
Topics: Parallel Languages

We now have a look at some languages that were designed
specifically with parallelism in mind

• Occam (channels)
• Erlang (explicit parallelism)
• Go (explicit parallelism)
• Rust (explicit parallelism)
• SISAL (implicit parallelism)
• Strand (declarative)

Picked pretty much at random: by no means an exhaustive or
even comprehensive list, many other languages exist



Topics: Parallel Languages

We now have a look at some languages that were designed
specifically with parallelism in mind

• Occam (channels)
• Erlang (explicit parallelism)
• Go (explicit parallelism)
• Rust (explicit parallelism)
• SISAL (implicit parallelism)
• Strand (declarative)

Picked pretty much at random: by no means an exhaustive or
even comprehensive list, many other languages exist



Occam

Occam was a language that was based on Communicating
Sequential Processes (CSP) a theoretical model of parallel
computation: a process algebra (c.f., Lambda Calculus)

CSP models processes that communicate by passing
messages between themselves along channels

In the algebra there are various rules on combining processes
and descriptions on how these combined objects behave

Then theoreticians get busy on proving that behaviours of
various systems are equivalent (or not)



Occam

Occam was a language that was based on Communicating
Sequential Processes (CSP) a theoretical model of parallel
computation: a process algebra (c.f., Lambda Calculus)

CSP models processes that communicate by passing
messages between themselves along channels

In the algebra there are various rules on combining processes
and descriptions on how these combined objects behave

Then theoreticians get busy on proving that behaviours of
various systems are equivalent (or not)



Occam

Occam was a language that was based on Communicating
Sequential Processes (CSP) a theoretical model of parallel
computation: a process algebra (c.f., Lambda Calculus)

CSP models processes that communicate by passing
messages between themselves along channels

In the algebra there are various rules on combining processes
and descriptions on how these combined objects behave

Then theoreticians get busy on proving that behaviours of
various systems are equivalent (or not)



Occam

Occam was a language that was based on Communicating
Sequential Processes (CSP) a theoretical model of parallel
computation: a process algebra (c.f., Lambda Calculus)

CSP models processes that communicate by passing
messages between themselves along channels

In the algebra there are various rules on combining processes
and descriptions on how these combined objects behave

Then theoreticians get busy on proving that behaviours of
various systems are equivalent (or not)



A note on channels

The channel concept is quite simple and so appears in many
languages and systems

You put data in one end, it comes out the other end

The simplicity is probably why it appears in so many guises

They are good for structuring your code

But channels are as fast or slow as the underlying mechanism,
e.g., network messages in MPI or shared memory in shared
memory machines. They can’t magic away the cost of
communications



A note on channels

The channel concept is quite simple and so appears in many
languages and systems

You put data in one end, it comes out the other end

The simplicity is probably why it appears in so many guises

They are good for structuring your code

But channels are as fast or slow as the underlying mechanism,
e.g., network messages in MPI or shared memory in shared
memory machines. They can’t magic away the cost of
communications



A note on channels

The channel concept is quite simple and so appears in many
languages and systems

You put data in one end, it comes out the other end

The simplicity is probably why it appears in so many guises

They are good for structuring your code

But channels are as fast or slow as the underlying mechanism,
e.g., network messages in MPI or shared memory in shared
memory machines. They can’t magic away the cost of
communications



A note on channels

The channel concept is quite simple and so appears in many
languages and systems

You put data in one end, it comes out the other end

The simplicity is probably why it appears in so many guises

They are good for structuring your code

But channels are as fast or slow as the underlying mechanism,
e.g., network messages in MPI or shared memory in shared
memory machines. They can’t magic away the cost of
communications



A note on channels

The channel concept is quite simple and so appears in many
languages and systems

You put data in one end, it comes out the other end

The simplicity is probably why it appears in so many guises

They are good for structuring your code

But channels are as fast or slow as the underlying mechanism,
e.g., network messages in MPI or shared memory in shared
memory machines. They can’t magic away the cost of
communications



Occam

Occam was a realisation of CSP, designed hand-in-hand with
the hardware it would run on: the transputer

The transputer (early 1980s) was going to be the future of
parallel processing: a new hardware architecture explicitly
supporting message passing between cores

Unfortunately, the level of technology of the time was not really
up to the task: they had problems with clock speeds and heat
management

There was no real advantage to using a transputer over
existing, classical processors (like Intel), so it never managed to
sell in numbers large enough to be successful

But the transputer was designed primarily to run Occam



Occam

Occam was a realisation of CSP, designed hand-in-hand with
the hardware it would run on: the transputer

