Parallel Computing
CM30225
Russell Bradford
2023/24
1. Topics
We now look at a few topics in parallel computing
Each year this unit is given may cover different topics so don’t be too worried if past exam papers ask questions on things that were not covered this year
2. Hardware
We have seen that there are many kinds of parallelism
But there has been hardware support for parallelism for much longer than you might think
Even in sequential CPUs!
3. Hardware
Bit level
Recall from the 1st Year Architecture unit about adders: adding together two binary words
Serial Adders work one bit at a time, propagating the carry up the words as they do
Simple hardware, simple to implement
Parallel Adders work on all the bits in parallel
More complex and expensive hardware, but faster
A simple example, but this illustrates how parallelism trades complexity for speed
4. Hardware
Pipelines
Again from Architecture: instructions are executed faster by using a pipeline
This is parallelism by overlapping the fetchdecodefetch argumentsexecutestore result
cycle
5. Hardware
 fetchdecodeargsexecstorefetchdecodeargs
execstorefetchdecodeargsexecstorefetch
decodeargsexecstore…
becomes
	fetch
	
	decode
	
	args
	
	exec
	
	store
	
	
	
	
	
	

	
	
	fetch
	
	decode
	
	args
	
	exec
	
	store
	
	
	
	

	
	
	
	
	fetch
	
	decode
	
	args
	
	exec
	
	store
	
	

	
	
	
	
	
	
	fetch
	
	decode
	
	args
	
	exec
	
	store

	
	
	
	
	
	
	
	
	…
	
	
	
	
	
	

Again, more complexity for speed
It also shows how simple CPU clock speed is not a good indicator of speed of processing
A pipelined CPU will produce results faster than a non-pipelined CPU of the same clock speed
6. Hardware
Coprocessors
Early chips were too small to fit everything on them
So some operations were offloaded to a separate chip, a coprocessor
At one point, a popular design was to put floating point operations on a coprocessor and only have integer arithmetic on the main processor chip
The coprocessor was specialised for floating point and could do little else
This allowed a weak form of parallelism: ship an operation (say a square root) off to the coprocessor, and while it is chewing on that, the main processor can carry on with something else in parallel
7. Hardware
Coprocessors
Floating point eventually migrated onto the main chip (using lots of transistors!), but coprocessors are still hugely popular
Graphics cards (GPUs) are coprocessors, originally specialised to pixel crunching
And now they are commonly used as general purpose GPUs (GPGPU) and are turning out to be important in highly parallel computation
We shall return to GPGPUs
Exercise Read about Tensor Processing Units (TPUs)
8. Hardware
Superscalar
To employ those extra transistors, engineers starting putting multiple arithmetic units on the chip
For example, two add units
The processor can now do two adds at the same time
Simultaneous execution of whole instructions is called superscalar
Pipelining is parallel execution of parts of the instruction cycle
9. Hardware
For example, the two adds in

 x1 = y1 + z1; x2 = y2 + z2;
can be done at the same time
However, the two adds in

 x1 = y1 + z1; x2 = x1 + z2;
cannot be done at the same time
The CPU needs to sort out the dependencies to determine if it can do simultaneous multiple operations
10. Hardware
Out of Order
This can be improved with careful instruction scheduling by the processor, to let it do out of order execution
For example, the code
x1 = y1 + z1;
a1 = x1*y1;
x2 = y2 + z2;
is equivalent in results to
x1 = y1 + z1;
x2 = y2 + z2;
a1 = x1*y1;
but on a CPU with two add units the latter can do the two adds in parallel
11. Hardware
Out of Order
A processor that does out of order execution will scan the instruction stream, analyse the upcoming operations and their dependencies, and reorder them suitably
Implementing this in the hardware uses a lots of transistors, and so keeps the engineers happy
Compiler writers can help somewhat by generating machine code that is easier for the hardware to analyse
But, mostly, this is a hardware feature
12. Hardware
Out of Order
But we have already seen how out of order execution can break parallel code if we are not careful
13. Hardware
Out of Order
Hard Exercise (come back to this later). Suppose we have initial values x = 0 and y = 1. Two parallel threads on hardware that does out of order execution:
	Thread 1
	
