
Parallel Algorithms
Reduction

There are a couple of issues, however

In real implementations we need to worry about the cost of data
movement between processors: reduction inherently needs to
move data around

Probably a small cost for a shared memory system, but it can
easily be much larger than the cost of the reduction operation if
you are not careful

So parallel reduction on, say, a distributed memory machine, is
only worthwhile for large datasets

Or a very costly reduction operation

This is grain size, again



Parallel Algorithms
Reduction

There are a couple of issues, however

In real implementations we need to worry about the cost of data
movement between processors: reduction inherently needs to
move data around

Probably a small cost for a shared memory system, but it can
easily be much larger than the cost of the reduction operation if
you are not careful

So parallel reduction on, say, a distributed memory machine, is
only worthwhile for large datasets

Or a very costly reduction operation

This is grain size, again



Parallel Algorithms
Reduction

There are a couple of issues, however

In real implementations we need to worry about the cost of data
movement between processors: reduction inherently needs to
move data around

Probably a small cost for a shared memory system, but it can
easily be much larger than the cost of the reduction operation if
you are not careful

So parallel reduction on, say, a distributed memory machine, is
only worthwhile for large datasets

Or a very costly reduction operation

This is grain size, again



Parallel Algorithms
Reduction

There are a couple of issues, however

In real implementations we need to worry about the cost of data
movement between processors: reduction inherently needs to
move data around

Probably a small cost for a shared memory system, but it can
easily be much larger than the cost of the reduction operation if
you are not careful

So parallel reduction on, say, a distributed memory machine, is
only worthwhile for large datasets

Or a very costly reduction operation

This is grain size, again



Parallel Algorithms
Reduction

There are a couple of issues, however

In real implementations we need to worry about the cost of data
movement between processors: reduction inherently needs to
move data around

Probably a small cost for a shared memory system, but it can
easily be much larger than the cost of the reduction operation if
you are not careful

So parallel reduction on, say, a distributed memory machine, is
only worthwhile for large datasets

Or a very costly reduction operation

This is grain size, again



Parallel Algorithms
Reduction

There are a couple of issues, however

In real implementations we need to worry about the cost of data
movement between processors: reduction inherently needs to
move data around

Probably a small cost for a shared memory system, but it can
easily be much larger than the cost of the reduction operation if
you are not careful

So parallel reduction on, say, a distributed memory machine, is
only worthwhile for large datasets

Or a very costly reduction operation

This is grain size, again



Parallel Algorithms
Reduction

The other issue is about reduction in general, not just in
parallel. Reduction relies on the associativity of the reduction
operation

Reduce the list (1,2,3,4) using −

Do we mean
((1 − 2)− 3)− 4 = −8

a left reduction

Or
1 − (2 − (3 − 4)) = −2

a right reduction?



Parallel Algorithms
Reduction

The other issue is about reduction in general, not just in
parallel. Reduction relies on the associativity of the reduction
operation

Reduce the list (1,2,3,4) using −

Do we mean
((1 − 2)− 3)− 4 = −8

a left reduction

Or
1 − (2 − (3 − 4)) = −2

a right reduction?



Parallel Algorithms
Reduction

The other issue is about reduction in general, not just in
parallel. Reduction relies on the associativity of the reduction
operation

Reduce the list (1,2,3,4) using −

Do we mean
((1 − 2)− 3)− 4 = −8

a left reduction

Or
1 − (2 − (3 − 4)) = −2

a right reduction?



Parallel Algorithms
Reduction

The other issue is about reduction in general, not just in
parallel. Reduction relies on the associativity of the reduction
operation

Reduce the list (1,2,3,4) using −

Do we mean
((1 − 2)− 3)− 4 = −8

a left reduction

Or
1 − (2 − (3 − 4)) = −2

a right reduction?