The transputer (early 1980s) was going to be the future of
parallel processing: a new hardware architecture explicitly
supporting message passing between cores

Unfortunately, the level of technology of the time was not really
up to the task: they had problems with clock speeds and heat
management

There was no real advantage to using a transputer over
existing, classical processors (like Intel), so it never managed to
sell in numbers large enough to be successful

But the transputer was designed primarily to run Occam



Occam

Occam was a realisation of CSP, designed hand-in-hand with
the hardware it would run on: the transputer

The transputer (early 1980s) was going to be the future of
parallel processing: a new hardware architecture explicitly
supporting message passing between cores

Unfortunately, the level of technology of the time was not really
up to the task: they had problems with clock speeds and heat
management

There was no real advantage to using a transputer over
existing, classical processors (like Intel), so it never managed to
sell in numbers large enough to be successful

But the transputer was designed primarily to run Occam



Occam

Occam was a realisation of CSP, designed hand-in-hand with
the hardware it would run on: the transputer

The transputer (early 1980s) was going to be the future of
parallel processing: a new hardware architecture explicitly
supporting message passing between cores

Unfortunately, the level of technology of the time was not really
up to the task: they had problems with clock speeds and heat
management

There was no real advantage to using a transputer over
existing, classical processors (like Intel), so it never managed to
sell in numbers large enough to be successful

But the transputer was designed primarily to run Occam



Occam

Occam was a realisation of CSP, designed hand-in-hand with
the hardware it would run on: the transputer

The transputer (early 1980s) was going to be the future of
parallel processing: a new hardware architecture explicitly
supporting message passing between cores

Unfortunately, the level of technology of the time was not really
up to the task: they had problems with clock speeds and heat
management

There was no real advantage to using a transputer over
existing, classical processors (like Intel), so it never managed to
sell in numbers large enough to be successful

But the transputer was designed primarily to run Occam



Occam
Occam has explicit parallelism of tasks:

PAR

f(x)

g(y)

runs f and g concurrently

More unusually, Occam has explicit sequentiality:

SEQ

f(x)

g(y)

runs f, then g

This is because in CSP sequential composition of code is of
equal note to parallel composition of code



Occam
Occam has explicit parallelism of tasks:

PAR

f(x)

g(y)

runs f and g concurrently

More unusually, Occam has explicit sequentiality:

SEQ

f(x)

g(y)

runs f, then g

This is because in CSP sequential composition of code is of
equal note to parallel composition of code



Occam
Occam has explicit parallelism of tasks:

PAR

f(x)

g(y)

runs f and g concurrently

More unusually, Occam has explicit sequentiality:

SEQ

f(x)

g(y)

runs f, then g

This is because in CSP sequential composition of code is of
equal note to parallel composition of code



Occam
Occam has explicit parallelism of tasks:

PAR

f(x)

g(y)

runs f and g concurrently

More unusually, Occam has explicit sequentiality:

SEQ

f(x)

g(y)

runs f, then g

This is because in CSP sequential composition of code is of
equal note to parallel composition of code



Occam
Occam has explicit parallelism of tasks:

PAR

f(x)

g(y)

runs f and g concurrently

More unusually, Occam has explicit sequentiality:

SEQ

f(x)

g(y)

runs f, then g

This is because in CSP sequential composition of code is of
equal note to parallel composition of code



Occam

Communication between processes is via channels

ch ! x

writes the value of x down the channel named ch

ch ? y

reads a value into y from the channel named ch

Both are blocking: the write will wait for the corresponding read;
the read will wait for the corresponding write



Occam

Communication between processes is via channels

ch ! x

writes the value of x down the channel named ch

ch ? y

reads a value into y from the channel named ch

Both are blocking: the write will wait for the corresponding read;
the read will wait for the corresponding write



Occam

Thus we get communication and synchronisation between
threads

INT x:

CHAN INT ch:

PAR

SEQ

print("hello")

ch ! 42

SEQ

ch ? x

print(" world")

will print "hello world"



Occam
There is also non-deterministic choice

ALT

in1 ? x

SEQ

x := x+1

out1 ! x

in2 ? x

SEQ

x := x-1

out2 ! x

will wait until data arrives on channel in1 or in2 and will then
execute the relevant section of code

If data arrives on both simultaneously, one branch will be taken
non-deterministically



Occam
There is also non-deterministic choice

ALT

in1 ? x

SEQ

x := x+1

out1 ! x

in2 ? x

SEQ

x := x-1

out2 ! x

will wait until data arrives on channel in1 or in2 and will then
execute the relevant section of code

