
Topics

We now look at a few topics in parallel computing

Each year this unit is given may cover different topics so don’t
be too worried if past exam papers ask questions on things that
were not covered this year



Topics

We now look at a few topics in parallel computing

Each year this unit is given may cover different topics so don’t
be too worried if past exam papers ask questions on things that
were not covered this year



Hardware

We have seen that there are many kinds of parallelism

But there has been hardware support for parallelism for much
longer than you might think

Even in sequential CPUs!



Hardware

We have seen that there are many kinds of parallelism

But there has been hardware support for parallelism for much
longer than you might think

Even in sequential CPUs!



Hardware

We have seen that there are many kinds of parallelism

But there has been hardware support for parallelism for much
longer than you might think

Even in sequential CPUs!



Hardware

Bit level

Recall from the 1st Year Architecture unit about adders: adding
together two binary words

Serial Adders work one bit at a time, propagating the carry up
the words as they do

Simple hardware, simple to implement

Parallel Adders work on all the bits in parallel

More complex and expensive hardware, but faster

A simple example, but this illustrates how parallelism trades
complexity for speed



Hardware

Bit level

Recall from the 1st Year Architecture unit about adders: adding
together two binary words

Serial Adders work one bit at a time, propagating the carry up
the words as they do

Simple hardware, simple to implement

Parallel Adders work on all the bits in parallel

More complex and expensive hardware, but faster

A simple example, but this illustrates how parallelism trades
complexity for speed



Hardware

Bit level

Recall from the 1st Year Architecture unit about adders: adding
together two binary words

Serial Adders work one bit at a time, propagating the carry up
the words as they do

Simple hardware, simple to implement

Parallel Adders work on all the bits in parallel

More complex and expensive hardware, but faster

A simple example, but this illustrates how parallelism trades
complexity for speed



Hardware

Bit level

Recall from the 1st Year Architecture unit about adders: adding
together two binary words

Serial Adders work one bit at a time, propagating the carry up
the words as they do

Simple hardware, simple to implement

Parallel Adders work on all the bits in parallel

More complex and expensive hardware, but faster

A simple example, but this illustrates how parallelism trades
complexity for speed



Hardware

Bit level

Recall from the 1st Year Architecture unit about adders: adding
together two binary words

Serial Adders work one bit at a time, propagating the carry up
the words as they do

Simple hardware, simple to implement

Parallel Adders work on all the bits in parallel

More complex and expensive hardware, but faster

A simple example, but this illustrates how parallelism trades
complexity for speed



Hardware

Bit level

Recall from the 1st Year Architecture unit about adders: adding
together two binary words

Serial Adders work one bit at a time, propagating the carry up
the words as they do

Simple hardware, simple to implement

Parallel Adders work on all the bits in parallel

More complex and expensive hardware, but faster

A simple example, but this illustrates how parallelism trades
complexity for speed



Hardware

Bit level

Recall from the 1st Year Architecture unit about adders: adding
together two binary words

Serial Adders work one bit at a time, propagating the carry up
the words as they do

Simple hardware, simple to implement

Parallel Adders work on all the bits in parallel

More complex and expensive hardware, but faster

A simple example, but this illustrates how parallelism trades
complexity for speed



Hardware

Pipelines

Again from Architecture: instructions are executed faster by
using a pipeline

This is parallelism by overlapping the
fetch→decode→fetch arguments→execute→store result
cycle



Hardware

Pipelines

Again from Architecture: instructions are executed faster by
using a pipeline

This is parallelism by overlapping the
fetch→decode→fetch arguments→execute→store result
cycle



Hardware

Pipelines

Again from Architecture: instructions are executed faster by
using a pipeline

This is parallelism by overlapping the
fetch→decode→fetch arguments→execute→store result
cycle



Hardware
fetch→decode→args→exec→store→fetch→decode→args
→exec→store→fetch→decode→args→exec→store→fetch
→decode→args→exec→store. . .

becomes

fetch→decode→ args → exec → store
fetch →decode→ args → exec →store

fetch →decode→ args →exec→store
fetch →decode→args→exec→store

. . .

Again, more complexity for speed

It also shows how simple CPU clock speed is not a good
indicator of speed of processing

A pipelined CPU will produce results faster than a
non-pipelined CPU of the same clock speed



Hardware
fetch→decode→args→exec→store→fetch→decode→args
→exec→store→fetch→decode→args→exec→store→fetch
→decode→args→exec→store. . .

becomes

fetch→decode→ args → exec → store
fetch →decode→ args → exec →store

fetch →decode→ args →exec→store
fetch →decode→args→exec→store

. . .

Again, more complexity for speed

It also shows how simple CPU clock speed is not a good
indicator of speed of processing

A pipelined CPU will produce results faster than a
non-pipelined CPU of the same clock speed



Hardware
fetch→decode→args→exec→store→fetch→decode→args
→exec→store→fetch→decode→args→exec→store→fetch
→decode→args→exec→store. . .

becomes

fetch→decode→ args → exec → store
fetch →decode→ args → exec →store

fetch →decode→ args →exec→store
fetch →decode→args→exec→store

. . .

Again, more complexity for speed

It also shows how simple CPU clock speed is not a good
indicator of speed of processing

A pipelined CPU will produce results faster than a
non-pipelined CPU of the same clock speed



Hardware
fetch→decode→args→exec→store→fetch→decode→args
→exec→store→fetch→decode→args→exec→store→fetch
→decode→args→exec→store. . .

becomes

fetch→decode→ args → exec → store
fetch →decode→ args → exec →store

fetch →decode→ args →exec→store
fetch →decode→args→exec→store

. . .

