
Parallel Algorithms
Dining Philosophers

Another old and famous problem: the Dining Philosophers

Often used to illustrate problems of resource contention in
operating systems, it can be used to help understand problems
in concurrency, too



Parallel Algorithms
Dining Philosophers

Another old and famous problem: the Dining Philosophers

Often used to illustrate problems of resource contention in
operating systems, it can be used to help understand problems
in concurrency, too



Parallel Algorithms
Dining Philosophers

Dining Philosophers

We have five philosophers wanting to eat spaghetti, but there
are only five chopsticks to go round



Parallel Algorithms
Dining Philosophers

The life of a philosopher is

• think
• sit
• take chopsticks
• eat
• drop chopsticks
• leave
• repeat



Parallel Algorithms
Dining Philosophers

A philosopher sits at any free position, but can only use the two
neighbouring chopsticks

They require two chopsticks to be able to eat!

If a chopstick is already in use, the philosopher must wait until it
is free



Parallel Algorithms
Dining Philosophers

A philosopher sits at any free position, but can only use the two
neighbouring chopsticks

They require two chopsticks to be able to eat!

If a chopstick is already in use, the philosopher must wait until it
is free



Parallel Algorithms
Dining Philosophers

A philosopher sits at any free position, but can only use the two
neighbouring chopsticks

They require two chopsticks to be able to eat!

If a chopstick is already in use, the philosopher must wait until it
is free



Parallel Algorithms
Dining Philosophers

This problem shows

• mutual exclusion of the chopsticks
• deadlock if all the philosophers sit down simultaneously

and grab the left chopstick: they will all then have to wait
on their right chopstick
• starvation, as four of the philosophers might conspire to

keep out the fifth



Parallel Algorithms
Dining Philosophers

This problem shows

• mutual exclusion of the chopsticks

• deadlock if all the philosophers sit down simultaneously
and grab the left chopstick: they will all then have to wait
on their right chopstick
• starvation, as four of the philosophers might conspire to

keep out the fifth



Parallel Algorithms
Dining Philosophers

This problem shows

• mutual exclusion of the chopsticks
• deadlock if all the philosophers sit down simultaneously

and grab the left chopstick: they will all then have to wait
on their right chopstick

• starvation, as four of the philosophers might conspire to
keep out the fifth



Parallel Algorithms
Dining Philosophers

This problem shows

• mutual exclusion of the chopsticks
• deadlock if all the philosophers sit down simultaneously

and grab the left chopstick: they will all then have to wait
on their right chopstick
• starvation, as four of the philosophers might conspire to

keep out the fifth



Parallel Algorithms
Dining Philosophers

Mutual exclusion of the chopsticks is easily provided by having
a mutex for each chopstick

lock chopstick[5];

Then philosopher i grabbing and dropping the chopsticks is

lock(chopstick[i]);

lock(chopstick[(i+1)%5]);

eat();

unlock(chopstick[(i+1)%5]);

unlock(chopstick[i]);



Parallel Algorithms
Dining Philosophers

Mutual exclusion of the chopsticks is easily provided by having
a mutex for each chopstick

lock chopstick[5];

Then philosopher i grabbing and dropping the chopsticks is

lock(chopstick[i]);

lock(chopstick[(i+1)%5]);

eat();

unlock(chopstick[(i+1)%5]);

unlock(chopstick[i]);



Parallel Algorithms
Dining Philosophers

Mutual exclusion of the chopsticks is easily provided by having
a mutex for each chopstick

lock chopstick[5];

Then philosopher i grabbing and dropping the chopsticks is

lock(chopstick[i]);

lock(chopstick[(i+1)%5]);

eat();

unlock(chopstick[(i+1)%5]);

unlock(chopstick[i]);



Parallel Algorithms
Dining Philosophers

But, as we know, this can deadlock if all philosophers grab
(say) the left chopstick simultaneously

Simply alternating left-then-right grab with right-then-left grab
won’t fix it; neither will picking a random chopstick first

The classical solution is to have a counting semaphore,
initialised to 4, to limit the number of simultaneously sitting
philosophers



Parallel Algorithms
Dining Philosophers

But, as we know, this can deadlock if all philosophers grab
(say) the left chopstick simultaneously

Simply alternating left-then-right grab with right-then-left grab
won’t fix it; neither will picking a random chopstick first

The classical solution is to have a counting semaphore,
initialised to 4, to limit the number of simultaneously sitting
philosophers