If data arrives on both simultaneously, one branch will be taken
non-deterministically



Occam

The only way for tasks to communicate is via channels

There is no concept of shared or distributed, so a program
should work equally on shared or distributed memory

This is a bit like MPI messaging: it provides independence from
the hardware



Occam

The only way for tasks to communicate is via channels

There is no concept of shared or distributed, so a program
should work equally on shared or distributed memory

This is a bit like MPI messaging: it provides independence from
the hardware



Occam

The only way for tasks to communicate is via channels

There is no concept of shared or distributed, so a program
should work equally on shared or distributed memory

This is a bit like MPI messaging: it provides independence from
the hardware



Occam

Plus loads more features: boolean guards (on ALT); timeouts
on guards; priority ordered ALTs; functions; procedures; arrays;
while loops; etc.

A program is a bunch of processes (threads in modern terms),
joined by PARs, that send data along channels to each other

By being closely related to CSP, there were opportunities to do
proofs on Occam programs

Thus Occam can be said to provide both mechanism and
analysis for concurrency



Occam

Plus loads more features: boolean guards (on ALT); timeouts
on guards; priority ordered ALTs; functions; procedures; arrays;
while loops; etc.

A program is a bunch of processes (threads in modern terms),
joined by PARs, that send data along channels to each other

By being closely related to CSP, there were opportunities to do
proofs on Occam programs

Thus Occam can be said to provide both mechanism and
analysis for concurrency



Occam

Plus loads more features: boolean guards (on ALT); timeouts
on guards; priority ordered ALTs; functions; procedures; arrays;
while loops; etc.

A program is a bunch of processes (threads in modern terms),
joined by PARs, that send data along channels to each other

By being closely related to CSP, there were opportunities to do
proofs on Occam programs

Thus Occam can be said to provide both mechanism and
analysis for concurrency



Occam

Plus loads more features: boolean guards (on ALT); timeouts
on guards; priority ordered ALTs; functions; procedures; arrays;
while loops; etc.

A program is a bunch of processes (threads in modern terms),
joined by PARs, that send data along channels to each other

By being closely related to CSP, there were opportunities to do
proofs on Occam programs

Thus Occam can be said to provide both mechanism and
analysis for concurrency



Occam

Occam never took off as transputers were not really up to it

Programmers never got the hang of it, either

It has, however had a long-lasting influence on the design of
other modern languages

There was an extension: Occam-π. This was a realisation of
the π-calculus, which is itself a generalisation of CSP, where
channels and processes are first class objects, e.g., pass a
channel down a channel

A good model to revisit in light of the current obsession with
mobile processes

Big Exercise Implement Occam on top of MPI, or OpenMP



Occam

Occam never took off as transputers were not really up to it

Programmers never got the hang of it, either

It has, however had a long-lasting influence on the design of
other modern languages

There was an extension: Occam-π. This was a realisation of
the π-calculus, which is itself a generalisation of CSP, where
channels and processes are first class objects, e.g., pass a
channel down a channel

A good model to revisit in light of the current obsession with
mobile processes

Big Exercise Implement Occam on top of MPI, or OpenMP



Occam

Occam never took off as transputers were not really up to it

Programmers never got the hang of it, either

It has, however had a long-lasting influence on the design of
other modern languages

There was an extension: Occam-π. This was a realisation of
the π-calculus, which is itself a generalisation of CSP, where
channels and processes are first class objects, e.g., pass a
channel down a channel

A good model to revisit in light of the current obsession with
mobile processes

Big Exercise Implement Occam on top of MPI, or OpenMP



Occam

Occam never took off as transputers were not really up to it

Programmers never got the hang of it, either

It has, however had a long-lasting influence on the design of
other modern languages

There was an extension: Occam-π. This was a realisation of
the π-calculus, which is itself a generalisation of CSP, where
channels and processes are first class objects, e.g., pass a
channel down a channel

A good model to revisit in light of the current obsession with
mobile processes

Big Exercise Implement Occam on top of MPI, or OpenMP



Occam

Occam never took off as transputers were not really up to it

Programmers never got the hang of it, either

It has, however had a long-lasting influence on the design of
other modern languages

There was an extension: Occam-π. This was a realisation of
the π-calculus, which is itself a generalisation of CSP, where
channels and processes are first class objects, e.g., pass a
channel down a channel

A good model to revisit in light of the current obsession with
mobile processes

Big Exercise Implement Occam on top of MPI, or OpenMP



Occam

Occam never took off as transputers were not really up to it

Programmers never got the hang of it, either

It has, however had a long-lasting influence on the design of
other modern languages