Again, more complexity for speed

It also shows how simple CPU clock speed is not a good
indicator of speed of processing

A pipelined CPU will produce results faster than a
non-pipelined CPU of the same clock speed



Hardware
fetch→decode→args→exec→store→fetch→decode→args
→exec→store→fetch→decode→args→exec→store→fetch
→decode→args→exec→store. . .

becomes

fetch→decode→ args → exec → store
fetch →decode→ args → exec →store

fetch →decode→ args →exec→store
fetch →decode→args→exec→store

. . .

Again, more complexity for speed

It also shows how simple CPU clock speed is not a good
indicator of speed of processing

A pipelined CPU will produce results faster than a
non-pipelined CPU of the same clock speed



Hardware
Coprocessors

Early chips were too small to fit everything on them

So some operations were offloaded to a separate chip, a
coprocessor

At one point, a popular design was to put floating point
operations on a coprocessor and only have integer arithmetic
on the main processor chip

The coprocessor was specialised for floating point and could do
little else

This allowed a weak form of parallelism: ship an operation (say
a square root) off to the coprocessor, and while it is chewing on
that, the main processor can carry on with something else in
parallel



Hardware
Coprocessors

Early chips were too small to fit everything on them

So some operations were offloaded to a separate chip, a
coprocessor

At one point, a popular design was to put floating point
operations on a coprocessor and only have integer arithmetic
on the main processor chip

The coprocessor was specialised for floating point and could do
little else

This allowed a weak form of parallelism: ship an operation (say
a square root) off to the coprocessor, and while it is chewing on
that, the main processor can carry on with something else in
parallel



Hardware
Coprocessors

Early chips were too small to fit everything on them

So some operations were offloaded to a separate chip, a
coprocessor

At one point, a popular design was to put floating point
operations on a coprocessor and only have integer arithmetic
on the main processor chip

The coprocessor was specialised for floating point and could do
little else

This allowed a weak form of parallelism: ship an operation (say
a square root) off to the coprocessor, and while it is chewing on
that, the main processor can carry on with something else in
parallel



Hardware
Coprocessors

Early chips were too small to fit everything on them

So some operations were offloaded to a separate chip, a
coprocessor

At one point, a popular design was to put floating point
operations on a coprocessor and only have integer arithmetic
on the main processor chip

The coprocessor was specialised for floating point and could do
little else

This allowed a weak form of parallelism: ship an operation (say
a square root) off to the coprocessor, and while it is chewing on
that, the main processor can carry on with something else in
parallel



Hardware
Coprocessors

Early chips were too small to fit everything on them

So some operations were offloaded to a separate chip, a
coprocessor

At one point, a popular design was to put floating point
operations on a coprocessor and only have integer arithmetic
on the main processor chip

The coprocessor was specialised for floating point and could do
little else

This allowed a weak form of parallelism: ship an operation (say
a square root) off to the coprocessor, and while it is chewing on
that, the main processor can carry on with something else in
parallel



Hardware
Coprocessors

Early chips were too small to fit everything on them

So some operations were offloaded to a separate chip, a
coprocessor

At one point, a popular design was to put floating point
operations on a coprocessor and only have integer arithmetic
on the main processor chip

The coprocessor was specialised for floating point and could do
little else

This allowed a weak form of parallelism: ship an operation (say
a square root) off to the coprocessor, and while it is chewing on
that, the main processor can carry on with something else in
parallel



Hardware

Coprocessors

Floating point eventually migrated onto the main chip (using lots
of transistors!), but coprocessors are still hugely popular

Graphics cards (GPUs) are coprocessors, originally specialised
to pixel crunching

And now they are commonly used as general purpose GPUs
(GPGPU) and are turning out to be important in highly parallel
computation

We shall return to GPGPUs

Exercise Read about Tensor Processing Units (TPUs)



Hardware

Coprocessors

Floating point eventually migrated onto the main chip (using lots
of transistors!), but coprocessors are still hugely popular

Graphics cards (GPUs) are coprocessors, originally specialised
to pixel crunching

And now they are commonly used as general purpose GPUs
(GPGPU) and are turning out to be important in highly parallel
computation

We shall return to GPGPUs

Exercise Read about Tensor Processing Units (TPUs)



Hardware

Coprocessors

Floating point eventually migrated onto the main chip (using lots
of transistors!), but coprocessors are still hugely popular

Graphics cards (GPUs) are coprocessors, originally specialised
to pixel crunching

And now they are commonly used as general purpose GPUs
(GPGPU) and are turning out to be important in highly parallel
computation

We shall return to GPGPUs

Exercise Read about Tensor Processing Units (TPUs)



Hardware

Coprocessors

Floating point eventually migrated onto the main chip (using lots
of transistors!), but coprocessors are still hugely popular

Graphics cards (GPUs) are coprocessors, originally specialised
to pixel crunching

And now they are commonly used as general purpose GPUs
(GPGPU) and are turning out to be important in highly parallel
computation

We shall return to GPGPUs

Exercise Read about Tensor Processing Units (TPUs)



Hardware

Coprocessors

Floating point eventually migrated onto the main chip (using lots
of transistors!), but coprocessors are still hugely popular

Graphics cards (GPUs) are coprocessors, originally specialised
to pixel crunching

And now they are commonly used as general purpose GPUs
(GPGPU) and are turning out to be important in highly parallel
computation

We shall return to GPGPUs

Exercise Read about Tensor Processing Units (TPUs)



Hardware

Coprocessors

Floating point eventually migrated onto the main chip (using lots
of transistors!), but coprocessors are still hugely popular

Graphics cards (GPUs) are coprocessors, originally specialised
to pixel crunching

And now they are commonly used as general purpose GPUs
(GPGPU) and are turning out to be important in highly parallel
computation

We shall return to GPGPUs

Exercise Read about Tensor Processing Units (TPUs)



Hardware

Superscalar

To employ those extra transistors, engineers starting putting
multiple arithmetic units on the chip

