
More on Threads

We return to the idea of threads

POSIX threads is just one example of many different
approaches to threads

And just one example of the many different kinds of threads



More on Threads

We return to the idea of threads

POSIX threads is just one example of many different
approaches to threads

And just one example of the many different kinds of threads



More on Threads

We return to the idea of threads

POSIX threads is just one example of many different
approaches to threads

And just one example of the many different kinds of threads



TBB

We shall look briefly at Threading Building Blocks (TBB) as it
contains some interesting ideas

It is a standard C++ template library, needing no specific
compiler support

It provides things like concurrent containers and concurrent
operations as well as the usual atomics and synchronisations



TBB

We shall look briefly at Threading Building Blocks (TBB) as it
contains some interesting ideas

It is a standard C++ template library, needing no specific
compiler support

It provides things like concurrent containers and concurrent
operations as well as the usual atomics and synchronisations



TBB

We shall look briefly at Threading Building Blocks (TBB) as it
contains some interesting ideas

It is a standard C++ template library, needing no specific
compiler support

It provides things like concurrent containers and concurrent
operations as well as the usual atomics and synchronisations



TBB Concurrent Operations

#include <tbb/tbb.h>

#include <iostream>

using namespace tbb;

using namespace std;

void hi(int n) {

cout << "hello: " << n << endl;

}

int main() {

parallel_for<int>(0, 10, hi);

return 0;

}



TBB Concurrent Operations

Though you quickly realise you should have written

std::mutex m;

void hi(int n) {

m.lock();

cout << "hello: " << n << endl;

m.unlock();

}

But not a single pthread create in sight!



TBB Concurrent Operations

Though you quickly realise you should have written

std::mutex m;

void hi(int n) {

m.lock();

cout << "hello: " << n << endl;

m.unlock();

}

But not a single pthread create in sight!



TBB Concurrent Containers

Containers are things like vectors, queues and hash tables

You have to take care over concurrent access to these as
pushing value to a stack at the same time as another thread is
popping a value is an easy route to races

Thus TBB provides safe datastructures that get the details right
(we hope!)



TBB Concurrent Containers

Containers are things like vectors, queues and hash tables

You have to take care over concurrent access to these as
pushing value to a stack at the same time as another thread is
popping a value is an easy route to races

Thus TBB provides safe datastructures that get the details right
(we hope!)



TBB Work Stealing

The interesting thing about TBB is that is uses work stealing to
manage parallelism

In something like a parallel for there are a lot of tasks to be
scheduled across the available threads

Each thread has a queue of tasks that are ready to be run
(actually a double ended queue, or deque)

When a new task is spawned it is pushed onto the end of the
spawning thread’s queue

(“Spawn” is the terminology for creating a new task)



TBB Work Stealing

The interesting thing about TBB is that is uses work stealing to
manage parallelism

In something like a parallel for there are a lot of tasks to be
scheduled across the available threads

Each thread has a queue of tasks that are ready to be run
(actually a double ended queue, or deque)

When a new task is spawned it is pushed onto the end of the
spawning thread’s queue

(“Spawn” is the terminology for creating a new task)



TBB Work Stealing

The interesting thing about TBB is that is uses work stealing to
manage parallelism

In something like a parallel for there are a lot of tasks to be
scheduled across the available threads

Each thread has a queue of tasks that are ready to be run
(actually a double ended queue, or deque)

When a new task is spawned it is pushed onto the end of the
spawning thread’s queue

(“Spawn” is the terminology for creating a new task)



TBB Work Stealing

The interesting thing about TBB is that is uses work stealing to
manage parallelism

In something like a parallel for there are a lot of tasks to be
scheduled across the available threads

Each thread has a queue of tasks that are ready to be run
(actually a double ended queue, or deque)

When a new task is spawned it is pushed onto the end of the
spawning thread’s queue

(“Spawn” is the terminology for creating a new task)



TBB Work Stealing

The interesting thing about TBB is that is uses work stealing to
manage parallelism

In something like a parallel for there are a lot of tasks to be
scheduled across the available threads

Each thread has a queue of tasks that are ready to be run
(actually a double ended queue, or deque)

When a new task is spawned it is pushed onto the end of the
spawning thread’s queue

(“Spawn” is the terminology for creating a new task)



TBB Work Stealing

When a thread completes a task it pops a task off the end of its
queue and runs that next

That is, the most recently created task for that thread

If its queue is empty, the thread steals a task off the start of
another thread’s queue and runs that

That is, the oldest created task for that thread

Thus keeping all threads busy as long as there are tasks to do



TBB Work Stealing

When a thread completes a task it pops a task off the end of its
queue and runs that next

That is, the most recently created task for that thread

If its queue is empty, the thread steals a task off the start of
another thread’s queue and runs that

That is, the oldest created task for that thread

Thus keeping all threads busy as long as there are tasks to do



TBB Work Stealing

When a thread completes a task it pops a task off the end of its
queue and runs that next

That is, the most recently created task for that thread

If its queue is empty, the thread steals a task off the start of
another thread’s queue and runs that

That is, the oldest created task for that thread

Thus keeping all threads busy as long as there are tasks to do



TBB Work Stealing

When a thread completes a task it pops a task off the end of its
queue and runs that next

That is, the most recently created task for that thread

If its queue is empty, the thread steals a task off the start of
another thread’s queue and runs that