Parallel Algorithms
Dining Philosophers

But, as we know, this can deadlock if all philosophers grab
(say) the left chopstick simultaneously

Simply alternating left-then-right grab with right-then-left grab
won’t fix it; neither will picking a random chopstick first

The classical solution is to have a counting semaphore,
initialised to 4, to limit the number of simultaneously sitting
philosophers



Parallel Algorithms
Dining Philosophers

lock chopstick[5];

place = make_counting_semaphore(4);

...

philosopher(int i) {

while (1) {

think();

wait(place);

lock(chopstick[i]);

lock(chopstick[(i+1)%5]);

eat();

unlock(chopstick[(i+1)%5]);

unlock(chopstick[i]);}

signal(place);

}

}



Parallel Algorithms
Dining Philosophers

Exercise Prove this cannot deadlock

Exercise Think about fixing starvation

Exercise Solve the Dining Philosophers using monitors

Exercise Solve the Dining Philosophers using GCD



Parallel Algorithms
Sorting

We now turn to some concrete examples of parallel algorithms,
beginning with sorting

Clearly, a merge sort is amenable to divide and conquer

• divide data into two equal chunks
• recursively merge sort each half in parallel
• merge the two sorted lists together



Parallel Algorithms
Sorting

We now turn to some concrete examples of parallel algorithms,
beginning with sorting

Clearly, a merge sort is amenable to divide and conquer

• divide data into two equal chunks
• recursively merge sort each half in parallel
• merge the two sorted lists together



Parallel Algorithms
Sorting

We now turn to some concrete examples of parallel algorithms,
beginning with sorting

Clearly, a merge sort is amenable to divide and conquer

• divide data into two equal chunks
• recursively merge sort each half in parallel
• merge the two sorted lists together



Parallel Algorithms
Sorting

For example, n = 8. The division is trivial, so we concentrate on
the merge:

t p
3 1 4 1 5 9 2 6

1 3 1 4 5 9 2 6 2 4
1 1 3 4 2 5 6 9 4 2
1 1 2 3 4 5 6 9 8 1

Total: 14

t is the time to merge sort that line; p the number of processors



Parallel Algorithms
Sorting

For example, n = 8. The division is trivial, so we concentrate on
the merge:

t p
3 1 4 1 5 9 2 6
1 3 1 4 5 9 2 6 2 4

1 1 3 4 2 5 6 9 4 2
1 1 2 3 4 5 6 9 8 1

Total: 14

t is the time to merge sort that line; p the number of processors



Parallel Algorithms
Sorting

For example, n = 8. The division is trivial, so we concentrate on
the merge:

t p
3 1 4 1 5 9 2 6
1 3 1 4 5 9 2 6 2 4
1 1 3 4 2 5 6 9 4 2

1 1 2 3 4 5 6 9 8 1
Total: 14

t is the time to merge sort that line; p the number of processors



Parallel Algorithms
Sorting

For example, n = 8. The division is trivial, so we concentrate on
the merge:

t p
3 1 4 1 5 9 2 6
1 3 1 4 5 9 2 6 2 4
1 1 3 4 2 5 6 9 4 2
1 1 2 3 4 5 6 9 8 1

Total: 14

t is the time to merge sort that line; p the number of processors



Parallel Algorithms
Sorting

For example, n = 8. The division is trivial, so we concentrate on
the merge:

t p
3 1 4 1 5 9 2 6
1 3 1 4 5 9 2 6 2 4
1 1 3 4 2 5 6 9 4 2
1 1 2 3 4 5 6 9 8 1

Total: 14

t is the time to merge sort that line; p the number of processors



Parallel Algorithms
Sorting

It is easy to calculate the time this takes on n values (PRAM:
assume we have enough processors and ignore
communications costs)

• The last merge takes time n
• The step before takes time n/2 (twice, in parallel)
• The step before takes time n/4 (four times, in parallel)
• etc.

Total time is T (n) = n + n/2 + n/4 + · · ·+ 2 = 2n − 2 = O(n)



Parallel Algorithms
Sorting

It is easy to calculate the time this takes on n values (PRAM:
assume we have enough processors and ignore
communications costs)

• The last merge takes time n

• The step before takes time n/2 (twice, in parallel)
• The step before takes time n/4 (four times, in parallel)
• etc.