For example, two add units

The processor can now do two adds at the same time

Simultaneous execution of whole instructions is called
superscalar

Pipelining is parallel execution of parts of the instruction cycle



Hardware

Superscalar

To employ those extra transistors, engineers starting putting
multiple arithmetic units on the chip

For example, two add units

The processor can now do two adds at the same time

Simultaneous execution of whole instructions is called
superscalar

Pipelining is parallel execution of parts of the instruction cycle



Hardware

Superscalar

To employ those extra transistors, engineers starting putting
multiple arithmetic units on the chip

For example, two add units

The processor can now do two adds at the same time

Simultaneous execution of whole instructions is called
superscalar

Pipelining is parallel execution of parts of the instruction cycle



Hardware

Superscalar

To employ those extra transistors, engineers starting putting
multiple arithmetic units on the chip

For example, two add units

The processor can now do two adds at the same time

Simultaneous execution of whole instructions is called
superscalar

Pipelining is parallel execution of parts of the instruction cycle



Hardware

Superscalar

To employ those extra transistors, engineers starting putting
multiple arithmetic units on the chip

For example, two add units

The processor can now do two adds at the same time

Simultaneous execution of whole instructions is called
superscalar

Pipelining is parallel execution of parts of the instruction cycle



Hardware

Superscalar

To employ those extra transistors, engineers starting putting
multiple arithmetic units on the chip

For example, two add units

The processor can now do two adds at the same time

Simultaneous execution of whole instructions is called
superscalar

Pipelining is parallel execution of parts of the instruction cycle



Hardware

For example, the two adds in

x1 = y1 + z1;

x2 = y2 + z2;

can be done at the same time

However, the two adds in

x1 = y1 + z1;

x2 = x1 + z2;

cannot be done at the same time

The CPU needs to sort out the dependencies to determine if it
can do simultaneous multiple operations



Hardware

For example, the two adds in

x1 = y1 + z1;

x2 = y2 + z2;

can be done at the same time

However, the two adds in

x1 = y1 + z1;

x2 = x1 + z2;

cannot be done at the same time

The CPU needs to sort out the dependencies to determine if it
can do simultaneous multiple operations



Hardware

For example, the two adds in

x1 = y1 + z1;

x2 = y2 + z2;

can be done at the same time

However, the two adds in

x1 = y1 + z1;

x2 = x1 + z2;

cannot be done at the same time

The CPU needs to sort out the dependencies to determine if it
can do simultaneous multiple operations



Hardware
Out of Order

This can be improved with careful instruction scheduling by the
processor, to let it do out of order execution

For example, the code

x1 = y1 + z1;

a1 = x1*y1;

x2 = y2 + z2;

is equivalent in results to

x1 = y1 + z1;

x2 = y2 + z2;

a1 = x1*y1;

but on a CPU with two add units the latter can do the two adds
in parallel



Hardware
Out of Order

A processor that does out of order execution will scan the
instruction stream, analyse the upcoming operations and their
dependencies, and reorder them suitably

Implementing this in the hardware uses a lots of transistors,
and so keeps the engineers happy

Compiler writers can help somewhat by generating machine
code that is easier for the hardware to analyse

But, mostly, this is a hardware feature



Hardware
Out of Order

A processor that does out of order execution will scan the
instruction stream, analyse the upcoming operations and their
dependencies, and reorder them suitably

Implementing this in the hardware uses a lots of transistors,
and so keeps the engineers happy

Compiler writers can help somewhat by generating machine
code that is easier for the hardware to analyse

But, mostly, this is a hardware feature



Hardware
Out of Order

A processor that does out of order execution will scan the
instruction stream, analyse the upcoming operations and their
dependencies, and reorder them suitably

Implementing this in the hardware uses a lots of transistors,
and so keeps the engineers happy

Compiler writers can help somewhat by generating machine
code that is easier for the hardware to analyse

But, mostly, this is a hardware feature



Hardware
Out of Order

A processor that does out of order execution will scan the
instruction stream, analyse the upcoming operations and their
dependencies, and reorder them suitably

Implementing this in the hardware uses a lots of transistors,
and so keeps the engineers happy

Compiler writers can help somewhat by generating machine
code that is easier for the hardware to analyse

But, mostly, this is a hardware feature



Hardware
Out of Order

But we have already seen how out of order execution can break
parallel code if we are not careful



Hardware
Out of Order

Hard Exercise (come back to this later). Suppose we have
initial values x = 0 and y = 1. Two parallel threads on
hardware that does out of order execution:

Thread 1 Thread 2
y = 3; if (x == 1) {
x = 1; y = 2*y;

}

What are the possible final values of y?

Example taken from the Rust website; also see
https://en.wikipedia.org/wiki/Memory_ordering

https://en.wikipedia.org/wiki/Memory_ordering


Hardware

Hyperthreading

The next stage is to duplicate the state-bearing parts of the
processor, namely the program counter, the registers and other
related stuff

This allows two (generally two, sometimes more) simultaneous
threads (streams of instructions) to share the available
hardware

There will be some conflicts between the threads if they both try
to use a computational unit (say a division) when there is only
one unit of that type on the chip

In that case one thread will have to pause and wait



Hardware

Hyperthreading

The next stage is to duplicate the state-bearing parts of the
processor, namely the program counter, the registers and other
related stuff

This allows two (generally two, sometimes more) simultaneous
threads (streams of instructions) to share the available
hardware

There will be some conflicts between the threads if they both try
to use a computational unit (say a division) when there is only
one unit of that type on the chip

In that case one thread will have to pause and wait



Hardware

Hyperthreading

The next stage is to duplicate the state-bearing parts of the
processor, namely the program counter, the registers and other
related stuff

This allows two (generally two, sometimes more) simultaneous
threads (streams of instructions) to share the available
hardware

There will be some conflicts between the threads if they both try
to use a computational unit (say a division) when there is only
one unit of that type on the chip

