Symmetrically, when the consumer want to consume data, it
reads it from the next position in the buffer

Unless the buffer is empty, when the consumer must wait until
some data arrives by the producer writing it

So there is synchronisation, but only when necessary, dictated
by the size of the buffer

We need to see how to manage this synchronisation



Parallel Algorithms
Producers/Consumers

For example, a buffer of size 1, using two semaphores, called
empty and full

empty = make_semaphore(1);

full = make_semaphore(0);

producer() { consumer() {

produce data wait(full);

wait(empty); take from buffer

insert in buffer signal(empty);

signal(full); consume data

} }



Parallel Algorithms
Producers/Consumers

A simple extension to a buffer of size n is to use counting
semaphores data and free with free initialised to n

free = make_counting_semaphore(n);

data = make_counting_semaphore(0);

producer() { consumer() {

produce data wait(data);

wait(free); remove from buffer

append to buffer signal(free);

signal(data); consume data

} }



Parallel Algorithms
Producers/Consumers

But this works only if appending to and reading from the buffer
are independent operations

In this code as written, the producer and consumer might be
acting simultaneously on the buffer: we need to make sure the
update does not have a data race

So, for example, might want a lock on the buffer, or make sure
the buffer can otherwise safely support a simultaneous read
and write (e.g., for a hash table this might be difficult)



Parallel Algorithms
Producers/Consumers

But this works only if appending to and reading from the buffer
are independent operations

In this code as written, the producer and consumer might be
acting simultaneously on the buffer: we need to make sure the
update does not have a data race

So, for example, might want a lock on the buffer, or make sure
the buffer can otherwise safely support a simultaneous read
and write (e.g., for a hash table this might be difficult)



Parallel Algorithms
Producers/Consumers

But this works only if appending to and reading from the buffer
are independent operations

In this code as written, the producer and consumer might be
acting simultaneously on the buffer: we need to make sure the
update does not have a data race

So, for example, might want a lock on the buffer, or make sure
the buffer can otherwise safely support a simultaneous read
and write (e.g., for a hash table this might be difficult)



Parallel Algorithms
Producers/Consumers

And things get more interesting when there is more than more
producer, or more than one consumer

buffer

Producers Consumers

Multiple Produces/Consumers



Parallel Algorithms
Producers/Consumers

Now concurrent access to the buffer is really a problem

We might use a lock to do this

free = make semaphore(1);

data = make semaphore(0);

buffy = make lock();

producer() { consumer() {

produce data wait(data);

wait(free); get lock(buffy);

get lock(buffy); take from buffer

insert in buffer free lock(buffy)

free lock(buffy); signal(free);

signal(data); consume data

} }



Parallel Algorithms
Producers/Consumers

Now concurrent access to the buffer is really a problem

We might use a lock to do this

free = make semaphore(1);

data = make semaphore(0);

buffy = make lock();

producer() { consumer() {

produce data wait(data);

wait(free); get lock(buffy);

get lock(buffy); take from buffer

insert in buffer free lock(buffy)

free lock(buffy); signal(free);

signal(data); consume data

} }



Parallel Algorithms
Producers/Consumers

Now concurrent access to the buffer is really a problem

We might use a lock to do this

free = make semaphore(1);

data = make semaphore(0);

buffy = make lock();

producer() { consumer() {

produce data wait(data);

wait(free); get lock(buffy);

get lock(buffy); take from buffer

insert in buffer free lock(buffy)

free lock(buffy); signal(free);

signal(data); consume data

} }



Parallel Algorithms
Producers/Consumers

Exercise Prove that this cannot deadlock

Using one lock means that we cannot insert into the buffer at
the same time as reading from it

This is often an unnecessary restriction, e.g., the buffer is an
area of memory where we can read one element at the same
time as writing a different one

Again, this might not be possible if the buffer was some more
sophisticated kind of datastructure



Parallel Algorithms
Producers/Consumers

Exercise Prove that this cannot deadlock

Using one lock means that we cannot insert into the buffer at
the same time as reading from it

This is often an unnecessary restriction, e.g., the buffer is an
area of memory where we can read one element at the same
time as writing a different one

Again, this might not be possible if the buffer was some more
sophisticated kind of datastructure



Parallel Algorithms
Producers/Consumers

Exercise Prove that this cannot deadlock

Using one lock means that we cannot insert into the buffer at
the same time as reading from it