Total time is T (n) = n + n/2 + n/4 + · · ·+ 2 = 2n − 2 = O(n)



Parallel Algorithms
Sorting

It is easy to calculate the time this takes on n values (PRAM:
assume we have enough processors and ignore
communications costs)

• The last merge takes time n
• The step before takes time n/2 (twice, in parallel)

• The step before takes time n/4 (four times, in parallel)
• etc.

Total time is T (n) = n + n/2 + n/4 + · · ·+ 2 = 2n − 2 = O(n)



Parallel Algorithms
Sorting

It is easy to calculate the time this takes on n values (PRAM:
assume we have enough processors and ignore
communications costs)

• The last merge takes time n
• The step before takes time n/2 (twice, in parallel)
• The step before takes time n/4 (four times, in parallel)

• etc.

Total time is T (n) = n + n/2 + n/4 + · · ·+ 2 = 2n − 2 = O(n)



Parallel Algorithms
Sorting

It is easy to calculate the time this takes on n values (PRAM:
assume we have enough processors and ignore
communications costs)

• The last merge takes time n
• The step before takes time n/2 (twice, in parallel)
• The step before takes time n/4 (four times, in parallel)
• etc.

Total time is T (n) = n + n/2 + n/4 + · · ·+ 2 = 2n − 2 = O(n)



Parallel Algorithms
Sorting

It is easy to calculate the time this takes on n values (PRAM:
assume we have enough processors and ignore
communications costs)

• The last merge takes time n
• The step before takes time n/2 (twice, in parallel)
• The step before takes time n/4 (four times, in parallel)
• etc.

Total time is T (n) = n + n/2 + n/4 + · · ·+ 2 = 2n − 2 = O(n)



Parallel Algorithms
Sorting

The sequential merge sort takes time O(n log n), giving a
speedup of

S = O(n log n/n) = O(log n)

using O(n) processors (n/2 in this case)

This increases with n, but not very quickly, and is a lot smaller
than n

It uses O(n) processors, for an efficiency of

E = O(log n/n)

The efficiency drops to 0 as n gets large



Parallel Algorithms
Sorting

The sequential merge sort takes time O(n log n), giving a
speedup of

S = O(n log n/n) = O(log n)

using O(n) processors (n/2 in this case)

This increases with n, but not very quickly, and is a lot smaller
than n

It uses O(n) processors, for an efficiency of

E = O(log n/n)

The efficiency drops to 0 as n gets large



Parallel Algorithms
Sorting

The sequential merge sort takes time O(n log n), giving a
speedup of

S = O(n log n/n) = O(log n)

using O(n) processors (n/2 in this case)

This increases with n, but not very quickly, and is a lot smaller
than n

It uses O(n) processors, for an efficiency of

E = O(log n/n)

The efficiency drops to 0 as n gets large



Parallel Algorithms
Sorting

The sequential merge sort takes time O(n log n), giving a
speedup of

S = O(n log n/n) = O(log n)

using O(n) processors (n/2 in this case)

This increases with n, but not very quickly, and is a lot smaller
than n

It uses O(n) processors, for an efficiency of

E = O(log n/n)

The efficiency drops to 0 as n gets large



Parallel Algorithms
Sorting

If we have just p processors, this becomes

Tp(n) = O
(

n +
n
p
log

n
p

)
as we have sequential merge sorts of p chunks of size n/p,
plus (n/p)O(p) = O(n) steps to merge them in parallel

We get
Sp(n) ≈ p
Ep(n) ≈ 1

for large n and fixed p

Exercise Work this example through for yourself



Parallel Algorithms
Sorting

If we have just p processors, this becomes

Tp(n) = O
(

n +
n
p
log

n
p

)
as we have sequential merge sorts of p chunks of size n/p,
plus (n/p)O(p) = O(n) steps to merge them in parallel

We get
Sp(n) ≈ p
Ep(n) ≈ 1

for large n and fixed p

Exercise Work this example through for yourself



Parallel Algorithms
Sorting

If we have just p processors, this becomes

Tp(n) = O
(

n +
n
p
log

n
p

)
as we have sequential merge sorts of p chunks of size n/p,
plus (n/p)O(p) = O(n) steps to merge them in parallel

We get
Sp(n) ≈ p
Ep(n) ≈ 1

for large n and fixed p

Exercise Work this example through for yourself



Parallel Algorithms
Sorting

So: for a fixed number of processors we can get good a
speedup, but if we let the number of processors get large our
relative speedup gets quite poor

Seems counterintuitive until you think about it, but it means we
have to have lots of data relative to the number of processors to
get a good speedup