There was an extension: Occam-π. This was a realisation of
the π-calculus, which is itself a generalisation of CSP, where
channels and processes are first class objects, e.g., pass a
channel down a channel

A good model to revisit in light of the current obsession with
mobile processes

Big Exercise Implement Occam on top of MPI, or OpenMP



Occam

Exercise Read about the Xc language that is like C with distinct
Occam flavour:

int main() {

par {

foo(0);

bar(1);

baz(3);

}

return 0;

}



Erlang

Erlang is a single assignment functional language, with explicit
support for MIMD parallelism

A program can contain a large number of very lightweight
threads: 20 million is possible they claim

Thus these threads do not correspond directly to OS threads,
but are managed by the Erlang runtime (a VM; c.f. Go)

Having no shared state, the threads act more like OS
processes than normal threads



Erlang

Erlang is a single assignment functional language, with explicit
support for MIMD parallelism

A program can contain a large number of very lightweight
threads: 20 million is possible they claim

Thus these threads do not correspond directly to OS threads,
but are managed by the Erlang runtime (a VM; c.f. Go)

Having no shared state, the threads act more like OS
processes than normal threads



Erlang

Erlang is a single assignment functional language, with explicit
support for MIMD parallelism

A program can contain a large number of very lightweight
threads: 20 million is possible they claim

Thus these threads do not correspond directly to OS threads,
but are managed by the Erlang runtime (a VM; c.f. Go)

Having no shared state, the threads act more like OS
processes than normal threads



Erlang

Erlang is a single assignment functional language, with explicit
support for MIMD parallelism

A program can contain a large number of very lightweight
threads: 20 million is possible they claim

Thus these threads do not correspond directly to OS threads,
but are managed by the Erlang runtime (a VM; c.f. Go)

Having no shared state, the threads act more like OS
processes than normal threads



Erlang

They do not share state because the processes (they call their
threads “processes”) may be on distributed memory

Or two processes might be on the same local shared memory,
but you cannot assume that

Also, this fits in nicely with the functional style: everything is
local to the process and everything is referentially transparent

An important consideration is that the overheads of creation,
destruction and context switching are very small: thus
encouraging many small, short-lived, single-use processes



Erlang

They do not share state because the processes (they call their
threads “processes”) may be on distributed memory

Or two processes might be on the same local shared memory,
but you cannot assume that

Also, this fits in nicely with the functional style: everything is
local to the process and everything is referentially transparent

An important consideration is that the overheads of creation,
destruction and context switching are very small: thus
encouraging many small, short-lived, single-use processes



Erlang

They do not share state because the processes (they call their
threads “processes”) may be on distributed memory

Or two processes might be on the same local shared memory,
but you cannot assume that

Also, this fits in nicely with the functional style: everything is
local to the process and everything is referentially transparent

An important consideration is that the overheads of creation,
destruction and context switching are very small: thus
encouraging many small, short-lived, single-use processes



Erlang

They do not share state because the processes (they call their
threads “processes”) may be on distributed memory

Or two processes might be on the same local shared memory,
but you cannot assume that

Also, this fits in nicely with the functional style: everything is
local to the process and everything is referentially transparent

An important consideration is that the overheads of creation,
destruction and context switching are very small: thus
encouraging many small, short-lived, single-use processes



Erlang

An Erlang runtime will typically run one OS-style thread per
core; each running an Erlang scheduler

These schedulers will choose and run the Erlang-style
processes in a manager/worker fashion

Thus it avoids the overhead of OS thread creation/deletion

In one Erlang implementation, a process requires
approximately 600 bytes of state

Thus enabling a large number of processes

Exercise Find out the memory overhead of a normal pthread in
your favourite operating system



Erlang

An Erlang runtime will typically run one OS-style thread per
core; each running an Erlang scheduler

These schedulers will choose and run the Erlang-style
processes in a manager/worker fashion

Thus it avoids the overhead of OS thread creation/deletion

In one Erlang implementation, a process requires
approximately 600 bytes of state

Thus enabling a large number of processes

Exercise Find out the memory overhead of a normal pthread in
your favourite operating system



Erlang

An Erlang runtime will typically run one OS-style thread per
core; each running an Erlang scheduler

These schedulers will choose and run the Erlang-style
processes in a manager/worker fashion

Thus it avoids the overhead of OS thread creation/deletion

In one Erlang implementation, a process requires
approximately 600 bytes of state