Parallel Algorithms
Reduction

And a tree reduction will give

− −

−

1 2 3 4

−1 −1

0

Tree Reduction

Or something else entirely depending on where the data ended
up in the tree



Parallel Algorithms
Reduction

And a tree reduction will give

− −

−

1 2 3 4

−1 −1

0

Tree Reduction

Or something else entirely depending on where the data ended
up in the tree



Parallel Algorithms
Reduction

The simple answer is not to do reductions using
non-associative operations, even sequentially

However, there are many useful reduction operations, including
+, ∗, max, min, left(a,b) = a and so on



Parallel Algorithms
Reduction

The simple answer is not to do reductions using
non-associative operations, even sequentially

However, there are many useful reduction operations, including
+, ∗, max, min, left(a,b) = a and so on



Parallel Algorithms
Reduction

Reduction appears as an operation in many languages, e.g.,
JavaScript array.reduce(op) to reduce the array with the
op:
((array[0] op array[1]) op array[2]) op ...

Thus amenable to automatic parallelisation, if the operation is
associative and independent of the array (e.g., not if the op
updates the array)



Parallel Algorithms
Reduction

Reduction appears as an operation in many languages, e.g.,
JavaScript array.reduce(op) to reduce the array with the
op:
((array[0] op array[1]) op array[2]) op ...

Thus amenable to automatic parallelisation, if the operation is
associative and independent of the array (e.g., not if the op
updates the array)



Parallel Algorithms
Prefix Scan

Closely related to reduction is the prefix scan: (1,2,3,4) with +
returns

(1,3,6,10)

So: (array[0], array[0] op array[1], array[0] op
array[1] op array[2], ...)

The partial reductions, usually left associated



Parallel Algorithms
Prefix Scan

Closely related to reduction is the prefix scan: (1,2,3,4) with +
returns

(1,3,6,10)

So: (array[0], array[0] op array[1], array[0] op
array[1] op array[2], ...)

The partial reductions, usually left associated



Parallel Algorithms
Prefix Scan

Closely related to reduction is the prefix scan: (1,2,3,4) with +
returns

(1,3,6,10)

So: (array[0], array[0] op array[1], array[0] op
array[1] op array[2], ...)

The partial reductions, usually left associated



Parallel Algorithms
Prefix Scan

This can also be done in O(log n) steps (on n processors)

Even though it seems you need to compute 1 + 2 before
computing 1 + 2 + 3 before computing 1 + 2 + 3 + 4, thus
serialising the whole thing

But this is sequential thinking!

For example, you can compute 3 + 4 at the same time as 1 + 2;
and then (1 + 2) + 3 in parallel with (1 + 2) + (3 + 4)

We can proceed in a tree-like sequence of combination of pairs
of values



Parallel Algorithms
Prefix Scan

This can also be done in O(log n) steps (on n processors)

Even though it seems you need to compute 1 + 2 before
computing 1 + 2 + 3 before computing 1 + 2 + 3 + 4, thus
serialising the whole thing

But this is sequential thinking!

For example, you can compute 3 + 4 at the same time as 1 + 2;
and then (1 + 2) + 3 in parallel with (1 + 2) + (3 + 4)

We can proceed in a tree-like sequence of combination of pairs
of values



Parallel Algorithms
Prefix Scan

This can also be done in O(log n) steps (on n processors)

Even though it seems you need to compute 1 + 2 before
computing 1 + 2 + 3 before computing 1 + 2 + 3 + 4, thus
serialising the whole thing

But this is sequential thinking!

For example, you can compute 3 + 4 at the same time as 1 + 2;
and then (1 + 2) + 3 in parallel with (1 + 2) + (3 + 4)

We can proceed in a tree-like sequence of combination of pairs
of values



Parallel Algorithms
Prefix Scan

This can also be done in O(log n) steps (on n processors)

Even though it seems you need to compute 1 + 2 before
computing 1 + 2 + 3 before computing 1 + 2 + 3 + 4, thus
serialising the whole thing

But this is sequential thinking!

For example, you can compute 3 + 4 at the same time as 1 + 2;
and then (1 + 2) + 3 in parallel with (1 + 2) + (3 + 4)

We can proceed in a tree-like sequence of combination of pairs
of values



Parallel Algorithms
Prefix Scan

This can also be done in O(log n) steps (on n processors)

Even though it seems you need to compute 1 + 2 before
computing 1 + 2 + 3 before computing 1 + 2 + 3 + 4, thus
serialising the whole thing

But this is sequential thinking!