Alternatively: if we have a lot of processors, most of them are
going to be idle most of the time: we only use all of them in the
first step; and even fewer in subsequent steps

Exercise Think about this result in the context of Amdahl and
Gustafson



Parallel Algorithms
Sorting

So: for a fixed number of processors we can get good a
speedup, but if we let the number of processors get large our
relative speedup gets quite poor

Seems counterintuitive until you think about it, but it means we
have to have lots of data relative to the number of processors to
get a good speedup

Alternatively: if we have a lot of processors, most of them are
going to be idle most of the time: we only use all of them in the
first step; and even fewer in subsequent steps

Exercise Think about this result in the context of Amdahl and
Gustafson



Parallel Algorithms
Sorting

So: for a fixed number of processors we can get good a
speedup, but if we let the number of processors get large our
relative speedup gets quite poor

Seems counterintuitive until you think about it, but it means we
have to have lots of data relative to the number of processors to
get a good speedup

Alternatively: if we have a lot of processors, most of them are
going to be idle most of the time: we only use all of them in the
first step; and even fewer in subsequent steps

Exercise Think about this result in the context of Amdahl and
Gustafson



Parallel Algorithms
Sorting

So: for a fixed number of processors we can get good a
speedup, but if we let the number of processors get large our
relative speedup gets quite poor

Seems counterintuitive until you think about it, but it means we
have to have lots of data relative to the number of processors to
get a good speedup

Alternatively: if we have a lot of processors, most of them are
going to be idle most of the time: we only use all of them in the
first step; and even fewer in subsequent steps

Exercise Think about this result in the context of Amdahl and
Gustafson



Parallel Algorithms
Sorting

The most famous sequential sort (after bubble) is quicksort

Similar to mergesort, in that it is a divide and conquer method,
but different in how it divides

• pick a value, the pivot, from the data
• partition the data into two chunks: values bigger than the

pivot; values less than the pivot
• recursively quicksort the two chunks
• return the sorted lower chunk; the pivot; the sorted higher

chunk



Parallel Algorithms
Sorting

The most famous sequential sort (after bubble) is quicksort

Similar to mergesort, in that it is a divide and conquer method,
but different in how it divides

• pick a value, the pivot, from the data
• partition the data into two chunks: values bigger than the

pivot; values less than the pivot
• recursively quicksort the two chunks
• return the sorted lower chunk; the pivot; the sorted higher

chunk



Parallel Algorithms
Sorting

The most famous sequential sort (after bubble) is quicksort

Similar to mergesort, in that it is a divide and conquer method,
but different in how it divides

• pick a value, the pivot, from the data
• partition the data into two chunks: values bigger than the

pivot; values less than the pivot
• recursively quicksort the two chunks
• return the sorted lower chunk; the pivot; the sorted higher

chunk



Parallel Algorithms
Sorting

The partition phase is a bit fiddly to parallelise, but the recursive
sorts are clearly parallelisable

It works well with manager/worker: as each sub-partition is
created it becomes a new task

Also, the tasks are entirely independent with no
communications between them once created

Though we do need to join the sorted partitions back together



Parallel Algorithms
Sorting

The partition phase is a bit fiddly to parallelise, but the recursive
sorts are clearly parallelisable

It works well with manager/worker: as each sub-partition is
created it becomes a new task

Also, the tasks are entirely independent with no
communications between them once created

Though we do need to join the sorted partitions back together



Parallel Algorithms
Sorting

The partition phase is a bit fiddly to parallelise, but the recursive
sorts are clearly parallelisable

It works well with manager/worker: as each sub-partition is
created it becomes a new task

Also, the tasks are entirely independent with no
communications between them once created

Though we do need to join the sorted partitions back together



Parallel Algorithms
Sorting

The partition phase is a bit fiddly to parallelise, but the recursive
sorts are clearly parallelisable

It works well with manager/worker: as each sub-partition is
created it becomes a new task

Also, the tasks are entirely independent with no
communications between them once created

Though we do need to join the sorted partitions back together



Parallel Algorithms
Sorting

Parallel quicksort is very similar in time complexity to
mergesort: it takes time O(n) with O(n) processors in the
average case

And time O(n + (n/p) log(n/p)) with p processors

As usual, quicksort relies on decent pivots: this translates
directly to the need to get good load balancing of the sub-tasks