That is, the oldest created task for that thread

Thus keeping all threads busy as long as there are tasks to do



TBB Work Stealing

When a thread completes a task it pops a task off the end of its
queue and runs that next

That is, the most recently created task for that thread

If its queue is empty, the thread steals a task off the start of
another thread’s queue and runs that

That is, the oldest created task for that thread

Thus keeping all threads busy as long as there are tasks to do



TBB Work Stealing

Note that pushing and popping a task off your own queue is a
relatively cheap operation, so the overhead is kept small for this
case, which you hope is the common case

In other words, when there is no opportunity for more
parallelism as every thread is already busy doing its own tasks,
the overhead is minimal

The overhead of stealing a task is greater, but this only happens
when a thread would otherwise be idle and has time to spare



TBB Work Stealing

Note that pushing and popping a task off your own queue is a
relatively cheap operation, so the overhead is kept small for this
case, which you hope is the common case

In other words, when there is no opportunity for more
parallelism as every thread is already busy doing its own tasks,
the overhead is minimal

The overhead of stealing a task is greater, but this only happens
when a thread would otherwise be idle and has time to spare



TBB Work Stealing

Note that pushing and popping a task off your own queue is a
relatively cheap operation, so the overhead is kept small for this
case, which you hope is the common case

In other words, when there is no opportunity for more
parallelism as every thread is already busy doing its own tasks,
the overhead is minimal

The overhead of stealing a task is greater, but this only happens
when a thread would otherwise be idle and has time to spare



TBB Work Stealing

So: if a thread has work to do it does its most recently created
task first, thus preserving locality of execution: the next task
executed is “nearest” to one just finished

And if a thread has nothing to do it takes the oldest task off
another thread, thus disrupting its locality as little as possible

Exercise It’s much more complicated than this, of course.
Read about the details

Exercise Work though how work stealing might execute the
parallel for example



TBB Work Stealing

So: if a thread has work to do it does its most recently created
task first, thus preserving locality of execution: the next task
executed is “nearest” to one just finished

And if a thread has nothing to do it takes the oldest task off
another thread, thus disrupting its locality as little as possible

Exercise It’s much more complicated than this, of course.
Read about the details

Exercise Work though how work stealing might execute the
parallel for example



TBB Work Stealing

So: if a thread has work to do it does its most recently created
task first, thus preserving locality of execution: the next task
executed is “nearest” to one just finished

And if a thread has nothing to do it takes the oldest task off
another thread, thus disrupting its locality as little as possible

Exercise It’s much more complicated than this, of course.
Read about the details

Exercise Work though how work stealing might execute the
parallel for example



TBB

Benefits of TBB:

• easy-to-write parallelism (for a good C++ programmer)
• is very flexible and extensible (e.g., parallel for works

for any type that you can iterate over)
• purely a library, so you can use a standard compiler
• and is easy to update with new versions of the library
• it provides sophisticated constructs like pipelines and

general graph parallelism
• contains a large number of features



TBB

Benefits of TBB:

• easy-to-write parallelism (for a good C++ programmer)

• is very flexible and extensible (e.g., parallel for works
for any type that you can iterate over)

• purely a library, so you can use a standard compiler
• and is easy to update with new versions of the library
• it provides sophisticated constructs like pipelines and

general graph parallelism
• contains a large number of features



TBB

Benefits of TBB:

• easy-to-write parallelism (for a good C++ programmer)
• is very flexible and extensible (e.g., parallel for works

for any type that you can iterate over)

• purely a library, so you can use a standard compiler
• and is easy to update with new versions of the library
• it provides sophisticated constructs like pipelines and

general graph parallelism
• contains a large number of features



TBB

Benefits of TBB:

• easy-to-write parallelism (for a good C++ programmer)
• is very flexible and extensible (e.g., parallel for works

for any type that you can iterate over)
• purely a library, so you can use a standard compiler

• and is easy to update with new versions of the library
• it provides sophisticated constructs like pipelines and

general graph parallelism
• contains a large number of features



TBB

Benefits of TBB:

• easy-to-write parallelism (for a good C++ programmer)
• is very flexible and extensible (e.g., parallel for works

for any type that you can iterate over)
• purely a library, so you can use a standard compiler
• and is easy to update with new versions of the library

• it provides sophisticated constructs like pipelines and
general graph parallelism

• contains a large number of features



TBB

Benefits of TBB:

• easy-to-write parallelism (for a good C++ programmer)
• is very flexible and extensible (e.g., parallel for works

for any type that you can iterate over)
• purely a library, so you can use a standard compiler
• and is easy to update with new versions of the library
• it provides sophisticated constructs like pipelines and

general graph parallelism

• contains a large number of features



TBB

Benefits of TBB:

• easy-to-write parallelism (for a good C++ programmer)
• is very flexible and extensible (e.g., parallel for works

for any type that you can iterate over)
• purely a library, so you can use a standard compiler
• and is easy to update with new versions of the library
• it provides sophisticated constructs like pipelines and

general graph parallelism
• contains a large number of features



TBB

Drawbacks:

• the code needs some reasonably advanced C++
constructs (e.g., functors) get the most benefit

• little checking on the correctness of your use of the
constructs: it provides mechanism but no analysis

• it is tied to C++
• and thus not easily interoperable with other languages
• contains a large number of features

Exercise Read about the large number of other features that
TBB provides, particularly ranges for load balancing



TBB

Drawbacks:

• the code needs some reasonably advanced C++
constructs (e.g., functors) get the most benefit

• little checking on the correctness of your use of the
constructs: it provides mechanism but no analysis

• it is tied to C++
• and thus not easily interoperable with other languages
• contains a large number of features

Exercise Read about the large number of other features that
TBB provides, particularly ranges for load balancing



TBB

Drawbacks:

• the code needs some reasonably advanced C++
constructs (e.g., functors) get the most benefit

• little checking on the correctness of your use of the
constructs: it provides mechanism but no analysis

• it is tied to C++
• and thus not easily interoperable with other languages
• contains a large number of features

Exercise Read about the large number of other features that
TBB provides, particularly ranges for load balancing



TBB

Drawbacks:

• the code needs some reasonably advanced C++
constructs (e.g., functors) get the most benefit

• little checking on the correctness of your use of the
constructs: it provides mechanism but no analysis

• it is tied to C++

• and thus not easily interoperable with other languages
• contains a large number of features

Exercise Read about the large number of other features that
TBB provides, particularly ranges for load balancing



TBB

Drawbacks:

• the code needs some reasonably advanced C++
constructs (e.g., functors) get the most benefit

• little checking on the correctness of your use of the
constructs: it provides mechanism but no analysis

• it is tied to C++
• and thus not easily interoperable with other languages

• contains a large number of features

Exercise Read about the large number of other features that
TBB provides, particularly ranges for load balancing



TBB

Drawbacks:

• the code needs some reasonably advanced C++
constructs (e.g., functors) get the most benefit

• little checking on the correctness of your use of the
constructs: it provides mechanism but no analysis

• it is tied to C++
• and thus not easily interoperable with other languages
• contains a large number of features

Exercise Read about the large number of other features that
TBB provides, particularly ranges for load balancing



TBB

Drawbacks:

• the code needs some reasonably advanced C++
constructs (e.g., functors) get the most benefit

• little checking on the correctness of your use of the
constructs: it provides mechanism but no analysis

• it is tied to C++
• and thus not easily interoperable with other languages
• contains a large number of features

Exercise Read about the large number of other features that
TBB provides, particularly ranges for load balancing



Cilk Plus

Cilk Plus also has a task-based view of computation (like TBB),
rather than thread based

This means the programmer thinks about what tasks need to
be done, and Cilk Plus thinks about the best way of assigning
those tasks to threads

It targets roughly the same area as OpenMP

And similar to OpenMP, the number of threads used and the
threading mechanisms are mostly hidden from the programmer



Cilk Plus

Cilk Plus also has a task-based view of computation (like TBB),
rather than thread based

This means the programmer thinks about what tasks need to
be done, and Cilk Plus thinks about the best way of assigning
those tasks to threads

It targets roughly the same area as OpenMP

And similar to OpenMP, the number of threads used and the
threading mechanisms are mostly hidden from the programmer



Cilk Plus

Cilk Plus also has a task-based view of computation (like TBB),
rather than thread based

This means the programmer thinks about what tasks need to
be done, and Cilk Plus thinks about the best way of assigning
those tasks to threads

It targets roughly the same area as OpenMP

And similar to OpenMP, the number of threads used and the
threading mechanisms are mostly hidden from the programmer



Cilk Plus

Cilk Plus also has a task-based view of computation (like TBB),
rather than thread based

This means the programmer thinks about what tasks need to
be done, and Cilk Plus thinks about the best way of assigning
those tasks to threads

It targets roughly the same area as OpenMP

And similar to OpenMP, the number of threads used and the
threading mechanisms are mostly hidden from the programmer



Cilk Plus

int fib (int n) {

if (n < 2) return n;

int x, y;

x = cilk_spawn fib(n-1);// fork

y = fib(n-2);

cilk_sync; // join

return x+y;

}

(from the Cilk Plus website)



Cilk Plus

• Cilk Plus has just three main keywords: cilk spawn,
cilk sync and cilk for

• So is much simpler than OpenMP
• And more lightweight to use
• And seemingly less flexible: but Cilk Plus provides other

mechanisms for more advanced control
• Ignoring the keywords leaves a valid equivalent sequential

C program

A cilk for indicates a parallelisable for loop

There is an implicit cilk sync at the exit of every function that
contains a spawn



Cilk Plus

• Cilk Plus has just three main keywords: cilk spawn,
cilk sync and cilk for

• So is much simpler than OpenMP

• And more lightweight to use
• And seemingly less flexible: but Cilk Plus provides other

mechanisms for more advanced control
• Ignoring the keywords leaves a valid equivalent sequential

C program

A cilk for indicates a parallelisable for loop

There is an implicit cilk sync at the exit of every function that
contains a spawn



Cilk Plus

• Cilk Plus has just three main keywords: cilk spawn,
cilk sync and cilk for

• So is much simpler than OpenMP
• And more lightweight to use

• And seemingly less flexible: but Cilk Plus provides other
mechanisms for more advanced control

• Ignoring the keywords leaves a valid equivalent sequential
C program

A cilk for indicates a parallelisable for loop

There is an implicit cilk sync at the exit of every function that
contains a spawn



Cilk Plus

• Cilk Plus has just three main keywords: cilk spawn,
cilk sync and cilk for

• So is much simpler than OpenMP
• And more lightweight to use
• And seemingly less flexible: but Cilk Plus provides other

mechanisms for more advanced control

• Ignoring the keywords leaves a valid equivalent sequential
C program

A cilk for indicates a parallelisable for loop

There is an implicit cilk sync at the exit of every function that
contains a spawn