Thus enabling a large number of processes

Exercise Find out the memory overhead of a normal pthread in
your favourite operating system



Erlang

An Erlang runtime will typically run one OS-style thread per
core; each running an Erlang scheduler

These schedulers will choose and run the Erlang-style
processes in a manager/worker fashion

Thus it avoids the overhead of OS thread creation/deletion

In one Erlang implementation, a process requires
approximately 600 bytes of state

Thus enabling a large number of processes

Exercise Find out the memory overhead of a normal pthread in
your favourite operating system



Erlang

An Erlang runtime will typically run one OS-style thread per
core; each running an Erlang scheduler

These schedulers will choose and run the Erlang-style
processes in a manager/worker fashion

Thus it avoids the overhead of OS thread creation/deletion

In one Erlang implementation, a process requires
approximately 600 bytes of state

Thus enabling a large number of processes

Exercise Find out the memory overhead of a normal pthread in
your favourite operating system



Erlang

An Erlang runtime will typically run one OS-style thread per
core; each running an Erlang scheduler

These schedulers will choose and run the Erlang-style
processes in a manager/worker fashion

Thus it avoids the overhead of OS thread creation/deletion

In one Erlang implementation, a process requires
approximately 600 bytes of state

Thus enabling a large number of processes

Exercise Find out the memory overhead of a normal pthread in
your favourite operating system



Erlang

Erlang threads communicate via messages like Occam/CSP,
but they are asynchronous, unlike Occam/CSP

Again, messages works equally over shared and distributed
memory

Also, Erlang does not have named channels, but each process
has a “mailbox” where it receives all its messages

Alternative point of view: the process “name” is the name of the
(only) channel to a process



Erlang

Erlang threads communicate via messages like Occam/CSP,
but they are asynchronous, unlike Occam/CSP

Again, messages works equally over shared and distributed
memory

Also, Erlang does not have named channels, but each process
has a “mailbox” where it receives all its messages

Alternative point of view: the process “name” is the name of the
(only) channel to a process



Erlang

Erlang threads communicate via messages like Occam/CSP,
but they are asynchronous, unlike Occam/CSP

Again, messages works equally over shared and distributed
memory

Also, Erlang does not have named channels, but each process
has a “mailbox” where it receives all its messages

Alternative point of view: the process “name” is the name of the
(only) channel to a process



Erlang

Erlang threads communicate via messages like Occam/CSP,
but they are asynchronous, unlike Occam/CSP

Again, messages works equally over shared and distributed
memory

Also, Erlang does not have named channels, but each process
has a “mailbox” where it receives all its messages

Alternative point of view: the process “name” is the name of the
(only) channel to a process



Erlang

The messages can be values, tuples of values, or any other
datatype, including closures (functions)

And there is pattern matching to fetch messages from the
mailbox (a bit like MPI tags, but more general matching, so
more like Linda)



Erlang

The messages can be values, tuples of values, or any other
datatype, including closures (functions)

And there is pattern matching to fetch messages from the
mailbox (a bit like MPI tags, but more general matching, so
more like Linda)



Erlang

Otherproc ! { hello, 99 }

sends a tuple with atom (like a Lisp symbol) hello and the
integer 99 to the process named by Otherproc (variables start
with capital letters)

receive

{ hello, X } -> io:format("x was ~B~n", [X]);

{ bye, X } -> io:format("time to go~n", []);

_ -> io:format("eh?~n", [])

end.

an underscore matches any message; this is like an ALT in
Occam



Erlang

Otherproc ! { hello, 99 }

sends a tuple with atom (like a Lisp symbol) hello and the
integer 99 to the process named by Otherproc (variables start
with capital letters)

receive

{ hello, X } -> io:format("x was ~B~n", [X]);

{ bye, X } -> io:format("time to go~n", []);

_ -> io:format("eh?~n", [])

end.

an underscore matches any message; this is like an ALT in
Occam



Erlang

Otherproc ! { hello, 99 }

sends a tuple with atom (like a Lisp symbol) hello and the
integer 99 to the process named by Otherproc (variables start
with capital letters)

receive

{ hello, X } -> io:format("x was ~B~n", [X]);

{ bye, X } -> io:format("time to go~n", []);

_ -> io:format("eh?~n", [])

end.

an underscore matches any message; this is like an ALT in
Occam



Erlang
Creation of processes is via spawn

factrec(0) -> 1;

factrec(N) when N > 0 -> N*factrec(N-1).

fact(N, Ans) -> Ans ! factrec(N).