For example, you can compute 3 + 4 at the same time as 1 + 2;
and then (1 + 2) + 3 in parallel with (1 + 2) + (3 + 4)

We can proceed in a tree-like sequence of combination of pairs
of values



Parallel Algorithms
Prefix Scan

1 2 3 4

3 7

10

1 5

1 3 5

pairs 1
apart

apart
pairs 2

Prefix Scan 1 apart



Parallel Algorithms
Prefix Scan

1 2 3 4

3 7

10

1 5

1 3

pairs 1
apart

apart
pairs 26

Prefix Scan 2 apart



Parallel Algorithms
Prefix Scan

First step is to sum array[i] = array[i] + array[i-1] in
parallel

Then double the distances:
array[i] = array[i] + array[i-2]

Then double the distances:
array[i] = array[i] + array[i-4]

And so on, for log n steps on O(n) processors: this gives us all
the prefix sums, including the total reduction as the last element



Parallel Algorithms
Prefix Scan

First step is to sum array[i] = array[i] + array[i-1] in
parallel

Then double the distances:
array[i] = array[i] + array[i-2]

Then double the distances:
array[i] = array[i] + array[i-4]

And so on, for log n steps on O(n) processors: this gives us all
the prefix sums, including the total reduction as the last element



Parallel Algorithms
Prefix Scan

First step is to sum array[i] = array[i] + array[i-1] in
parallel

Then double the distances:
array[i] = array[i] + array[i-2]

Then double the distances:
array[i] = array[i] + array[i-4]

And so on, for log n steps on O(n) processors: this gives us all
the prefix sums, including the total reduction as the last element



Parallel Algorithms
Prefix Scan

First step is to sum array[i] = array[i] + array[i-1] in
parallel

Then double the distances:
array[i] = array[i] + array[i-2]

Then double the distances:
array[i] = array[i] + array[i-4]

And so on, for log n steps on O(n) processors: this gives us all
the prefix sums, including the total reduction as the last element



Parallel Algorithms
Prefix Scan

When limited to p processors we can produce a scan in time

O
(

n
p
+ log p

)

Scan has the same issues as reduce, namely data travel and
associativity



Parallel Algorithms
Prefix Scan

When limited to p processors we can produce a scan in time

O
(

n
p
+ log p

)

Scan has the same issues as reduce, namely data travel and
associativity



Parallel Algorithms
Prefix Scan

Scan appears to give us more answers than reduce for the
same amount of work!

It’s not: for a start, reduce uses at most n/2 processors, while
scan uses up to n − 1



Parallel Algorithms
Prefix Scan

Scan appears to give us more answers than reduce for the
same amount of work!

It’s not: for a start, reduce uses at most n/2 processors, while
scan uses up to n − 1



Parallel Algorithms
Prefix Scan

But more importantly, reduce halves the number of active
processors in each step, while scan uses more processors
more of the time. It uses n − 2r active processors in step r , so it
ends with about n/2 active processors

They both complete in the same amount of time so they have
the same speedup, but scan is more efficient

Meaning scan uses more hardware more of the time (and
therefore takes more energy)

We can see that reduce has quite a lot of slack in parallel!



Parallel Algorithms
Prefix Scan

But more importantly, reduce halves the number of active
processors in each step, while scan uses more processors
more of the time. It uses n − 2r active processors in step r , so it
ends with about n/2 active processors

They both complete in the same amount of time so they have
the same speedup, but scan is more efficient

Meaning scan uses more hardware more of the time (and
therefore takes more energy)

We can see that reduce has quite a lot of slack in parallel!



Parallel Algorithms
Prefix Scan

But more importantly, reduce halves the number of active
processors in each step, while scan uses more processors
more of the time. It uses n − 2r active processors in step r , so it
ends with about n/2 active processors

They both complete in the same amount of time so they have
the same speedup, but scan is more efficient

Meaning scan uses more hardware more of the time (and
therefore takes more energy)

We can see that reduce has quite a lot of slack in parallel!