Cilk Plus

• Cilk Plus has just three main keywords: cilk spawn,
cilk sync and cilk for

• So is much simpler than OpenMP
• And more lightweight to use
• And seemingly less flexible: but Cilk Plus provides other

mechanisms for more advanced control
• Ignoring the keywords leaves a valid equivalent sequential

C program

A cilk for indicates a parallelisable for loop

There is an implicit cilk sync at the exit of every function that
contains a spawn



Cilk Plus

• Cilk Plus has just three main keywords: cilk spawn,
cilk sync and cilk for

• So is much simpler than OpenMP
• And more lightweight to use
• And seemingly less flexible: but Cilk Plus provides other

mechanisms for more advanced control
• Ignoring the keywords leaves a valid equivalent sequential

C program

A cilk for indicates a parallelisable for loop

There is an implicit cilk sync at the exit of every function that
contains a spawn



Cilk Plus

• Cilk Plus has just three main keywords: cilk spawn,
cilk sync and cilk for

• So is much simpler than OpenMP
• And more lightweight to use
• And seemingly less flexible: but Cilk Plus provides other

mechanisms for more advanced control
• Ignoring the keywords leaves a valid equivalent sequential

C program

A cilk for indicates a parallelisable for loop

There is an implicit cilk sync at the exit of every function that
contains a spawn



Cilk Plus

Cilk Plus also employs work stealing of tasks, but in a more
subtle way than TBB

In the code
cilk spawn fun1();
fun2();
the current thread actually starts executing fun1()



Cilk Plus

Cilk Plus also employs work stealing of tasks, but in a more
subtle way than TBB

In the code
cilk spawn fun1();
fun2();
the current thread actually starts executing fun1()



Cilk Plus

In more detail:

• when the current thread reaches the cilk spawn it saves
the current continuation (i.e., the point in the code just
before the fun2()) on its continuation stack

• it then starts executing fun1()

• when done with that, it pops the continuation stack and
starts executing what it finds there: fun2() in this example



Cilk Plus

In more detail:

• when the current thread reaches the cilk spawn it saves
the current continuation (i.e., the point in the code just
before the fun2()) on its continuation stack

• it then starts executing fun1()

• when done with that, it pops the continuation stack and
starts executing what it finds there: fun2() in this example



Cilk Plus

In more detail:

• when the current thread reaches the cilk spawn it saves
the current continuation (i.e., the point in the code just
before the fun2()) on its continuation stack

• it then starts executing fun1()

• when done with that, it pops the continuation stack and
starts executing what it finds there: fun2() in this example



Cilk Plus

In more detail:

• when the current thread reaches the cilk spawn it saves
the current continuation (i.e., the point in the code just
before the fun2()) on its continuation stack

• it then starts executing fun1()

• when done with that, it pops the continuation stack and
starts executing what it finds there: fun2() in this example



Cilk Plus

An idle other thread can steal a continuation and start
executing it

Thus leading to the initially surprising behaviour that fun2()
might get stolen, not fun1()

In contrast with TBB, where the current thread pushes fun1()
and so it is that that can be stolen

TBB implements child stealing;
Cilk Plus has continuation stealing



Cilk Plus

An idle other thread can steal a continuation and start
executing it

Thus leading to the initially surprising behaviour that fun2()
might get stolen, not fun1()

In contrast with TBB, where the current thread pushes fun1()
and so it is that that can be stolen

TBB implements child stealing;
Cilk Plus has continuation stealing



Cilk Plus

An idle other thread can steal a continuation and start
executing it

Thus leading to the initially surprising behaviour that fun2()
might get stolen, not fun1()

In contrast with TBB, where the current thread pushes fun1()
and so it is that that can be stolen

TBB implements child stealing;
Cilk Plus has continuation stealing



Cilk Plus

An idle other thread can steal a continuation and start
executing it

Thus leading to the initially surprising behaviour that fun2()
might get stolen, not fun1()

In contrast with TBB, where the current thread pushes fun1()
and so it is that that can be stolen

TBB implements child stealing;
Cilk Plus has continuation stealing



Cilk Plus

Manipulating continuations is why Cilk Plus needs compiler
support. Child stealing as implemented by TBB is
implementable in C++ directly as it is essentially just pushing
and popping functions on a queue

The difference is that continuation stealing has better memory
use patterns than the child stealing and so tends to give more
efficient parallelism

Exercise Child stealing can have unlimited memory use, while
continuation stealing does not. Read about this



Cilk Plus

Manipulating continuations is why Cilk Plus needs compiler
support. Child stealing as implemented by TBB is
implementable in C++ directly as it is essentially just pushing
and popping functions on a queue

The difference is that continuation stealing has better memory
use patterns than the child stealing and so tends to give more
efficient parallelism

Exercise Child stealing can have unlimited memory use, while
continuation stealing does not. Read about this



Cilk Plus

Manipulating continuations is why Cilk Plus needs compiler
support. Child stealing as implemented by TBB is
implementable in C++ directly as it is essentially just pushing
and popping functions on a queue

The difference is that continuation stealing has better memory
use patterns than the child stealing and so tends to give more
efficient parallelism

Exercise Child stealing can have unlimited memory use, while
continuation stealing does not. Read about this