FactPid = spawn(fact, [5, self()]).

receive

F -> io:format("factorial is ~B~n", [F])

end.

is clumsy code to make a new process running fact with
arguments 5 and the process identifier (PID) of the current
process

The receive causes the current process (self()) to wait for a
message (from anyone), and stores it in F



Erlang
Creation of processes is via spawn

factrec(0) -> 1;

factrec(N) when N > 0 -> N*factrec(N-1).

fact(N, Ans) -> Ans ! factrec(N).

FactPid = spawn(fact, [5, self()]).

receive

F -> io:format("factorial is ~B~n", [F])

end.

is clumsy code to make a new process running fact with
arguments 5 and the process identifier (PID) of the current
process

The receive causes the current process (self()) to wait for a
message (from anyone), and stores it in F



Erlang

A PID is the way you refer to a process, in particular for sending
a message to it

N.B. some liberties taken with Erlang modules here



Erlang

Erlang is quite popular in real systems as it has lots of useful
features

For example, Process Restart , where a process is immediately
restarted by the runtime if it crashes for any reason

This allows Erlang to cope with hardware failure and buggy
code

In fact, Erlang has hot swap of code: code can be changed
(fixed or updated) while the main program is running

Load balancing of processes is done by the runtime VM



Erlang

Erlang is quite popular in real systems as it has lots of useful
features

For example, Process Restart , where a process is immediately
restarted by the runtime if it crashes for any reason

This allows Erlang to cope with hardware failure and buggy
code

In fact, Erlang has hot swap of code: code can be changed
(fixed or updated) while the main program is running

Load balancing of processes is done by the runtime VM



Erlang

Erlang is quite popular in real systems as it has lots of useful
features

For example, Process Restart , where a process is immediately
restarted by the runtime if it crashes for any reason

This allows Erlang to cope with hardware failure and buggy
code

In fact, Erlang has hot swap of code: code can be changed
(fixed or updated) while the main program is running

Load balancing of processes is done by the runtime VM



Erlang

Erlang is quite popular in real systems as it has lots of useful
features

For example, Process Restart , where a process is immediately
restarted by the runtime if it crashes for any reason

This allows Erlang to cope with hardware failure and buggy
code

In fact, Erlang has hot swap of code: code can be changed
(fixed or updated) while the main program is running

Load balancing of processes is done by the runtime VM



Erlang

Erlang is quite popular in real systems as it has lots of useful
features

For example, Process Restart , where a process is immediately
restarted by the runtime if it crashes for any reason

This allows Erlang to cope with hardware failure and buggy
code

In fact, Erlang has hot swap of code: code can be changed
(fixed or updated) while the main program is running

Load balancing of processes is done by the runtime VM



Erlang

Originally designed by Ericsson to support (soft) realtime
systems that can’t be taken down for maintenance (like
telephone exchanges), it has found use in other areas

Companies like Yahoo, Facebook, WhatsApp, Bet365, etc. use
it for some element of their products

Somewhat an under-appreciated language

Exercise Have a look at
http://learnyousomeerlang.com/content

http://learnyousomeerlang.com/content


Erlang

Originally designed by Ericsson to support (soft) realtime
systems that can’t be taken down for maintenance (like
telephone exchanges), it has found use in other areas

Companies like Yahoo, Facebook, WhatsApp, Bet365, etc. use
it for some element of their products

Somewhat an under-appreciated language

Exercise Have a look at
http://learnyousomeerlang.com/content

http://learnyousomeerlang.com/content


Erlang

Originally designed by Ericsson to support (soft) realtime
systems that can’t be taken down for maintenance (like
telephone exchanges), it has found use in other areas

Companies like Yahoo, Facebook, WhatsApp, Bet365, etc. use
it for some element of their products

Somewhat an under-appreciated language

Exercise Have a look at
http://learnyousomeerlang.com/content

http://learnyousomeerlang.com/content


Erlang

Originally designed by Ericsson to support (soft) realtime
systems that can’t be taken down for maintenance (like
telephone exchanges), it has found use in other areas

Companies like Yahoo, Facebook, WhatsApp, Bet365, etc. use
it for some element of their products

Somewhat an under-appreciated language

Exercise Have a look at
http://learnyousomeerlang.com/content

http://learnyousomeerlang.com/content


Go

Go we have seen before, so here’s just a short discussion (in
the context of these other parallel-aware languages)

It has goroutines, communicating via channels, similar to
Occam and Erlang

Channels are type safe (“channel of int”) and blocking

There is a select that acts like Occam’s ALT waiting on
multiple channels



Go

Go we have seen before, so here’s just a short discussion (in
the context of these other parallel-aware languages)