In that case one thread will have to pause and wait



Hardware

Hyperthreading

The next stage is to duplicate the state-bearing parts of the
processor, namely the program counter, the registers and other
related stuff

This allows two (generally two, sometimes more) simultaneous
threads (streams of instructions) to share the available
hardware

There will be some conflicts between the threads if they both try
to use a computational unit (say a division) when there is only
one unit of that type on the chip

In that case one thread will have to pause and wait



Hardware

Hyperthreading

The next stage is to duplicate the state-bearing parts of the
processor, namely the program counter, the registers and other
related stuff

This allows two (generally two, sometimes more) simultaneous
threads (streams of instructions) to share the available
hardware

There will be some conflicts between the threads if they both try
to use a computational unit (say a division) when there is only
one unit of that type on the chip

In that case one thread will have to pause and wait



Hardware

The main argument for hyperthreading is that if one
hyperthread has to wait for something (e.g., a memory access)
the other can run and keep the core busy

The idea of having more threads of execution than hardware so
that there is always a thread ready to run becomes very
important later

Hyperthreading gives the illusion of a multicore system, but is
not truly multicore

The amount of repetition in the architecture will imply some
limits on how effective this is and how much parallelism can be
gained, as will the pattern of memory accesses by the code



Hardware

The main argument for hyperthreading is that if one
hyperthread has to wait for something (e.g., a memory access)
the other can run and keep the core busy

The idea of having more threads of execution than hardware so
that there is always a thread ready to run becomes very
important later

Hyperthreading gives the illusion of a multicore system, but is
not truly multicore

The amount of repetition in the architecture will imply some
limits on how effective this is and how much parallelism can be
gained, as will the pattern of memory accesses by the code



Hardware

The main argument for hyperthreading is that if one
hyperthread has to wait for something (e.g., a memory access)
the other can run and keep the core busy

The idea of having more threads of execution than hardware so
that there is always a thread ready to run becomes very
important later

Hyperthreading gives the illusion of a multicore system, but is
not truly multicore

The amount of repetition in the architecture will imply some
limits on how effective this is and how much parallelism can be
gained, as will the pattern of memory accesses by the code



Hardware

The main argument for hyperthreading is that if one
hyperthread has to wait for something (e.g., a memory access)
the other can run and keep the core busy

The idea of having more threads of execution than hardware so
that there is always a thread ready to run becomes very
important later

Hyperthreading gives the illusion of a multicore system, but is
not truly multicore

The amount of repetition in the architecture will imply some
limits on how effective this is and how much parallelism can be
gained, as will the pattern of memory accesses by the code



Hardware

Some say that two hyperthreads are worth about 1.5 cores, due
to the amount of interference between the threads

Downsides are that the hyperthreads can fight over the core’s
cache memory

For some tasks hyperthreading can reduce overall performance

And there are security issues where information can leak (via
the cache) from one hyperthread to its pair

Most High Performance systems turn off hyperthreading (a
bigger share of the memory cache is more important than more
threads)



Hardware

Some say that two hyperthreads are worth about 1.5 cores, due
to the amount of interference between the threads

Downsides are that the hyperthreads can fight over the core’s
cache memory

For some tasks hyperthreading can reduce overall performance

And there are security issues where information can leak (via
the cache) from one hyperthread to its pair

Most High Performance systems turn off hyperthreading (a
bigger share of the memory cache is more important than more
threads)



Hardware

Some say that two hyperthreads are worth about 1.5 cores, due
to the amount of interference between the threads

Downsides are that the hyperthreads can fight over the core’s
cache memory

For some tasks hyperthreading can reduce overall performance

And there are security issues where information can leak (via
the cache) from one hyperthread to its pair

Most High Performance systems turn off hyperthreading (a
bigger share of the memory cache is more important than more
threads)



Hardware

Some say that two hyperthreads are worth about 1.5 cores, due
to the amount of interference between the threads

Downsides are that the hyperthreads can fight over the core’s
cache memory

For some tasks hyperthreading can reduce overall performance

And there are security issues where information can leak (via
the cache) from one hyperthread to its pair

Most High Performance systems turn off hyperthreading (a
bigger share of the memory cache is more important than more
threads)



Hardware

Some say that two hyperthreads are worth about 1.5 cores, due
to the amount of interference between the threads

Downsides are that the hyperthreads can fight over the core’s
cache memory

For some tasks hyperthreading can reduce overall performance

And there are security issues where information can leak (via
the cache) from one hyperthread to its pair

Most High Performance systems turn off hyperthreading (a
bigger share of the memory cache is more important than more
threads)



Hardware
SWAR

Next: the idea of SIMD/vector processing has been adopted in
a small way in the instruction sets of some processors

It arose from multimedia processing, graphics in particular

Some operations (e.g., computing pixel colours) are data
parallel

Now we can regard a 64 bit register as

• a 64 bit register
• two 32 bit registers
• four 16 bit registers
• eight 8 bit registers



Hardware
SWAR

Next: the idea of SIMD/vector processing has been adopted in
a small way in the instruction sets of some processors

It arose from multimedia processing, graphics in particular

Some operations (e.g., computing pixel colours) are data
parallel

Now we can regard a 64 bit register as

• a 64 bit register
• two 32 bit registers
• four 16 bit registers
• eight 8 bit registers



Hardware
SWAR

Next: the idea of SIMD/vector processing has been adopted in
a small way in the instruction sets of some processors

It arose from multimedia processing, graphics in particular

Some operations (e.g., computing pixel colours) are data
parallel

Now we can regard a 64 bit register as

• a 64 bit register
• two 32 bit registers
• four 16 bit registers
• eight 8 bit registers



Hardware
SWAR

Next: the idea of SIMD/vector processing has been adopted in
a small way in the instruction sets of some processors

It arose from multimedia processing, graphics in particular

Some operations (e.g., computing pixel colours) are data
parallel

Now we can regard a 64 bit register as

• a 64 bit register
• two 32 bit registers
• four 16 bit registers
• eight 8 bit registers



Hardware
SWAR

An instruction is provided to (for example) add together eight 8
bit values in those registers in parallel

Another to add four 16 bit values in parallel, etc.