Cilk Plus

Whatever the relative merits, OpenMP and Thread Building
Blocks have wide recognition while Cilk Plus is quite niche

In fact, Intel now has deprecated Cilk Plus in favour of their
TBB, which being a purely library-based mechanism is easier
to support, despite being potentially worse in runtime behaviour

Exercise Read about the many other parts of Cilk Plus, such
as vector sections

Exercise Work through how continuation stealing might
execute the parallel for example

Exercise Compare Cilk Plus, OpenMP, and TBB



Cilk Plus

Whatever the relative merits, OpenMP and Thread Building
Blocks have wide recognition while Cilk Plus is quite niche

In fact, Intel now has deprecated Cilk Plus in favour of their
TBB, which being a purely library-based mechanism is easier
to support, despite being potentially worse in runtime behaviour

Exercise Read about the many other parts of Cilk Plus, such
as vector sections

Exercise Work through how continuation stealing might
execute the parallel for example

Exercise Compare Cilk Plus, OpenMP, and TBB



Cilk Plus

Whatever the relative merits, OpenMP and Thread Building
Blocks have wide recognition while Cilk Plus is quite niche

In fact, Intel now has deprecated Cilk Plus in favour of their
TBB, which being a purely library-based mechanism is easier
to support, despite being potentially worse in runtime behaviour

Exercise Read about the many other parts of Cilk Plus, such
as vector sections

Exercise Work through how continuation stealing might
execute the parallel for example

Exercise Compare Cilk Plus, OpenMP, and TBB



Cilk Plus

Whatever the relative merits, OpenMP and Thread Building
Blocks have wide recognition while Cilk Plus is quite niche

In fact, Intel now has deprecated Cilk Plus in favour of their
TBB, which being a purely library-based mechanism is easier
to support, despite being potentially worse in runtime behaviour

Exercise Read about the many other parts of Cilk Plus, such
as vector sections

Exercise Work through how continuation stealing might
execute the parallel for example

Exercise Compare Cilk Plus, OpenMP, and TBB



Cilk Plus

Whatever the relative merits, OpenMP and Thread Building
Blocks have wide recognition while Cilk Plus is quite niche

In fact, Intel now has deprecated Cilk Plus in favour of their
TBB, which being a purely library-based mechanism is easier
to support, despite being potentially worse in runtime behaviour

Exercise Read about the many other parts of Cilk Plus, such
as vector sections

Exercise Work through how continuation stealing might
execute the parallel for example

Exercise Compare Cilk Plus, OpenMP, and TBB



Cilk Plus and OpenMP

Exercise Later versions of OpenMP supports tasks, which are
quite similar in use to Cilk Plus:

int fib(int n) {

if (n < 2) return n;

int x, y;

#pragma omp task shared(x)

x = fib(n-1);

y = fib(n-2);

#pragma omp taskwait

return x+y;

}

Read about tasks, and compare with Cilk Plus



Yet More Threads

We now give, as an alternative view to POSIX, a sketch of how
threads are natively supported in a few languages, though this
could be argued to be more properly in the “design of a
language” part of the unit

First, C++



Yet More Threads

We now give, as an alternative view to POSIX, a sketch of how
threads are natively supported in a few languages, though this
could be argued to be more properly in the “design of a
language” part of the unit

First, C++



C++ Threads

While C++ can use POSIX threads it has defined — as part of
the language specification — its own threads

Which are often implemented on top of POSIX threads, but are
more C++ in the way they are used

The C++ specification replicates the usual primitives, including
thread creation, mutexes, condition variables and so on, but
tidying things up a bit to make them more ergonomic and
C++-like

Described as “a restricted/simplified subset of POSIX
functionality”



C++ Threads

While C++ can use POSIX threads it has defined — as part of
the language specification — its own threads

Which are often implemented on top of POSIX threads, but are
more C++ in the way they are used

The C++ specification replicates the usual primitives, including
thread creation, mutexes, condition variables and so on, but
tidying things up a bit to make them more ergonomic and
C++-like

Described as “a restricted/simplified subset of POSIX
functionality”



C++ Threads

While C++ can use POSIX threads it has defined — as part of
the language specification — its own threads

Which are often implemented on top of POSIX threads, but are
more C++ in the way they are used

The C++ specification replicates the usual primitives, including
thread creation, mutexes, condition variables and so on, but
tidying things up a bit to make them more ergonomic and
C++-like

Described as “a restricted/simplified subset of POSIX
functionality”



C++ Threads

While C++ can use POSIX threads it has defined — as part of
the language specification — its own threads

Which are often implemented on top of POSIX threads, but are
more C++ in the way they are used

The C++ specification replicates the usual primitives, including
thread creation, mutexes, condition variables and so on, but
tidying things up a bit to make them more ergonomic and
C++-like

Described as “a restricted/simplified subset of POSIX
functionality”



C++ Threads
#include <iostream>

#include <thread>

#include <mutex>

#include <string>

std::mutex mut;

void show(const std::string msg, int *n) {

std::cout << msg << " ";

// create a lock guard object on the mutex; ownership of

// the guard is the lock

std::lock_guard<std::mutex> lock(mut);

*n += 1; // protected critical region

}

// lock guard deleted at end of scope by

// normal C++ destructor method; thus releasing lock



C++ Threads

int main() {

int m = 0;

std::thread thr1(show, "hello", &m);

std::thread thr2(show, "world", &m);

thr1.join();

thr2.join();

std::cout << "\nm = " << m << "\n";

return 0;