It has goroutines, communicating via channels, similar to
Occam and Erlang

Channels are type safe (“channel of int”) and blocking

There is a select that acts like Occam’s ALT waiting on
multiple channels



Go

Go we have seen before, so here’s just a short discussion (in
the context of these other parallel-aware languages)

It has goroutines, communicating via channels, similar to
Occam and Erlang

Channels are type safe (“channel of int”) and blocking

There is a select that acts like Occam’s ALT waiting on
multiple channels



Go

Go we have seen before, so here’s just a short discussion (in
the context of these other parallel-aware languages)

It has goroutines, communicating via channels, similar to
Occam and Erlang

Channels are type safe (“channel of int”) and blocking

There is a select that acts like Occam’s ALT waiting on
multiple channels



Go

Synchronisation and communication are provided by channels

Libraries provide condition variables, mutexes, atomics and a
variety of other low-level functionality

Channels are the recommended ways of passing data between
threads; though you can also use shared variables

Though shared variables are not recommended as Go provides
no inherent protection against the usual data races (if you don’t
remember to use mutexes and the like)



Go

Synchronisation and communication are provided by channels

Libraries provide condition variables, mutexes, atomics and a
variety of other low-level functionality

Channels are the recommended ways of passing data between
threads; though you can also use shared variables

Though shared variables are not recommended as Go provides
no inherent protection against the usual data races (if you don’t
remember to use mutexes and the like)



Go

Synchronisation and communication are provided by channels

Libraries provide condition variables, mutexes, atomics and a
variety of other low-level functionality

Channels are the recommended ways of passing data between
threads; though you can also use shared variables

Though shared variables are not recommended as Go provides
no inherent protection against the usual data races (if you don’t
remember to use mutexes and the like)



Go

Synchronisation and communication are provided by channels

Libraries provide condition variables, mutexes, atomics and a
variety of other low-level functionality

Channels are the recommended ways of passing data between
threads; though you can also use shared variables

Though shared variables are not recommended as Go provides
no inherent protection against the usual data races (if you don’t
remember to use mutexes and the like)



Go

From the Go website (worth repeating!):

Share memory by communicating; don’t communicate
by sharing memory.



Go

Go has a race detector tool: compiling with -race checks
memory accesses and spots unsynchronised accesses

This

• is run time detection
• slows the execution by an order of magnitude
• only finds races that actually happen in a run



Go

Go has a race detector tool: compiling with -race checks
memory accesses and spots unsynchronised accesses

This

• is run time detection
• slows the execution by an order of magnitude
• only finds races that actually happen in a run



Go

Go is used widely, with some vocal proponents

It was designed by people with a considerable amount of
expertise, but doesn’t bring anything new to the table in terms
of tackling parallelism

. . . in fact, there isn’t much to Go other than channels
and goroutines!

Stjepan Glavina



Go

Go is used widely, with some vocal proponents

It was designed by people with a considerable amount of
expertise, but doesn’t bring anything new to the table in terms
of tackling parallelism

. . . in fact, there isn’t much to Go other than channels
and goroutines!

Stjepan Glavina



Go

Go is used widely, with some vocal proponents

It was designed by people with a considerable amount of
expertise, but doesn’t bring anything new to the table in terms
of tackling parallelism

. . . in fact, there isn’t much to Go other than channels
and goroutines!

Stjepan Glavina



Rust

A language originally designed and developed by the Mozilla
team, with the eventual aim of reimplementing the Firefox
browser in Rust, but now a general-purpose language in its
own right

A lot of the problems in many applications (including browsers)
are to do with bad memory management

Around 70 percent of all the vulnerabilities in Microsoft
products addressed through a security update each
year are memory safety issues
Matt Miller, Microsoft security engineer, Feb 2019



Rust

A language originally designed and developed by the Mozilla
team, with the eventual aim of reimplementing the Firefox
browser in Rust, but now a general-purpose language in its
own right

A lot of the problems in many applications (including browsers)
are to do with bad memory management

Around 70 percent of all the vulnerabilities in Microsoft
products addressed through a security update each
year are memory safety issues
Matt Miller, Microsoft security engineer, Feb 2019



Rust

A language originally designed and developed by the Mozilla
team, with the eventual aim of reimplementing the Firefox
browser in Rust, but now a general-purpose language in its
own right

A lot of the problems in many applications (including browsers)
are to do with bad memory management

Around 70 percent of all the vulnerabilities in Microsoft
products addressed through a security update each
year are memory safety issues
Matt Miller, Microsoft security engineer, Feb 2019