+ +

= =
or

SIMD Within A Word



Hardware
SWAR

An instruction is provided to (for example) add together eight 8
bit values in those registers in parallel

Another to add four 16 bit values in parallel, etc.

+ +

= =
or

SIMD Within A Word



Hardware
SWAR

An instruction is provided to (for example) add together eight 8
bit values in those registers in parallel

Another to add four 16 bit values in parallel, etc.

+ +

= =
or

SIMD Within A Word



Hardware
SWAR

This is SIMD within a register (SWAR)

We are treating the register as a (small) vector processor

This was found to be very effective for data parallel graphics
processing

Intel provide these instructions in their MMX (Multi Media
Extensions), SSE (Streaming SIMD Extensions), SSE2, SSE3,
SS4, AVX (Advanced Vector Extensions, 128 bit registers),
AVX2 (256 bit registers) extensions

Similarly others from other manufacturers (AMD, Arm, etc.)



Hardware
SWAR

This is SIMD within a register (SWAR)

We are treating the register as a (small) vector processor

This was found to be very effective for data parallel graphics
processing

Intel provide these instructions in their MMX (Multi Media
Extensions), SSE (Streaming SIMD Extensions), SSE2, SSE3,
SS4, AVX (Advanced Vector Extensions, 128 bit registers),
AVX2 (256 bit registers) extensions

Similarly others from other manufacturers (AMD, Arm, etc.)



Hardware
SWAR

This is SIMD within a register (SWAR)

We are treating the register as a (small) vector processor

This was found to be very effective for data parallel graphics
processing

Intel provide these instructions in their MMX (Multi Media
Extensions), SSE (Streaming SIMD Extensions), SSE2, SSE3,
SS4, AVX (Advanced Vector Extensions, 128 bit registers),
AVX2 (256 bit registers) extensions

Similarly others from other manufacturers (AMD, Arm, etc.)



Hardware
SWAR

This is SIMD within a register (SWAR)

We are treating the register as a (small) vector processor

This was found to be very effective for data parallel graphics
processing

Intel provide these instructions in their MMX (Multi Media
Extensions), SSE (Streaming SIMD Extensions), SSE2, SSE3,
SS4, AVX (Advanced Vector Extensions, 128 bit registers),
AVX2 (256 bit registers) extensions

Similarly others from other manufacturers (AMD, Arm, etc.)



Hardware
SWAR

This is SIMD within a register (SWAR)

We are treating the register as a (small) vector processor

This was found to be very effective for data parallel graphics
processing

Intel provide these instructions in their MMX (Multi Media
Extensions), SSE (Streaming SIMD Extensions), SSE2, SSE3,
SS4, AVX (Advanced Vector Extensions, 128 bit registers),
AVX2 (256 bit registers) extensions

Similarly others from other manufacturers (AMD, Arm, etc.)



Hardware
SWAR

Now, most code is written in a sequential fashion, e.g., looping
over 8 values rather than code to add 8 values simultaneously

In fact, few languages support SWAR operations directly, so
there has to be some mechanism for getting to SWAR from
conventional code

The process of converting sequential operations to SWAR is
called vectorisation



Hardware
SWAR

Now, most code is written in a sequential fashion, e.g., looping
over 8 values rather than code to add 8 values simultaneously

In fact, few languages support SWAR operations directly, so
there has to be some mechanism for getting to SWAR from
conventional code

The process of converting sequential operations to SWAR is
called vectorisation



Hardware
SWAR

Now, most code is written in a sequential fashion, e.g., looping
over 8 values rather than code to add 8 values simultaneously

In fact, few languages support SWAR operations directly, so
there has to be some mechanism for getting to SWAR from
conventional code

The process of converting sequential operations to SWAR is
called vectorisation



Hardware
SWAR

We need compiler support to generate these SWAR
instructions: it needs to spot that rather than generating eight
instructions to add eight 8-bit numbers, it should generate one
instruction to add them in SWAR

Compilers have always been far behind hardware: an
architecture might provide an eight-way multiply instruction, but
that is only useful if you can get a compiler to generate code to
use it

Or get the programmer to writer the assembler by hand

For a compiler spotting that a loop can be converted into SWAR
vector instructions is very hard



Hardware
SWAR

We need compiler support to generate these SWAR
instructions: it needs to spot that rather than generating eight
instructions to add eight 8-bit numbers, it should generate one
instruction to add them in SWAR

Compilers have always been far behind hardware: an
architecture might provide an eight-way multiply instruction, but
that is only useful if you can get a compiler to generate code to
use it

Or get the programmer to writer the assembler by hand

For a compiler spotting that a loop can be converted into SWAR
vector instructions is very hard



Hardware
SWAR

We need compiler support to generate these SWAR
instructions: it needs to spot that rather than generating eight
instructions to add eight 8-bit numbers, it should generate one
instruction to add them in SWAR

Compilers have always been far behind hardware: an
architecture might provide an eight-way multiply instruction, but
that is only useful if you can get a compiler to generate code to
use it

Or get the programmer to writer the assembler by hand

For a compiler spotting that a loop can be converted into SWAR
vector instructions is very hard



Hardware
SWAR

We need compiler support to generate these SWAR
instructions: it needs to spot that rather than generating eight
instructions to add eight 8-bit numbers, it should generate one
instruction to add them in SWAR

Compilers have always been far behind hardware: an
architecture might provide an eight-way multiply instruction, but
that is only useful if you can get a compiler to generate code to
use it