}



C++ Threads

Producing

hello world

m = 2

or

world hello

m = 2



C++ Threads

C++ threads, while mostly similar to POSIX, are closely tied
into the rest of the design of C++, thus certain behaviours are
better defined

For example, it is not clear how C++’s exception mechanism
interacts with POSIX threads, while C++ threads specify a
behaviour

And they are portable even if there is no (or poor) POSIX
support, e.g., Windows



C++ Threads

C++ threads, while mostly similar to POSIX, are closely tied
into the rest of the design of C++, thus certain behaviours are
better defined

For example, it is not clear how C++’s exception mechanism
interacts with POSIX threads, while C++ threads specify a
behaviour

And they are portable even if there is no (or poor) POSIX
support, e.g., Windows



C++ Threads

C++ threads, while mostly similar to POSIX, are closely tied
into the rest of the design of C++, thus certain behaviours are
better defined

For example, it is not clear how C++’s exception mechanism
interacts with POSIX threads, while C++ threads specify a
behaviour

And they are portable even if there is no (or poor) POSIX
support, e.g., Windows



C Threads

In a similar way, the C11 standard for C also has some
language support for threads, though it is optional and not
universally supported, e.g., not supported by MS at the moment

It defines types thrd t, mtx t, cnd t and so on

It is essentially pthreads with everything that might be
non-portable across all architectures removed

C++ threads are widely used, but C11 threads are not, even
though they are supported by gcc and clang

Perhaps ingrained use of pthreads, or lack of perception of
benefit of using C11 threads?

Exercise Read about threads.h and stdatomic.h

threads.h
stdatomic.h


C Threads

In a similar way, the C11 standard for C also has some
language support for threads, though it is optional and not
universally supported, e.g., not supported by MS at the moment

It defines types thrd t, mtx t, cnd t and so on

It is essentially pthreads with everything that might be
non-portable across all architectures removed

C++ threads are widely used, but C11 threads are not, even
though they are supported by gcc and clang

Perhaps ingrained use of pthreads, or lack of perception of
benefit of using C11 threads?

Exercise Read about threads.h and stdatomic.h

threads.h
stdatomic.h


C Threads

In a similar way, the C11 standard for C also has some
language support for threads, though it is optional and not
universally supported, e.g., not supported by MS at the moment

It defines types thrd t, mtx t, cnd t and so on

It is essentially pthreads with everything that might be
non-portable across all architectures removed

C++ threads are widely used, but C11 threads are not, even
though they are supported by gcc and clang

Perhaps ingrained use of pthreads, or lack of perception of
benefit of using C11 threads?

Exercise Read about threads.h and stdatomic.h

threads.h
stdatomic.h


C Threads

In a similar way, the C11 standard for C also has some
language support for threads, though it is optional and not
universally supported, e.g., not supported by MS at the moment

It defines types thrd t, mtx t, cnd t and so on

It is essentially pthreads with everything that might be
non-portable across all architectures removed

C++ threads are widely used, but C11 threads are not, even
though they are supported by gcc and clang

Perhaps ingrained use of pthreads, or lack of perception of
benefit of using C11 threads?

Exercise Read about threads.h and stdatomic.h

threads.h
stdatomic.h


C Threads

In a similar way, the C11 standard for C also has some
language support for threads, though it is optional and not
universally supported, e.g., not supported by MS at the moment

It defines types thrd t, mtx t, cnd t and so on

It is essentially pthreads with everything that might be
non-portable across all architectures removed

C++ threads are widely used, but C11 threads are not, even
though they are supported by gcc and clang

Perhaps ingrained use of pthreads, or lack of perception of
benefit of using C11 threads?

Exercise Read about threads.h and stdatomic.h

threads.h
stdatomic.h


C Threads

In a similar way, the C11 standard for C also has some
language support for threads, though it is optional and not
universally supported, e.g., not supported by MS at the moment

It defines types thrd t, mtx t, cnd t and so on

It is essentially pthreads with everything that might be
non-portable across all architectures removed

C++ threads are widely used, but C11 threads are not, even
though they are supported by gcc and clang

Perhaps ingrained use of pthreads, or lack of perception of
benefit of using C11 threads?

Exercise Read about threads.h and stdatomic.h

threads.h
stdatomic.h


Java Threads

Next: Java. It’s all based on objects, of course

There are two basic ways to create threads in Java:

• as an instance of a subclass of the Thread class
• by providing a method for the Runnable interface



Java Threads

Next: Java. It’s all based on objects, of course

There are two basic ways to create threads in Java:

• as an instance of a subclass of the Thread class
• by providing a method for the Runnable interface



Java Threads
public class Hello extends Thread {

public void run() {

System.out.println("Hello world!");

}

public static void main(String args[]) {

Hello t = new Hello();

t.start();

}

}

Your classes need to be subclasses of the Thread class

The initial function is the run method, which will be called when
we execute start inherited from Thread

A thread can be created, but won’t start running until we invoke
its start method: sometimes separating creation from
execution is useful



Java Threads
public class Hello extends Thread {

public void run() {

System.out.println("Hello world!");

}

public static void main(String args[]) {

Hello t = new Hello();

t.start();

}

}

Your classes need to be subclasses of the Thread class

The initial function is the run method, which will be called when
we execute start inherited from Thread