Parallel Algorithms
Sorting

Parallel quicksort is very similar in time complexity to
mergesort: it takes time O(n) with O(n) processors in the
average case

And time O(n + (n/p) log(n/p)) with p processors

As usual, quicksort relies on decent pivots: this translates
directly to the need to get good load balancing of the sub-tasks



Parallel Algorithms
Sorting

Parallel quicksort is very similar in time complexity to
mergesort: it takes time O(n) with O(n) processors in the
average case

And time O(n + (n/p) log(n/p)) with p processors

As usual, quicksort relies on decent pivots: this translates
directly to the need to get good load balancing of the sub-tasks



Parallel Algorithms
Sorting

Heapsort: another O(n log n) (sequential) sort, is valued as it
has very stable behaviour: no bad cases

But there doesn’t seem to be a good way of parallelising it as
the swaps in the heap creations and destructions need to pass
in unpredictable ways through the entire dataset



Parallel Algorithms
Sorting

Heapsort: another O(n log n) (sequential) sort, is valued as it
has very stable behaviour: no bad cases

But there doesn’t seem to be a good way of parallelising it as
the swaps in the heap creations and destructions need to pass
in unpredictable ways through the entire dataset



Parallel Algorithms
Sorting

Bucket sort parallelises well: this splits the data into several
buckets, then recursively sorts the buckets

Example. Sorting CDs. Have one bucket per letter of the
alphabet. It is quick to put CDs in the correct buckets

Clearly, an extension of the merge sort, it has very similar
properties



Parallel Algorithms
Sorting

Bucket sort parallelises well: this splits the data into several
buckets, then recursively sorts the buckets

Example. Sorting CDs. Have one bucket per letter of the
alphabet. It is quick to put CDs in the correct buckets

Clearly, an extension of the merge sort, it has very similar
properties



Parallel Algorithms
Sorting

Bucket sort parallelises well: this splits the data into several
buckets, then recursively sorts the buckets

Example. Sorting CDs. Have one bucket per letter of the
alphabet. It is quick to put CDs in the correct buckets

Clearly, an extension of the merge sort, it has very similar
properties



Parallel Algorithms
Sorting

Parallel sorting algorithms exist that take parallel time O(log n),
but require O(n2/ log n) processors: very inefficient

Other sorts exist that take time O(log n) time and O(n)
processors: sounds better?

Some of these you need to be sorting upwards of 1022 items to
be faster than simpler sorts with apparently worse complexities,
like the bitonic sort, with time O(log2 n)



Parallel Algorithms
Sorting

Parallel sorting algorithms exist that take parallel time O(log n),
but require O(n2/ log n) processors: very inefficient

Other sorts exist that take time O(log n) time and O(n)
processors: sounds better?

Some of these you need to be sorting upwards of 1022 items to
be faster than simpler sorts with apparently worse complexities,
like the bitonic sort, with time O(log2 n)



Parallel Algorithms
Sorting

Parallel sorting algorithms exist that take parallel time O(log n),
but require O(n2/ log n) processors: very inefficient

Other sorts exist that take time O(log n) time and O(n)
processors: sounds better?

Some of these you need to be sorting upwards of 1022 items to
be faster than simpler sorts with apparently worse complexities,
like the bitonic sort, with time O(log2 n)



Parallel Algorithms
Sorting

The bitonic sort, a divide and conquer method somewhat
related to merge sort and shell sort, takes time O(log2 n) on
O(n) processors

It takes O(n log2 n) sequentially, so having a speedup of O(n)

This sounds good, until you realise this is a parallelisation of a
slightly sub-optimal sequential sort

Comparing against a O(n log n) fast sort, we see bitonic has
speedup O(n/ log n); still not too bad

But the important thing is that it is practical for realistic sizes
of n

Exercise Go and read up on bitonic sort



Parallel Algorithms
Sorting

The bitonic sort, a divide and conquer method somewhat
related to merge sort and shell sort, takes time O(log2 n) on
O(n) processors

It takes O(n log2 n) sequentially, so having a speedup of O(n)

This sounds good, until you realise this is a parallelisation of a
slightly sub-optimal sequential sort

Comparing against a O(n log n) fast sort, we see bitonic has
speedup O(n/ log n); still not too bad

But the important thing is that it is practical for realistic sizes
of n

Exercise Go and read up on bitonic sort



Parallel Algorithms
Sorting

The bitonic sort, a divide and conquer method somewhat
related to merge sort and shell sort, takes time O(log2 n) on
O(n) processors