Or get the programmer to writer the assembler by hand

For a compiler spotting that a loop can be converted into SWAR
vector instructions is very hard



Hardware
SWAR

For example, the multiplies in the code

char x[20], y[20];

for (i = 0; i < 20; i++) {

y[i] = x[i]*x[i];

}

might be compiled as three (8 + 8 + 4) 8-way SWAR multiply
instructions

Plus a bunch of other stuff to get the values in and out of the
right places in the register



Hardware
SWAR

For example, the multiplies in the code

char x[20], y[20];

for (i = 0; i < 20; i++) {

y[i] = x[i]*x[i];

}

might be compiled as three (8 + 8 + 4) 8-way SWAR multiply
instructions

Plus a bunch of other stuff to get the values in and out of the
right places in the register



Hardware
SWAR

Making good compilers is harder than you think and has been a
major drag on the effective use of modern hardware

A lot of code to use these kinds of instructions still has to be
written by hand, in assembler



Hardware
SWAR

Making good compilers is harder than you think and has been a
major drag on the effective use of modern hardware

A lot of code to use these kinds of instructions still has to be
written by hand, in assembler



Hardware
SWAR

In procedural code, we tend to write loops: the compiler would
have to analyse it carefully to determine if SWAR would be
useful (e.g., no value depends on an earlier value in the loop)

In contrast, in the functional style we write code like “do this
operation on these data” (map), which is much easier to
analyse as the operation is explicitly separate from the iteration



Hardware
SWAR

In procedural code, we tend to write loops: the compiler would
have to analyse it carefully to determine if SWAR would be
useful (e.g., no value depends on an earlier value in the loop)

In contrast, in the functional style we write code like “do this
operation on these data” (map), which is much easier to
analyse as the operation is explicitly separate from the iteration



Hardware
SWAR

Exercise Think about the code

char x[], y[];

for (i = 0; i < n; i++) {

y[i] = x[i]*x[i];

}

where the loop limit is variable

Exercise Then think about the functional version

y = x.map(square);



Hardware
VLIW

The transition of CPUs from complex instruction set computer
(CISC) to reduced instruction set computer (RISC)
architectures was based on advances in compiler technology

The idea was to move complexity out of the hardware and into
the software

Rather than using complicated instructions poorly, we use
simple instructions effectively: by streamlining the instruction
set we can run things faster

This is strongly reliant on the compiler being good enough to
understand and exploit the details of the RISC architecture

But this is easier than a compiler trying to make best use of a
complicated CISC architecture



Hardware
VLIW

The transition of CPUs from complex instruction set computer
(CISC) to reduced instruction set computer (RISC)
architectures was based on advances in compiler technology

The idea was to move complexity out of the hardware and into
the software

Rather than using complicated instructions poorly, we use
simple instructions effectively: by streamlining the instruction
set we can run things faster

This is strongly reliant on the compiler being good enough to
understand and exploit the details of the RISC architecture

But this is easier than a compiler trying to make best use of a
complicated CISC architecture



Hardware
VLIW

The transition of CPUs from complex instruction set computer
(CISC) to reduced instruction set computer (RISC)
architectures was based on advances in compiler technology

The idea was to move complexity out of the hardware and into
the software

Rather than using complicated instructions poorly, we use
simple instructions effectively: by streamlining the instruction
set we can run things faster

This is strongly reliant on the compiler being good enough to
understand and exploit the details of the RISC architecture

But this is easier than a compiler trying to make best use of a
complicated CISC architecture



Hardware
VLIW

The transition of CPUs from complex instruction set computer
(CISC) to reduced instruction set computer (RISC)
architectures was based on advances in compiler technology

The idea was to move complexity out of the hardware and into
the software

Rather than using complicated instructions poorly, we use
simple instructions effectively: by streamlining the instruction
set we can run things faster

This is strongly reliant on the compiler being good enough to
understand and exploit the details of the RISC architecture

But this is easier than a compiler trying to make best use of a
complicated CISC architecture



Hardware
VLIW

The transition of CPUs from complex instruction set computer
(CISC) to reduced instruction set computer (RISC)
architectures was based on advances in compiler technology

The idea was to move complexity out of the hardware and into
the software

Rather than using complicated instructions poorly, we use
simple instructions effectively: by streamlining the instruction
set we can run things faster

This is strongly reliant on the compiler being good enough to
understand and exploit the details of the RISC architecture

But this is easier than a compiler trying to make best use of a
complicated CISC architecture



Hardware
VLIW

The same idea was touted for the very long instruction word
(VLIW)

Design a processor with many repeated arithmetic units—lots
of add units, lots of multiply units and so on

Have instructions that are very long, e.g., 128 bits or more

The instructions are composites of the simple operations, e.g.,
two adds, a subtract and a multiply could be bundled together
in a single instruction



Hardware
VLIW

The same idea was touted for the very long instruction word
(VLIW)

Design a processor with many repeated arithmetic units—lots
of add units, lots of multiply units and so on

Have instructions that are very long, e.g., 128 bits or more

The instructions are composites of the simple operations, e.g.,
two adds, a subtract and a multiply could be bundled together
in a single instruction



Hardware
VLIW

The same idea was touted for the very long instruction word
(VLIW)

Design a processor with many repeated arithmetic units—lots
of add units, lots of multiply units and so on

Have instructions that are very long, e.g., 128 bits or more

The instructions are composites of the simple operations, e.g.,
two adds, a subtract and a multiply could be bundled together
in a single instruction



Hardware
VLIW

The same idea was touted for the very long instruction word
(VLIW)

Design a processor with many repeated arithmetic units—lots
of add units, lots of multiply units and so on

Have instructions that are very long, e.g., 128 bits or more

The instructions are composites of the simple operations, e.g.,
two adds, a subtract and a multiply could be bundled together
in a single instruction