A thread can be created, but won’t start running until we invoke
its start method: sometimes separating creation from
execution is useful



Java Threads
public class Hello extends Thread {

public void run() {

System.out.println("Hello world!");

}

public static void main(String args[]) {

Hello t = new Hello();

t.start();

}

}

Your classes need to be subclasses of the Thread class

The initial function is the run method, which will be called when
we execute start inherited from Thread

A thread can be created, but won’t start running until we invoke
its start method: sometimes separating creation from
execution is useful



Java Threads

This way is somewhat constricting in use, as it requires you to
design your classes around the Thread class

So Java gives an alternative way by providing a Runnable
interface, which you can add to your existing classes



Java Threads

This way is somewhat constricting in use, as it requires you to
design your classes around the Thread class

So Java gives an alternative way by providing a Runnable
interface, which you can add to your existing classes



Java Threads

public class Hello implements Runnable {

...

public void run() {

System.out.println("Hello world!");

}

public static void main(String args[]) {

Thread t = new Thread(new Hello());

t.start();

}

}

Runnable requires a run method

The new instance of our class is passed to the Thread
constructor, which has a start method as before



Java Threads

public class Hello implements Runnable {

...

public void run() {

System.out.println("Hello world!");

}

public static void main(String args[]) {

Thread t = new Thread(new Hello());

t.start();

}

}

Runnable requires a run method

The new instance of our class is passed to the Thread
constructor, which has a start method as before



Java Threads

There are join methods on Thread that wait for thread
completion: join() and join(long ms) and join(long ms,
int ns)

Simply returning from main waits for threads (actually:
non-daemon threads)

Explicitly calling System.exit does not wait



Java Threads

There are join methods on Thread that wait for thread
completion: join() and join(long ms) and join(long ms,
int ns)

Simply returning from main waits for threads (actually:
non-daemon threads)

Explicitly calling System.exit does not wait



Java Threads

There are join methods on Thread that wait for thread
completion: join() and join(long ms) and join(long ms,
int ns)

Simply returning from main waits for threads (actually:
non-daemon threads)

Explicitly calling System.exit does not wait



Java

Java also has higher-level support for parallelism in constructs
like parallel streams that run concurrently

These fall into the class of “sequential code using parallel
operations written by someone else”

Though they still have the problem of being non-trivial to use
correctly

Exercise Read about Akka, a Scala/Java framework for
concurrency based on actors



Java

Java also has higher-level support for parallelism in constructs
like parallel streams that run concurrently

These fall into the class of “sequential code using parallel
operations written by someone else”

Though they still have the problem of being non-trivial to use
correctly

Exercise Read about Akka, a Scala/Java framework for
concurrency based on actors



Java

Java also has higher-level support for parallelism in constructs
like parallel streams that run concurrently

These fall into the class of “sequential code using parallel
operations written by someone else”

Though they still have the problem of being non-trivial to use
correctly

Exercise Read about Akka, a Scala/Java framework for
concurrency based on actors



Java

Java also has higher-level support for parallelism in constructs
like parallel streams that run concurrently

These fall into the class of “sequential code using parallel
operations written by someone else”

Though they still have the problem of being non-trivial to use
correctly

Exercise Read about Akka, a Scala/Java framework for
concurrency based on actors



Python

And Python. . .

Python was designed without parallel support, and typical
implementations of the Python interpreter are strongly
not-parallel

Python supports concurrency, but not parallelism



Python

And Python. . .

Python was designed without parallel support, and typical
implementations of the Python interpreter are strongly
not-parallel

Python supports concurrency, but not parallelism



Python

And Python. . .

Python was designed without parallel support, and typical
implementations of the Python interpreter are strongly
not-parallel

Python supports concurrency, but not parallelism



Python

From the docs:

The Python interpreter is not fully thread-safe. In or-
der to support multi-threaded Python programs, there’s
a global lock, called the global interpreter lock or
GIL, that must be held by the current thread before it
can safely access Python objects. Without the lock,
even the simplest operations could cause problems
in a multi-threaded program: for example, when two
threads simultaneously increment the reference count
of the same object, the reference count could end up
being incremented only once instead of twice.



Python

So, practically speaking, doing anything in Python is
necessarily wrapped by a lock

You can get some benefit from using process-based parallelism
(import multiprocessing), where each process has its own
separate Python interpreter, but this is quite heavyweight

The best approach is to call parallel library code written in C, for
example



Python

So, practically speaking, doing anything in Python is
necessarily wrapped by a lock

You can get some benefit from using process-based parallelism
(import multiprocessing), where each process has its own
separate Python interpreter, but this is quite heavyweight

The best approach is to call parallel library code written in C, for
example



Python

So, practically speaking, doing anything in Python is
necessarily wrapped by a lock

You can get some benefit from using process-based parallelism
(import multiprocessing), where each process has its own
separate Python interpreter, but this is quite heavyweight

The best approach is to call parallel library code written in C, for
example



JavaScript

JavaScript is another language that has single threaded
interpreters

Exercise Read about how it uses Web Workers to provide
parallelism



JavaScript

JavaScript is another language that has single threaded
interpreters

Exercise Read about how it uses Web Workers to provide
parallelism



Go

Go (Golang) has its own kind of threads

Here threads are called goroutines, and are very lightweight
(minimal creation overhead) and are managed by the Go
runtime