Rust

So Rust is a memory safe language, meaning it can not have
problems like dangling pointers (null pointers), uninitialised
variables, use after free errors, or buffer overflows

Or, at least, it makes it very hard for the programmer to produce
such bad code

Unlike many languages, such as C and C++, that make it very
easy



Rust

So Rust is a memory safe language, meaning it can not have
problems like dangling pointers (null pointers), uninitialised
variables, use after free errors, or buffer overflows

Or, at least, it makes it very hard for the programmer to produce
such bad code

Unlike many languages, such as C and C++, that make it very
easy



Rust

So Rust is a memory safe language, meaning it can not have
problems like dangling pointers (null pointers), uninitialised
variables, use after free errors, or buffer overflows

Or, at least, it makes it very hard for the programmer to produce
such bad code

Unlike many languages, such as C and C++, that make it very
easy



Rust

Memory safety is not new: many memory safe (or nearly safe)
languages have been devised, with various trade-offs to get this
safety

For example, runtime checks on accesses to buffers; garbage
collectors; and so on

A lot of these have runtime overhead, i.e., your program is
safer, but runs more slowly

And they are not always completely successful, e.g., Java can
have null pointers



Rust

Memory safety is not new: many memory safe (or nearly safe)
languages have been devised, with various trade-offs to get this
safety

For example, runtime checks on accesses to buffers; garbage
collectors; and so on

A lot of these have runtime overhead, i.e., your program is
safer, but runs more slowly

And they are not always completely successful, e.g., Java can
have null pointers



Rust

Memory safety is not new: many memory safe (or nearly safe)
languages have been devised, with various trade-offs to get this
safety

For example, runtime checks on accesses to buffers; garbage
collectors; and so on

A lot of these have runtime overhead, i.e., your program is
safer, but runs more slowly

And they are not always completely successful, e.g., Java can
have null pointers



Rust

Memory safety is not new: many memory safe (or nearly safe)
languages have been devised, with various trade-offs to get this
safety

For example, runtime checks on accesses to buffers; garbage
collectors; and so on

A lot of these have runtime overhead, i.e., your program is
safer, but runs more slowly

And they are not always completely successful, e.g., Java can
have null pointers



Rust

Rust takes a different approach and tries to put as much
checking as possible into the compiler: your code is safe, and
fast

But the trade-off is this: it does this by having a concept of the
owner of a memory location and tracking that ownership in the
compiler



Rust

Rust takes a different approach and tries to put as much
checking as possible into the compiler: your code is safe, and
fast

But the trade-off is this: it does this by having a concept of the
owner of a memory location and tracking that ownership in the
compiler



Rust

In an assignment y = x; the ownership of the memory
referred to by x is transferred to y. It is now illegal/impossible to
use the variable x in subsequent code

The compiler would flag any later reference to x as an error
and refuse to compile

This helps with memory management, as the compiler can
precisely track the lifetime of a value and so its memory can be
deallocated automatically when the compiler can prove it is not
longer accessible and without the need for a garbage collector

Thus avoiding the programming errors common to C-like
languages and the runtime complexities of GC languages



Rust

In an assignment y = x; the ownership of the memory
referred to by x is transferred to y. It is now illegal/impossible to
use the variable x in subsequent code

The compiler would flag any later reference to x as an error
and refuse to compile

This helps with memory management, as the compiler can
precisely track the lifetime of a value and so its memory can be
deallocated automatically when the compiler can prove it is not
longer accessible and without the need for a garbage collector

Thus avoiding the programming errors common to C-like
languages and the runtime complexities of GC languages



Rust

In an assignment y = x; the ownership of the memory
referred to by x is transferred to y. It is now illegal/impossible to
use the variable x in subsequent code

The compiler would flag any later reference to x as an error
and refuse to compile

This helps with memory management, as the compiler can
precisely track the lifetime of a value and so its memory can be
deallocated automatically when the compiler can prove it is not
longer accessible and without the need for a garbage collector

Thus avoiding the programming errors common to C-like
languages and the runtime complexities of GC languages



Rust

In an assignment y = x; the ownership of the memory
referred to by x is transferred to y. It is now illegal/impossible to
use the variable x in subsequent code

The compiler would flag any later reference to x as an error
and refuse to compile

This helps with memory management, as the compiler can
precisely track the lifetime of a value and so its memory can be
deallocated automatically when the compiler can prove it is not
longer accessible and without the need for a garbage collector

Thus avoiding the programming errors common to C-like
languages and the runtime complexities of GC languages