It takes O(n log2 n) sequentially, so having a speedup of O(n)

This sounds good, until you realise this is a parallelisation of a
slightly sub-optimal sequential sort

Comparing against a O(n log n) fast sort, we see bitonic has
speedup O(n/ log n); still not too bad

But the important thing is that it is practical for realistic sizes
of n

Exercise Go and read up on bitonic sort



Parallel Algorithms
Sorting

The bitonic sort, a divide and conquer method somewhat
related to merge sort and shell sort, takes time O(log2 n) on
O(n) processors

It takes O(n log2 n) sequentially, so having a speedup of O(n)

This sounds good, until you realise this is a parallelisation of a
slightly sub-optimal sequential sort

Comparing against a O(n log n) fast sort, we see bitonic has
speedup O(n/ log n); still not too bad

But the important thing is that it is practical for realistic sizes
of n

Exercise Go and read up on bitonic sort



Parallel Algorithms
Sorting

The bitonic sort, a divide and conquer method somewhat
related to merge sort and shell sort, takes time O(log2 n) on
O(n) processors

It takes O(n log2 n) sequentially, so having a speedup of O(n)

This sounds good, until you realise this is a parallelisation of a
slightly sub-optimal sequential sort

Comparing against a O(n log n) fast sort, we see bitonic has
speedup O(n/ log n); still not too bad

But the important thing is that it is practical for realistic sizes
of n

Exercise Go and read up on bitonic sort



Parallel Algorithms
Sorting

The bitonic sort, a divide and conquer method somewhat
related to merge sort and shell sort, takes time O(log2 n) on
O(n) processors

It takes O(n log2 n) sequentially, so having a speedup of O(n)

This sounds good, until you realise this is a parallelisation of a
slightly sub-optimal sequential sort

Comparing against a O(n log n) fast sort, we see bitonic has
speedup O(n/ log n); still not too bad

But the important thing is that it is practical for realistic sizes
of n

Exercise Go and read up on bitonic sort



Parallel Algorithms
Sorting

And there are many other sorts

The literature for parallel sorts is huge, as it is a problem that is
easy to understand, but hard to solve

Particularly when you start to factor communications costs into
your time complexities



Parallel Algorithms
Sorting

And there are many other sorts

The literature for parallel sorts is huge, as it is a problem that is
easy to understand, but hard to solve

Particularly when you start to factor communications costs into
your time complexities



Parallel Algorithms
Sorting

And there are many other sorts

The literature for parallel sorts is huge, as it is a problem that is
easy to understand, but hard to solve

Particularly when you start to factor communications costs into
your time complexities



Parallel Algorithms
Sorting

Exercise It has been claimed that MapReduce can sort “a
petabyte of data in a few hours”. Find out about how it does this

Exercise Related to sorting is the problem of finding the
maximum value in a dataset. Discuss how this might be
parallelised and its time complexity

Exercise Then find the middle value in a dataset



Parallel Algorithms
Searching

The other classical problem is searching

This is very datastructure dependent, but can parallelise very
well

For example, if the data are spread over many machines,
searching for an item is as simple as getting each machine to
search its chunk

When any machine finds the item, they can all stop

Or, if multiple results are wanted, there can be a reduce step



Parallel Algorithms
Searching

The other classical problem is searching

This is very datastructure dependent, but can parallelise very
well

For example, if the data are spread over many machines,
searching for an item is as simple as getting each machine to
search its chunk

When any machine finds the item, they can all stop

Or, if multiple results are wanted, there can be a reduce step



Parallel Algorithms
Searching

The other classical problem is searching

This is very datastructure dependent, but can parallelise very
well

For example, if the data are spread over many machines,
searching for an item is as simple as getting each machine to
search its chunk

When any machine finds the item, they can all stop

Or, if multiple results are wanted, there can be a reduce step



Parallel Algorithms
Searching

The other classical problem is searching

This is very datastructure dependent, but can parallelise very
well

For example, if the data are spread over many machines,
searching for an item is as simple as getting each machine to
search its chunk

When any machine finds the item, they can all stop

Or, if multiple results are wanted, there can be a reduce step



Parallel Algorithms
Searching

The other classical problem is searching

This is very datastructure dependent, but can parallelise very
well

For example, if the data are spread over many machines,
searching for an item is as simple as getting each machine to
search its chunk