Note the management is by the Go runtime, not the OS

The Go runtime gets parallelism by scheduling the goroutines
across OS threads

Creating new goroutines is very easy — actually encouraged —
and you can create “1000s” of goroutines

And it is OK for them to be short lived



Go

Go (Golang) has its own kind of threads

Here threads are called goroutines, and are very lightweight
(minimal creation overhead) and are managed by the Go
runtime

Note the management is by the Go runtime, not the OS

The Go runtime gets parallelism by scheduling the goroutines
across OS threads

Creating new goroutines is very easy — actually encouraged —
and you can create “1000s” of goroutines

And it is OK for them to be short lived



Go

Go (Golang) has its own kind of threads

Here threads are called goroutines, and are very lightweight
(minimal creation overhead) and are managed by the Go
runtime

Note the management is by the Go runtime, not the OS

The Go runtime gets parallelism by scheduling the goroutines
across OS threads

Creating new goroutines is very easy — actually encouraged —
and you can create “1000s” of goroutines

And it is OK for them to be short lived



Go

Go (Golang) has its own kind of threads

Here threads are called goroutines, and are very lightweight
(minimal creation overhead) and are managed by the Go
runtime

Note the management is by the Go runtime, not the OS

The Go runtime gets parallelism by scheduling the goroutines
across OS threads

Creating new goroutines is very easy — actually encouraged —
and you can create “1000s” of goroutines

And it is OK for them to be short lived



Go

Go (Golang) has its own kind of threads

Here threads are called goroutines, and are very lightweight
(minimal creation overhead) and are managed by the Go
runtime

Note the management is by the Go runtime, not the OS

The Go runtime gets parallelism by scheduling the goroutines
across OS threads

Creating new goroutines is very easy — actually encouraged —
and you can create “1000s” of goroutines

And it is OK for them to be short lived



Go

Go (Golang) has its own kind of threads

Here threads are called goroutines, and are very lightweight
(minimal creation overhead) and are managed by the Go
runtime

Note the management is by the Go runtime, not the OS

The Go runtime gets parallelism by scheduling the goroutines
across OS threads

Creating new goroutines is very easy — actually encouraged —
and you can create “1000s” of goroutines

And it is OK for them to be short lived



Go

Creating a new goroutine:

go fun(x+y, x-y)

evaluates the arguments and then creates a new asynchronous
goroutine running fun with the values of those arguments



Go

However:

• Go provides no particular protection against races; it does
provide mutexes and so on, but the programmer must
remember to use them (or avoid sharing mutable state)

• the runtime that manages the goroutines is quite complex,
so Go is less amenable to small or embedded systems

• Go is a garbage collected language, so has that complexity
in the runtime, too, e.g., having to stop all threads during a
GC

Exercise Find out about the current state of Go with regards to
GC and parallelism



Go

However:

• Go provides no particular protection against races; it does
provide mutexes and so on, but the programmer must
remember to use them (or avoid sharing mutable state)

• the runtime that manages the goroutines is quite complex,
so Go is less amenable to small or embedded systems

• Go is a garbage collected language, so has that complexity
in the runtime, too, e.g., having to stop all threads during a
GC

Exercise Find out about the current state of Go with regards to
GC and parallelism



Go

However:

• Go provides no particular protection against races; it does
provide mutexes and so on, but the programmer must
remember to use them (or avoid sharing mutable state)

• the runtime that manages the goroutines is quite complex,
so Go is less amenable to small or embedded systems

• Go is a garbage collected language, so has that complexity
in the runtime, too, e.g., having to stop all threads during a
GC

Exercise Find out about the current state of Go with regards to
GC and parallelism



Go

However:

• Go provides no particular protection against races; it does
provide mutexes and so on, but the programmer must
remember to use them (or avoid sharing mutable state)

• the runtime that manages the goroutines is quite complex,
so Go is less amenable to small or embedded systems

• Go is a garbage collected language, so has that complexity
in the runtime, too, e.g., having to stop all threads during a
GC

Exercise Find out about the current state of Go with regards to
GC and parallelism



Go

However:

• Go provides no particular protection against races; it does
provide mutexes and so on, but the programmer must
remember to use them (or avoid sharing mutable state)

• the runtime that manages the goroutines is quite complex,
so Go is less amenable to small or embedded systems

• Go is a garbage collected language, so has that complexity
in the runtime, too, e.g., having to stop all threads during a
GC

Exercise Find out about the current state of Go with regards to
GC and parallelism



Go

Go is a well-designed, popular language, but in terms of
parallelism is stuck in the mindset of taking a sequential
language and adding parallelism and hoping things will be OK

Parallelism is not an add-on!

All these languages (Go, C++, Java, C, etc.) provide
mechanism, but no (or insufficient) analysis for concurrency



Go

Go is a well-designed, popular language, but in terms of
parallelism is stuck in the mindset of taking a sequential
language and adding parallelism and hoping things will be OK

Parallelism is not an add-on!

All these languages (Go, C++, Java, C, etc.) provide
mechanism, but no (or insufficient) analysis for concurrency



Go

Go is a well-designed, popular language, but in terms of
parallelism is stuck in the mindset of taking a sequential
language and adding parallelism and hoping things will be OK

Parallelism is not an add-on!

All these languages (Go, C++, Java, C, etc.) provide
mechanism, but no (or insufficient) analysis for concurrency