Hardware
VLIW

The compiler composes these instructions and makes sure
there are no nasty interactions between the sub-instructions,
e.g., none of the inputs to the sub-instructions are the outputs
of any others of the sub-instructions

The compiler does the hard work of sorting out interactions,
leaving the hardware to blast on at full speed without checking
or doing any reordering

The compiler is promising to the hardware that nothing bad is
going to happen if the hardware blindly executes the
instructions as given



Hardware
VLIW

The compiler composes these instructions and makes sure
there are no nasty interactions between the sub-instructions,
e.g., none of the inputs to the sub-instructions are the outputs
of any others of the sub-instructions

The compiler does the hard work of sorting out interactions,
leaving the hardware to blast on at full speed without checking
or doing any reordering

The compiler is promising to the hardware that nothing bad is
going to happen if the hardware blindly executes the
instructions as given



Hardware
VLIW

The compiler composes these instructions and makes sure
there are no nasty interactions between the sub-instructions,
e.g., none of the inputs to the sub-instructions are the outputs
of any others of the sub-instructions

The compiler does the hard work of sorting out interactions,
leaving the hardware to blast on at full speed without checking
or doing any reordering

The compiler is promising to the hardware that nothing bad is
going to happen if the hardware blindly executes the
instructions as given



Hardware
VLIW

Moreover, the chip uses less energy as it does not have the
silicon to do instruction dependency analysis and reordering
and the like

The analysis and reordering was done by the compiler

This appeared in the Bulldog compiler (early 1980s) and the
Multiflow computer (late 1980s)

It didn’t turn out to be terribly practical or popular

Compilers were not sufficiently clever to untangle enough
instruction dependencies to get good hardware utilisation



Hardware
VLIW

Moreover, the chip uses less energy as it does not have the
silicon to do instruction dependency analysis and reordering
and the like

The analysis and reordering was done by the compiler

This appeared in the Bulldog compiler (early 1980s) and the
Multiflow computer (late 1980s)

It didn’t turn out to be terribly practical or popular

Compilers were not sufficiently clever to untangle enough
instruction dependencies to get good hardware utilisation



Hardware
VLIW

Moreover, the chip uses less energy as it does not have the
silicon to do instruction dependency analysis and reordering
and the like

The analysis and reordering was done by the compiler

This appeared in the Bulldog compiler (early 1980s) and the
Multiflow computer (late 1980s)

It didn’t turn out to be terribly practical or popular

Compilers were not sufficiently clever to untangle enough
instruction dependencies to get good hardware utilisation



Hardware
VLIW

Moreover, the chip uses less energy as it does not have the
silicon to do instruction dependency analysis and reordering
and the like

The analysis and reordering was done by the compiler

This appeared in the Bulldog compiler (early 1980s) and the
Multiflow computer (late 1980s)

It didn’t turn out to be terribly practical or popular

Compilers were not sufficiently clever to untangle enough
instruction dependencies to get good hardware utilisation



Hardware
VLIW

Moreover, the chip uses less energy as it does not have the
silicon to do instruction dependency analysis and reordering
and the like

The analysis and reordering was done by the compiler

This appeared in the Bulldog compiler (early 1980s) and the
Multiflow computer (late 1980s)

It didn’t turn out to be terribly practical or popular

Compilers were not sufficiently clever to untangle enough
instruction dependencies to get good hardware utilisation



Hardware
VLIW

VLIW was briefly revived by Intel in their Itanium processor
(2001)

They called it Explicitly Parallel Instruction Computing (EPIC), a
limited form of VLIW

It, too has flopped

Possibly due to their classic x86 chips being too entrenched,
but also their compiler was never quite up to the job



Hardware
VLIW

VLIW was briefly revived by Intel in their Itanium processor
(2001)

They called it Explicitly Parallel Instruction Computing (EPIC), a
limited form of VLIW

It, too has flopped

Possibly due to their classic x86 chips being too entrenched,
but also their compiler was never quite up to the job



Hardware
VLIW

VLIW was briefly revived by Intel in their Itanium processor
(2001)

They called it Explicitly Parallel Instruction Computing (EPIC), a
limited form of VLIW

It, too has flopped

Possibly due to their classic x86 chips being too entrenched,
but also their compiler was never quite up to the job



Hardware
VLIW

VLIW was briefly revived by Intel in their Itanium processor
(2001)

They called it Explicitly Parallel Instruction Computing (EPIC), a
limited form of VLIW

It, too has flopped

Possibly due to their classic x86 chips being too entrenched,
but also their compiler was never quite up to the job



Hardware
VLIW

It still pops up here and there: some AMD Radeon graphics
chips have a VLIW architecture, though their newer
architectures reverted to more traditional RISC

VLIW may well re-emerge in the future when compilers have
progressed further: though more likely it will be overtaken by
other kinds of hardware parallelism



Hardware
VLIW

It still pops up here and there: some AMD Radeon graphics
chips have a VLIW architecture, though their newer
architectures reverted to more traditional RISC

VLIW may well re-emerge in the future when compilers have
progressed further: though more likely it will be overtaken by
other kinds of hardware parallelism



Hardware
VLIW

Exercise Think about the

char x[], y[];

for (i = 0; i < n; i++) {

y[i] = x[i]*x[i];

}

example with VLIW



Hardware
Multicore

Next we have full replication of arithmetic units, control and
registers: true multicore

Two or more full CPUs on the same chip

Often regarded as the first emergence of hardware parallelism

But, as we have seen, it’s not



Hardware
Multicore

Next we have full replication of arithmetic units, control and
registers: true multicore

Two or more full CPUs on the same chip

Often regarded as the first emergence of hardware parallelism

But, as we have seen, it’s not



Hardware
Multicore

Next we have full replication of arithmetic units, control and
registers: true multicore