Parallel Algorithms
Prefix Scan

But more importantly, reduce halves the number of active
processors in each step, while scan uses more processors
more of the time. It uses n − 2r active processors in step r , so it
ends with about n/2 active processors

They both complete in the same amount of time so they have
the same speedup, but scan is more efficient

Meaning scan uses more hardware more of the time (and
therefore takes more energy)

We can see that reduce has quite a lot of slack in parallel!



Parallel Algorithms
Prefix Scan

Note that both scan and reduce work well on a SIMD
architecture

They work on distributed memory, too, but we have to watch the
cost of the messaging

MPI includes several scan operations including
MPI MAX, MPI MIN, MP SUM, MPI PROD, MPI LAND (logical
AND), MPI LOR (logical OR)
amongst others

Exercise Write a parallel prefix scan in OpenMP

Exercise In fact there is a better, work efficient, more
complicated algorithm that only needs n/2 processors. Look it
up



Parallel Algorithms
Prefix Scan

Note that both scan and reduce work well on a SIMD
architecture

They work on distributed memory, too, but we have to watch the
cost of the messaging

MPI includes several scan operations including
MPI MAX, MPI MIN, MP SUM, MPI PROD, MPI LAND (logical
AND), MPI LOR (logical OR)
amongst others

Exercise Write a parallel prefix scan in OpenMP

Exercise In fact there is a better, work efficient, more
complicated algorithm that only needs n/2 processors. Look it
up



Parallel Algorithms
Prefix Scan

Note that both scan and reduce work well on a SIMD
architecture

They work on distributed memory, too, but we have to watch the
cost of the messaging

MPI includes several scan operations including
MPI MAX, MPI MIN, MP SUM, MPI PROD, MPI LAND (logical
AND), MPI LOR (logical OR)
amongst others

Exercise Write a parallel prefix scan in OpenMP

Exercise In fact there is a better, work efficient, more
complicated algorithm that only needs n/2 processors. Look it
up



Parallel Algorithms
Prefix Scan

Note that both scan and reduce work well on a SIMD
architecture

They work on distributed memory, too, but we have to watch the
cost of the messaging

MPI includes several scan operations including
MPI MAX, MPI MIN, MP SUM, MPI PROD, MPI LAND (logical
AND), MPI LOR (logical OR)
amongst others

Exercise Write a parallel prefix scan in OpenMP

Exercise In fact there is a better, work efficient, more
complicated algorithm that only needs n/2 processors. Look it
up



Parallel Algorithms
FFT

The Fast Fourier Transform (FFT) is one of the basic algorithms
in CS, known by everybody who knows anything about CS

The Discrete Fourier Transform (DFT) takes a sequence of n
(complex) numbers and returns a sequence of n numbers

If the input numbers represent a signal, the DFT values
represent the constituent frequencies of that signal

yk =
n−1∑
j=0

xje−2πijk/n, for 0 ≤ k < n

The n values xi are input; the n values yi are output



Parallel Algorithms
FFT

The Fast Fourier Transform (FFT) is one of the basic algorithms
in CS, known by everybody who knows anything about CS

The Discrete Fourier Transform (DFT) takes a sequence of n
(complex) numbers and returns a sequence of n numbers

If the input numbers represent a signal, the DFT values
represent the constituent frequencies of that signal

yk =
n−1∑
j=0

xje−2πijk/n, for 0 ≤ k < n

The n values xi are input; the n values yi are output



Parallel Algorithms
FFT

The Fast Fourier Transform (FFT) is one of the basic algorithms
in CS, known by everybody who knows anything about CS

The Discrete Fourier Transform (DFT) takes a sequence of n
(complex) numbers and returns a sequence of n numbers

If the input numbers represent a signal, the DFT values
represent the constituent frequencies of that signal

yk =
n−1∑
j=0

xje−2πijk/n, for 0 ≤ k < n

The n values xi are input; the n values yi are output



Parallel Algorithms
FFT

The Fast Fourier Transform (FFT) is one of the basic algorithms
in CS, known by everybody who knows anything about CS

The Discrete Fourier Transform (DFT) takes a sequence of n
(complex) numbers and returns a sequence of n numbers

If the input numbers represent a signal, the DFT values
represent the constituent frequencies of that signal

yk =
n−1∑
j=0

xje−2πijk/n, for 0 ≤ k < n

The n values xi are input; the n values yi are output



Parallel Algorithms
FFT

This has two obvious elements of parallelism:

• each yk can be computed independently, for a n-way
parallelism

• each summation can be done as a tree, for a log n-way
parallelism

• taking total time O(log n) on O(n2) processors

But, instead let us look at a sequential divide and conquer
version



Parallel Algorithms
FFT

This has two obvious elements of parallelism:

• each yk can be computed independently, for a n-way
parallelism

• each summation can be done as a tree, for a log n-way
parallelism

• taking total time O(log n) on O(n2) processors

But, instead let us look at a sequential divide and conquer
version



Parallel Algorithms
FFT

This has two obvious elements of parallelism:

• each yk can be computed independently, for a n-way
parallelism

• each summation can be done as a tree, for a log n-way
parallelism

• taking total time O(log n) on O(n2) processors

But, instead let us look at a sequential divide and conquer
version



Parallel Algorithms
FFT

This has two obvious elements of parallelism:

• each yk can be computed independently, for a n-way
parallelism

• each summation can be done as a tree, for a log n-way
parallelism

• taking total time O(log n) on O(n2) processors

But, instead let us look at a sequential divide and conquer
version



Parallel Algorithms
FFT

This has two obvious elements of parallelism:

• each yk can be computed independently, for a n-way
parallelism

• each summation can be done as a tree, for a log n-way
parallelism

• taking total time O(log n) on O(n2) processors

But, instead let us look at a sequential divide and conquer
version



Parallel Algorithms
FFT

This sum can be computed as presented: summing n values for
each of n values yk , thus taking time O(n2)

However, if n is even, then we get a nice recursive presentation
by splitting the sum into evens and odds



Parallel Algorithms
FFT

This sum can be computed as presented: summing n values for
each of n values yk , thus taking time O(n2)

However, if n is even, then we get a nice recursive presentation
by splitting the sum into evens and odds



Parallel Algorithms
FFT

yk =
n−1∑
j=0

xje−2πijk/n

=

n/2−1∑
j=0

x2je−2πi(2j)k/n +

n/2−1∑
j=0

x2j+1e−2πi(2j+1)k/n

=

n/2−1∑
j=0

x2je−2πijk/(n/2) + e−2πik/n
n/2−1∑

j=0

x2j+1e−2πijk/(n/2)

Decomposition of Fourier Transform

This is just two half-size DFTs



Parallel Algorithms
FFT

yk =
n−1∑
j=0

xje−2πijk/n

=

n/2−1∑
j=0

x2je−2πi(2j)k/n +

n/2−1∑
j=0

x2j+1e−2πi(2j+1)k/n

=

n/2−1∑
j=0

x2je−2πijk/(n/2) + e−2πik/n
n/2−1∑

j=0

x2j+1e−2πijk/(n/2)

Decomposition of Fourier Transform

This is just two half-size DFTs



Parallel Algorithms
FFT

For n a power of 2 we can repeat recursively, leading to the
Fast Fourier Transform, a way to implement the DFT

In fact, the FFT is an unwinding of the recursion into an iteration
that runs slightly faster, but is harder to understand

The FFT takes sequential time O(n log n), which is a huge
improvement over O(n2); e.g., for n = 1,000,000, this is about
20,000,000 against 1,000,000,000,000

But, for our purposes, we can see this as a simple divide and
conquer, thus easily parallelisable



Parallel Algorithms
FFT

For n a power of 2 we can repeat recursively, leading to the
Fast Fourier Transform, a way to implement the DFT

In fact, the FFT is an unwinding of the recursion into an iteration
that runs slightly faster, but is harder to understand

The FFT takes sequential time O(n log n), which is a huge
improvement over O(n2); e.g., for n = 1,000,000, this is about
20,000,000 against 1,000,000,000,000

But, for our purposes, we can see this as a simple divide and
conquer, thus easily parallelisable



Parallel Algorithms
FFT

For n a power of 2 we can repeat recursively, leading to the
Fast Fourier Transform, a way to implement the DFT

In fact, the FFT is an unwinding of the recursion into an iteration
that runs slightly faster, but is harder to understand