When any machine finds the item, they can all stop

Or, if multiple results are wanted, there can be a reduce step



Parallel Algorithms
Searching

If the data is distributed sensibly over p processors, the chunks
will be of size n/p and take n/p time to search for a naı̈ve linear
search

Thus parallel searching can give perfect speedup n/(n/p) = p

But linear search is far from a good sequential search

Again, we get a good speedup since we start from a poor place



Parallel Algorithms
Searching

If the data is distributed sensibly over p processors, the chunks
will be of size n/p and take n/p time to search for a naı̈ve linear
search

Thus parallel searching can give perfect speedup n/(n/p) = p

But linear search is far from a good sequential search

Again, we get a good speedup since we start from a poor place



Parallel Algorithms
Searching

If the data is distributed sensibly over p processors, the chunks
will be of size n/p and take n/p time to search for a naı̈ve linear
search

Thus parallel searching can give perfect speedup n/(n/p) = p

But linear search is far from a good sequential search

Again, we get a good speedup since we start from a poor place



Parallel Algorithms
Searching

If the data is distributed sensibly over p processors, the chunks
will be of size n/p and take n/p time to search for a naı̈ve linear
search

Thus parallel searching can give perfect speedup n/(n/p) = p

But linear search is far from a good sequential search

Again, we get a good speedup since we start from a poor place



Parallel Algorithms
Searching

Searching in a tree takes time O(log n), so if we can perfectly
distribute sub-trees across p processors, we can search them
in parallel time O(log(n/p)) for a speedup O(log n/ log(n/p))

Sounds good? Well, consider the speedup for large n:

O(log n/ log(n/p)) = O(log n/(log n − log p))
= O(1/(1− log p/ log n))
→ 1 as n→∞

Here the problem is that tree search is so good that the benefit
you get from spreading it across p processors is small, and
gets smaller as the dataset increases in size



Parallel Algorithms
Searching

Searching in a tree takes time O(log n), so if we can perfectly
distribute sub-trees across p processors, we can search them
in parallel time O(log(n/p)) for a speedup O(log n/ log(n/p))

Sounds good? Well, consider the speedup for large n:

O(log n/ log(n/p)) = O(log n/(log n − log p))
= O(1/(1− log p/ log n))
→ 1 as n→∞

Here the problem is that tree search is so good that the benefit
you get from spreading it across p processors is small, and
gets smaller as the dataset increases in size



Parallel Algorithms
Searching

Searching in a tree takes time O(log n), so if we can perfectly
distribute sub-trees across p processors, we can search them
in parallel time O(log(n/p)) for a speedup O(log n/ log(n/p))

Sounds good? Well, consider the speedup for large n:

O(log n/ log(n/p)) = O(log n/(log n − log p))
= O(1/(1− log p/ log n))
→ 1 as n→∞

Here the problem is that tree search is so good that the benefit
you get from spreading it across p processors is small, and
gets smaller as the dataset increases in size



Parallel Algorithms
Searching

And these algorithms rely on everything being nice and uniform
and randomly accessible and ignoring communications costs

For example, if the searches cluster around the data on a single
machine, we could write a sequential search that takes
advantage of that fact, and our parallel search would not be
much faster



Parallel Algorithms
Searching

And these algorithms rely on everything being nice and uniform
and randomly accessible and ignoring communications costs

For example, if the searches cluster around the data on a single
machine, we could write a sequential search that takes
advantage of that fact, and our parallel search would not be
much faster



Parallel Algorithms
Searching

Also, the datastructure must be able to be evenly spread

Lists and trees, that have restrictions on the order you access
their elements, are harder to access in this random manner

Of course, Google does this in a big way, using MapReduce,
showing that searching petabytes of data can be done in
fractions of a second

Again, we find that parallelism allows us to go bigger, rather
than faster



Parallel Algorithms
Searching

Also, the datastructure must be able to be evenly spread

Lists and trees, that have restrictions on the order you access
their elements, are harder to access in this random manner

Of course, Google does this in a big way, using MapReduce,
showing that searching petabytes of data can be done in
fractions of a second

Again, we find that parallelism allows us to go bigger, rather
than faster



Parallel Algorithms
Searching

Also, the datastructure must be able to be evenly spread

Lists and trees, that have restrictions on the order you access
their elements, are harder to access in this random manner

Of course, Google does this in a big way, using MapReduce,
showing that searching petabytes of data can be done in
fractions of a second