This is often an unnecessary restriction, e.g., the buffer is an
area of memory where we can read one element at the same
time as writing a different one

Again, this might not be possible if the buffer was some more
sophisticated kind of datastructure



Parallel Algorithms
Producers/Consumers

Exercise Prove that this cannot deadlock

Using one lock means that we cannot insert into the buffer at
the same time as reading from it

This is often an unnecessary restriction, e.g., the buffer is an
area of memory where we can read one element at the same
time as writing a different one

Again, this might not be possible if the buffer was some more
sophisticated kind of datastructure



Parallel Algorithms
Producers/Consumers

So, often we have two locks, one for the insert position and one
for the remove position

And we have to be careful when they coincide, e.g., when the
buffer is full or empty



Parallel Algorithms
Producers/Consumers

So, often we have two locks, one for the insert position and one
for the remove position

And we have to be careful when they coincide, e.g., when the
buffer is full or empty



Parallel Algorithms
Producers/Consumers

Implementations of buffers tend to be either

• linked lists (unbounded size)
• fixed arrays, used circularly

In any case, the buffers are usually actually queues, namely
first in first out



Parallel Algorithms
Producers/Consumers

Implementations of buffers tend to be either

• linked lists (unbounded size)

• fixed arrays, used circularly

In any case, the buffers are usually actually queues, namely
first in first out



Parallel Algorithms
Producers/Consumers

Implementations of buffers tend to be either

• linked lists (unbounded size)
• fixed arrays, used circularly

In any case, the buffers are usually actually queues, namely
first in first out



Parallel Algorithms
Producers/Consumers

Implementations of buffers tend to be either

• linked lists (unbounded size)
• fixed arrays, used circularly

In any case, the buffers are usually actually queues, namely
first in first out



Parallel Algorithms
Producers/Consumers

More advanced use of queues is possible

If you have just one producer, you can implement a lockless
insert into the queue: namely the insert end does not need a
lock (or other synchronisation mechanism)

The “gap” between testing for a space in the buffer and
inserting is not a problem as no-one else is inserting data

You still have to think carefully about the interaction of this with
the removal of data



Parallel Algorithms
Producers/Consumers

More advanced use of queues is possible

If you have just one producer, you can implement a lockless
insert into the queue: namely the insert end does not need a
lock (or other synchronisation mechanism)

The “gap” between testing for a space in the buffer and
inserting is not a problem as no-one else is inserting data

You still have to think carefully about the interaction of this with
the removal of data



Parallel Algorithms
Producers/Consumers

More advanced use of queues is possible

If you have just one producer, you can implement a lockless
insert into the queue: namely the insert end does not need a
lock (or other synchronisation mechanism)

The “gap” between testing for a space in the buffer and
inserting is not a problem as no-one else is inserting data

You still have to think carefully about the interaction of this with
the removal of data



Parallel Algorithms
Producers/Consumers

More advanced use of queues is possible

If you have just one producer, you can implement a lockless
insert into the queue: namely the insert end does not need a
lock (or other synchronisation mechanism)

The “gap” between testing for a space in the buffer and
inserting is not a problem as no-one else is inserting data

You still have to think carefully about the interaction of this with
the removal of data



Parallel Algorithms
Producers/Consumers

Symmetrically, if there is just one consumer, it is possible to
have a lockless read

These require extremely careful programming, but can be
useful in reducing overheads

Consequently, it is possible to implement a single
producer/single consumer entirely lock-free

Exercise Find out how to do this (it involves memory barriers!)



Parallel Algorithms
Producers/Consumers

Symmetrically, if there is just one consumer, it is possible to
have a lockless read

These require extremely careful programming, but can be
useful in reducing overheads

Consequently, it is possible to implement a single
producer/single consumer entirely lock-free

Exercise Find out how to do this (it involves memory barriers!)



Parallel Algorithms
Producers/Consumers

Symmetrically, if there is just one consumer, it is possible to
have a lockless read

These require extremely careful programming, but can be
useful in reducing overheads

Consequently, it is possible to implement a single
producer/single consumer entirely lock-free

Exercise Find out how to do this (it involves memory barriers!)



Parallel Algorithms
Producers/Consumers

Symmetrically, if there is just one consumer, it is possible to
have a lockless read

These require extremely careful programming, but can be
useful in reducing overheads

Consequently, it is possible to implement a single
producer/single consumer entirely lock-free

Exercise Find out how to do this (it involves memory barriers!)