The FFT takes sequential time O(n log n), which is a huge
improvement over O(n2); e.g., for n = 1,000,000, this is about
20,000,000 against 1,000,000,000,000

But, for our purposes, we can see this as a simple divide and
conquer, thus easily parallelisable



Parallel Algorithms
FFT

For n a power of 2 we can repeat recursively, leading to the
Fast Fourier Transform, a way to implement the DFT

In fact, the FFT is an unwinding of the recursion into an iteration
that runs slightly faster, but is harder to understand

The FFT takes sequential time O(n log n), which is a huge
improvement over O(n2); e.g., for n = 1,000,000, this is about
20,000,000 against 1,000,000,000,000

But, for our purposes, we can see this as a simple divide and
conquer, thus easily parallelisable



Parallel Algorithms
FFT

The parallelisation of the FFT works in a way very similar to
what we have seen before and has complexity O(log n) on O(n)
processors, and O(log p + (n/p) log(n/p)) on p processors

As the FFT is such an important algorithm, much has been
written about it and its parallel variants, in particular matching it
to the various kinds of hardware (SIMD, pipeline, shared
memory, etc.)



Parallel Algorithms
FFT

The parallelisation of the FFT works in a way very similar to
what we have seen before and has complexity O(log n) on O(n)
processors, and O(log p + (n/p) log(n/p)) on p processors

As the FFT is such an important algorithm, much has been
written about it and its parallel variants, in particular matching it
to the various kinds of hardware (SIMD, pipeline, shared
memory, etc.)



Parallel Algorithms
And So On

There are very many other parallel algorithms: just think of the
large literature on sequential algorithms that exists

We have just looked at a couple, but everything that you have
done in the past sequentially will probably have a parallel
counterpart

Some algorithms will map best to shared memory, some
distributed, some SIMD, and so on

Some will be sensitive to the topology of the architecture (full
connect, torus, etc.), others work well regardless

Still more will not work well in parallel at all

Exercise Look some up!



Parallel Algorithms
And So On

There are very many other parallel algorithms: just think of the
large literature on sequential algorithms that exists

We have just looked at a couple, but everything that you have
done in the past sequentially will probably have a parallel
counterpart

Some algorithms will map best to shared memory, some
distributed, some SIMD, and so on

Some will be sensitive to the topology of the architecture (full
connect, torus, etc.), others work well regardless

Still more will not work well in parallel at all

Exercise Look some up!



Parallel Algorithms
And So On

There are very many other parallel algorithms: just think of the
large literature on sequential algorithms that exists

We have just looked at a couple, but everything that you have
done in the past sequentially will probably have a parallel
counterpart

Some algorithms will map best to shared memory, some
distributed, some SIMD, and so on

Some will be sensitive to the topology of the architecture (full
connect, torus, etc.), others work well regardless

Still more will not work well in parallel at all

Exercise Look some up!



Parallel Algorithms
And So On

There are very many other parallel algorithms: just think of the
large literature on sequential algorithms that exists

We have just looked at a couple, but everything that you have
done in the past sequentially will probably have a parallel
counterpart

Some algorithms will map best to shared memory, some
distributed, some SIMD, and so on

Some will be sensitive to the topology of the architecture (full
connect, torus, etc.), others work well regardless

Still more will not work well in parallel at all

Exercise Look some up!



Parallel Algorithms
And So On

There are very many other parallel algorithms: just think of the
large literature on sequential algorithms that exists

We have just looked at a couple, but everything that you have
done in the past sequentially will probably have a parallel
counterpart

Some algorithms will map best to shared memory, some
distributed, some SIMD, and so on

Some will be sensitive to the topology of the architecture (full
connect, torus, etc.), others work well regardless

Still more will not work well in parallel at all

Exercise Look some up!



Parallel Algorithms
And So On

There are very many other parallel algorithms: just think of the
large literature on sequential algorithms that exists

We have just looked at a couple, but everything that you have
done in the past sequentially will probably have a parallel
counterpart

Some algorithms will map best to shared memory, some
distributed, some SIMD, and so on

Some will be sensitive to the topology of the architecture (full
connect, torus, etc.), others work well regardless

Still more will not work well in parallel at all

Exercise Look some up!