	Thread 2

	y = 3;
	
	if (x == 1) {

	x = 1;
	
	y = 2*y;

	
	
	}

What are the possible final values of y?
Example taken from the Rust website; also see https://en.wikipedia.org/wiki/Memory_ordering
14. Hardware
Hyperthreading
The next stage is to duplicate the state-bearing parts of the processor, namely the program counter, the registers and other related stuff
This allows two (generally two, sometimes more) simultaneous threads (streams of instructions) to share the available hardware
There will be some conflicts between the threads if they both try to use a computational unit (say a division) when there is only one unit of that type on the chip
In that case one thread will have to pause and wait
15. Hardware
The main argument for hyperthreading is that if one hyperthread has to wait for something (e.g., a memory access) the other can run and keep the core busy
The idea of having more threads of execution than hardware so that there is always a thread ready to run becomes very important later
Hyperthreading gives the illusion of a multicore system, but is not truly multicore
The amount of repetition in the architecture will imply some limits on how effective this is and how much parallelism can be gained, as will the pattern of memory accesses by the code
16. Hardware
Some say that two hyperthreads are worth about 1.5 cores, due to the amount of interference between the threads
Downsides are that the hyperthreads can fight over the core’s cache memory
For some tasks hyperthreading can reduce overall performance
And there are security issues where information can leak (via the cache) from one hyperthread to its pair
Most High Performance systems turn off hyperthreading (a bigger share of the memory cache is more important than more threads)
17. Hardware
SWAR
Next: the idea of SIMD/vector processing has been adopted in a small way in the instruction sets of some processors
It arose from multimedia processing, graphics in particular
Some operations (e.g., computing pixel colours) are data parallel
Now we can regard a 64 bit register as
· a 64 bit register
· two 32 bit registers
· four 16 bit registers
· eight 8 bit registers
18. Hardware
SWAR
An instruction is provided to (for example) add together eight 8 bit values in those registers in parallel
Another to add four 16 bit values in parallel, etc.
[image: Pics/swar.svg]
SIMD Within A Word
19. Hardware
SWAR
This is SIMD within a register (SWAR)
We are treating the register as a (small) vector processor
This was found to be very effective for data parallel graphics processing
Intel provide these instructions in their MMX (Multi Media Extensions), SSE (Streaming SIMD Extensions), SSE2, SSE3, SS4, AVX (Advanced Vector Extensions, 128 bit registers), AVX2 (256 bit registers) extensions
Similarly others from other manufacturers (AMD, Arm, etc.)
20. Hardware
SWAR
Now, most code is written in a sequential fashion, e.g., looping over 8 values rather than code to add 8 values simultaneously
In fact, few languages support SWAR operations directly, so there has to be some mechanism for getting to SWAR from conventional code
The process of converting sequential operations to SWAR is called vectorisation
21. Hardware
SWAR
We need compiler support to generate these SWAR instructions: it needs to spot that rather than generating eight instructions to add eight 8-bit numbers, it should generate one instruction to add them in SWAR
Compilers have always been far behind hardware: an architecture might provide an eight-way multiply instruction, but that is only useful if you can get a compiler to generate code to use it
Or get the programmer to writer the assembler by hand
For a compiler spotting that a loop can be converted into SWAR vector instructions is very hard
22. Hardware
SWAR
For example, the multiplies in the code
char x[20], y[20];
for (i = 0; i < 20; i++) {
 y[i] = x[i]*x[i];
}
might be compiled as three () 8-way SWAR multiply instructions
Plus a bunch of other stuff to get the values in and out of the right places in the register
23. Hardware
SWAR
Making good compilers is harder than you think and has been a major drag on the effective use of modern hardware
A lot of code to use these kinds of instructions still has to be written by hand, in assembler
24. Hardware
SWAR
In procedural code, we tend to write loops: the compiler would have to analyse it carefully to determine if SWAR would be useful (e.g., no value depends on an earlier value in the loop)