Two or more full CPUs on the same chip

Often regarded as the first emergence of hardware parallelism

But, as we have seen, it’s not



Hardware
Multicore

Next we have full replication of arithmetic units, control and
registers: true multicore

Two or more full CPUs on the same chip

Often regarded as the first emergence of hardware parallelism

But, as we have seen, it’s not



Hardware

Early multiprocessor machines were unicore chips side by side
on the same motherboard

Modern multicore processors, having cores on the same chip,
can share things like on-chip cache memory and other chip
infrastructure

Also there is faster inter-core data transfer: no need to go
off-chip. Off-chip transfers run at the bus speed, much slower
than the chip speed



Hardware

Early multiprocessor machines were unicore chips side by side
on the same motherboard

Modern multicore processors, having cores on the same chip,
can share things like on-chip cache memory and other chip
infrastructure

Also there is faster inter-core data transfer: no need to go
off-chip. Off-chip transfers run at the bus speed, much slower
than the chip speed



Hardware

Early multiprocessor machines were unicore chips side by side
on the same motherboard

Modern multicore processors, having cores on the same chip,
can share things like on-chip cache memory and other chip
infrastructure

Also there is faster inter-core data transfer: no need to go
off-chip. Off-chip transfers run at the bus speed, much slower
than the chip speed



Hardware
Multicore

Large machines tend to be multiple multicores: e.g., two
24-core chips on a motherboard; a total of 48 threads of
execution

Or 96 if 2-way hyperthreading is enabled

This is slightly asymmetric: some cores are a little “closer” to
each other than the others



Hardware
Multicore

Large machines tend to be multiple multicores: e.g., two
24-core chips on a motherboard; a total of 48 threads of
execution

Or 96 if 2-way hyperthreading is enabled

This is slightly asymmetric: some cores are a little “closer” to
each other than the others



Hardware
Multicore

Large machines tend to be multiple multicores: e.g., two
24-core chips on a motherboard; a total of 48 threads of
execution

Or 96 if 2-way hyperthreading is enabled

This is slightly asymmetric: some cores are a little “closer” to
each other than the others



Hardware
All of the above

These things are not mutually exclusive

A typical large installation these days is a CLUMP

• a cluster
• of multiple processors
• each having multiple cores
• which might have hyperthreads
• and SWAR instructions
• on a pipelined architecture
• with parallel instructions
• sometimes with a coprocessor or two on the side

It is very hard to make efficient use of all that!



Hardware
All of the above

These things are not mutually exclusive

A typical large installation these days is a CLUMP

• a cluster
• of multiple processors
• each having multiple cores
• which might have hyperthreads
• and SWAR instructions
• on a pipelined architecture
• with parallel instructions
• sometimes with a coprocessor or two on the side

It is very hard to make efficient use of all that!



Hardware
All of the above

These things are not mutually exclusive

A typical large installation these days is a CLUMP

• a cluster

• of multiple processors
• each having multiple cores
• which might have hyperthreads
• and SWAR instructions
• on a pipelined architecture
• with parallel instructions
• sometimes with a coprocessor or two on the side

It is very hard to make efficient use of all that!



Hardware
All of the above

These things are not mutually exclusive

A typical large installation these days is a CLUMP

• a cluster
• of multiple processors

• each having multiple cores
• which might have hyperthreads
• and SWAR instructions
• on a pipelined architecture
• with parallel instructions
• sometimes with a coprocessor or two on the side

It is very hard to make efficient use of all that!



Hardware
All of the above

These things are not mutually exclusive

A typical large installation these days is a CLUMP

• a cluster
• of multiple processors
• each having multiple cores

• which might have hyperthreads
• and SWAR instructions
• on a pipelined architecture
• with parallel instructions
• sometimes with a coprocessor or two on the side

It is very hard to make efficient use of all that!



Hardware
All of the above

These things are not mutually exclusive

A typical large installation these days is a CLUMP

• a cluster
• of multiple processors
• each having multiple cores
• which might have hyperthreads

• and SWAR instructions
• on a pipelined architecture
• with parallel instructions
• sometimes with a coprocessor or two on the side

It is very hard to make efficient use of all that!



Hardware
All of the above

These things are not mutually exclusive

A typical large installation these days is a CLUMP

• a cluster
• of multiple processors
• each having multiple cores
• which might have hyperthreads
• and SWAR instructions

• on a pipelined architecture
• with parallel instructions
• sometimes with a coprocessor or two on the side

It is very hard to make efficient use of all that!



Hardware
All of the above

These things are not mutually exclusive

A typical large installation these days is a CLUMP

• a cluster
• of multiple processors
• each having multiple cores
• which might have hyperthreads
• and SWAR instructions
• on a pipelined architecture

• with parallel instructions
• sometimes with a coprocessor or two on the side

It is very hard to make efficient use of all that!



Hardware
All of the above

These things are not mutually exclusive

A typical large installation these days is a CLUMP

• a cluster
• of multiple processors
• each having multiple cores
• which might have hyperthreads
• and SWAR instructions
• on a pipelined architecture
• with parallel instructions

• sometimes with a coprocessor or two on the side

It is very hard to make efficient use of all that!



Hardware
All of the above

These things are not mutually exclusive

A typical large installation these days is a CLUMP

• a cluster
• of multiple processors
• each having multiple cores
• which might have hyperthreads
• and SWAR instructions
• on a pipelined architecture
• with parallel instructions
• sometimes with a coprocessor or two on the side

It is very hard to make efficient use of all that!



Hardware
All of the above

These things are not mutually exclusive

A typical large installation these days is a CLUMP

• a cluster
• of multiple processors
• each having multiple cores
• which might have hyperthreads
• and SWAR instructions
• on a pipelined architecture
• with parallel instructions
• sometimes with a coprocessor or two on the side

It is very hard to make efficient use of all that!