Again, we find that parallelism allows us to go bigger, rather
than faster



Parallel Algorithms
Searching

Also, the datastructure must be able to be evenly spread

Lists and trees, that have restrictions on the order you access
their elements, are harder to access in this random manner

Of course, Google does this in a big way, using MapReduce,
showing that searching petabytes of data can be done in
fractions of a second

Again, we find that parallelism allows us to go bigger, rather
than faster



Parallel Algorithms
Reduction

Next: parallel reduction

Reduction has a natural parallelisation using a tree



Parallel Algorithms
Reduction

Next: parallel reduction

Reduction has a natural parallelisation using a tree



Parallel Algorithms
Reduction

Next: parallel reduction

Reduction has a natural parallelisation using a tree

1 2 3 4 5 6 70

1 5 9 13

6 22

28
+

+ +

+ + + +

Tree reduction sum

Reducing a list of values using summation (read bottom up)



Parallel Algorithms
Reduction

Next: parallel reduction

Reduction has a natural parallelisation using a tree

3 6250 7 14

4 5 7 6

5 7

7

Tree reduction maximum

Reducing a list of values using maximum



Parallel Algorithms
Reduction

This takes O(log n) steps to reduce n values, using O(n)
processors

Sequential time: n − 1 operations, giving speedup

S = O(n/ log n) using O(n) processors

This is not much less than n, as log n grows only slowly with n



Parallel Algorithms
Reduction

This takes O(log n) steps to reduce n values, using O(n)
processors

Sequential time: n − 1 operations, giving speedup

S = O(n/ log n) using O(n) processors

This is not much less than n, as log n grows only slowly with n



Parallel Algorithms
Reduction

This takes O(log n) steps to reduce n values, using O(n)
processors

Sequential time: n − 1 operations, giving speedup

S = O(n/ log n) using O(n) processors

This is not much less than n, as log n grows only slowly with n



Parallel Algorithms
Reduction

Efficiency
E = O(1/ log n)

which slowly drops as n increases



Parallel Algorithms
Reduction

For p processors, divide the data into p chunks of size n/p

Time to reduce a chunk (sequential): O(n/p)
Time to reduce the chunks: O(log p)

Total

O
(

n
p
+ log p

)



Parallel Algorithms
Reduction

For p processors, divide the data into p chunks of size n/p

Time to reduce a chunk (sequential): O(n/p)
Time to reduce the chunks: O(log p)

Total

O
(

n
p
+ log p

)



Parallel Algorithms
Reduction

For p processors, divide the data into p chunks of size n/p

Time to reduce a chunk (sequential): O(n/p)
Time to reduce the chunks: O(log p)

Total

O
(

n
p
+ log p

)



Parallel Algorithms
Reduction

Speedup
Sp =

n
n/p + log p

=
p

1 + (p log p)/n

which approaches p as n gets large

Likewise, the efficiency approaches 1 for large n

Similar to previous examples, if you allow yourself an indefinite
number of processors, the speedup will be greater, but at a
high cost, i.e., low efficiency

For a fixed number of processors, you get a fixed bound on the
speedup, but you will be using the hardware very efficiently as
the dataset get large



Parallel Algorithms
Reduction

Speedup
Sp =

n
n/p + log p

=
p

1 + (p log p)/n

which approaches p as n gets large

Likewise, the efficiency approaches 1 for large n

Similar to previous examples, if you allow yourself an indefinite
number of processors, the speedup will be greater, but at a
high cost, i.e., low efficiency

For a fixed number of processors, you get a fixed bound on the
speedup, but you will be using the hardware very efficiently as
the dataset get large



Parallel Algorithms
Reduction

Speedup
Sp =

n
n/p + log p

=
p

1 + (p log p)/n

which approaches p as n gets large

Likewise, the efficiency approaches 1 for large n

Similar to previous examples, if you allow yourself an indefinite
number of processors, the speedup will be greater, but at a
high cost, i.e., low efficiency

For a fixed number of processors, you get a fixed bound on the
speedup, but you will be using the hardware very efficiently as
the dataset get large



Parallel Algorithms
Reduction

Speedup
Sp =

n
n/p + log p

=
p

1 + (p log p)/n

which approaches p as n gets large

Likewise, the efficiency approaches 1 for large n

Similar to previous examples, if you allow yourself an indefinite
number of processors, the speedup will be greater, but at a
high cost, i.e., low efficiency

For a fixed number of processors, you get a fixed bound on the
speedup, but you will be using the hardware very efficiently as
the dataset get large