In contrast, in the functional style we write code like “do this operation on these data” (map), which is much easier to analyse as the operation is explicitly separate from the iteration
25. Hardware
SWAR
Exercise Think about the code
char x[], y[];
for (i = 0; i < n; i++) {
 y[i] = x[i]*x[i];
}
where the loop limit is variable
Exercise Then think about the functional version
y = x.map(square);
26. Hardware
VLIW
The transition of CPUs from complex instruction set computer (CISC) to reduced instruction set computer (RISC) architectures was based on advances in compiler technology
The idea was to move complexity out of the hardware and into the software
Rather than using complicated instructions poorly, we use simple instructions effectively: by streamlining the instruction set we can run things faster
This is strongly reliant on the compiler being good enough to understand and exploit the details of the RISC architecture
But this is easier than a compiler trying to make best use of a complicated CISC architecture
27. Hardware
VLIW
The same idea was touted for the very long instruction word (VLIW)
Design a processor with many repeated arithmetic units—lots of add units, lots of multiply units and so on
Have instructions that are very long, e.g., 128 bits or more
The instructions are composites of the simple operations, e.g., two adds, a subtract and a multiply could be bundled together in a single instruction
28. Hardware
VLIW
The compiler composes these instructions and makes sure there are no nasty interactions between the sub-instructions, e.g., none of the inputs to the sub-instructions are the outputs of any others of the sub-instructions
The compiler does the hard work of sorting out interactions, leaving the hardware to blast on at full speed without checking or doing any reordering
The compiler is promising to the hardware that nothing bad is going to happen if the hardware blindly executes the instructions as given
29. Hardware
VLIW
Moreover, the chip uses less energy as it does not have the silicon to do instruction dependency analysis and reordering and the like
The analysis and reordering was done by the compiler
This appeared in the Bulldog compiler (early 1980s) and the Multiflow computer (late 1980s)
It didn’t turn out to be terribly practical or popular
Compilers were not sufficiently clever to untangle enough instruction dependencies to get good hardware utilisation
30. Hardware
VLIW
VLIW was briefly revived by Intel in their Itanium processor (2001)
They called it Explicitly Parallel Instruction Computing (EPIC), a limited form of VLIW
It, too has flopped
Possibly due to their classic x86 chips being too entrenched, but also their compiler was never quite up to the job
31. Hardware
VLIW
It still pops up here and there: some AMD Radeon graphics chips have a VLIW architecture, though their newer architectures reverted to more traditional RISC
VLIW may well re-emerge in the future when compilers have progressed further: though more likely it will be overtaken by other kinds of hardware parallelism
32. Hardware
VLIW
Exercise Think about the
char x[], y[];
for (i = 0; i < n; i++) {
 y[i] = x[i]*x[i];
}
example with VLIW
33. Hardware
Multicore
Next we have full replication of arithmetic units, control and registers: true multicore
Two or more full CPUs on the same chip
Often regarded as the first emergence of hardware parallelism
But, as we have seen, it’s not
34. Hardware
Early multiprocessor machines were unicore chips side by side on the same motherboard
Modern multicore processors, having cores on the same chip, can share things like on-chip cache memory and other chip infrastructure
Also there is faster inter-core data transfer: no need to go off-chip. Off-chip transfers run at the bus speed, much slower than the chip speed
35. Hardware
Multicore
Large machines tend to be multiple multicores: e.g., two 24-core chips on a motherboard; a total of 48 threads of execution
Or 96 if 2-way hyperthreading is enabled
This is slightly asymmetric: some cores are a little “closer” to each other than the others
36. Hardware
All of the above
These things are not mutually exclusive
A typical large installation these days is a CLUMP
· a cluster
· of multiple processors
· each having multiple cores
· which might have hyperthreads
· and SWAR instructions
· on a pipelined architecture
· with parallel instructions
· sometimes with a coprocessor or two on the side
It is very hard to make efficient use of all that!
rId43.svg

 +

 +

 =

 =

 or

rId46.png

