Parallel Computing
CM30225
Russell Bradford
2023/24
1. Rust
Memory safety is a good thing in that you can’t accidentally use a value that has been deallocated: but even better is that ownership also helps with data races
A data race can happen when one memory location is accessed by two threads, at least one doing a write
A read-only (const) value can be shared; a writable (mutable) value shouldn’t be shared (c.f., RW locks)
The Rust compiler can use ownership to track a value and will spot an attempt to modify a shared value and refuse to compile
2. Rust
Thus making the programmer face up to the problem and fix it before the code will even compile
Rust developers call this “Fearless Concurrency” as the language itself prevents these kinds of data-race
Rust provides both mechanism and analysis for concurrency
This fixes data races: unfortunately the Rust compiler is not (yet?) able to spot non-data-race race conditions, like deadlock
3. Rust
Rust has a classical heavyweight thread approach, with a thread module that contains functions like thread::spawn()
This takes a closure as argument as the thing to execute
let threadid = thread::spawn(|| foo(x+1,y-1)); ... let val = threadid.join().unwrap();
4. Rust
What do we do if we need to mutate a shared value in different threads?
We can use a mutex to sequentialise the accesses
Mutexes can be shared across threads
5. Rust
A Mutex can be used to wrap any data:
let mtx = Mutex::new(v);
And now the only way of accessing the data that used to be in v is via the mutex: let mut data = mtx.lock().unwrap();
An important thing here is that the ownership of the value has passed to within the mutex mtx, and so is no longer available from the variable v
This prevents accidental direct access to the data, and this is checked and enforced by the compiler: we can’t accidentally use v
And we can get mutable access to the data only when locked
6. Rust
There is no unlock method: the mutex automatically unlocks when the holder goes out of scope
Thus the programmer can’t forget to unlock a mutex, or access the data without using the mutex
7. Rust
Rust also has barriers, condition variables, channels, etc.
As always, channels are still an excellent way for threads to communicate, but Rust’s ownership model means sharing variables is no longer dangerous: the compiler simply won’t let you share things unsafely
8. Rust
Rust is still being developed, but has already been taken up by many big companies and projects (e.g., by Google for Android, alongside Java and Kotlin; Microsoft are rewriting parts of Windows in Rust)
The ownership mechanism is a stumbling block to many programmers coming from other languages
Mostly those programmers who don’t like the compiler telling them their code is broken: you need to get more things correct before you can compile code
But the learning curve is worth it for the safety achieved
9. Rust
Exercise For C++ geeks. The idea of tracking ownership (“move semantics”) has recently been adopted by C++, though its use is optional and not the default. Read about this
Exercise The Rust compiler guarantees that a mutable (writable) memory location can never be accessed by more than one thread at a time. How might the compiler use this knowledge to optimise operations on that memory location?
10. Rust
Shared mutable state is the root of all evil. Most languages attempt to deal with this problem through the ’mutable’ part, but Rust deals with it by solving the ’shared’ part.
From the Rust website
It may be harder to write Rust code than Java code, but it’s a lot harder to write incorrect Rust code than incorrect Java code
“Llogiq on stuff” Feb 2016
11. SISAL
Another single assignment, functional language, this time with implicit parallelism
Streams and Iteration in a Single Assignment Language, as its name suggests has special regard for streams and iterations
It distinguishes carefully between loops where the computations in the loop body are independent (thus parallelisable, they call them for-loops) and those where they are not independent (they call these iterations)
12. SISAL
The for-loop looks like
for <range>
 <optional body>
returns <returns clause>
end for
All expressions in SISAL return one or more values
13. SISAL
An example:
for i in 1, n
 sqs := vals[i]*vals[i]
returns array of sqs
end for
returns an array of the squares of the values
The effect is like a new instance of sqs is made for each value of i, then the array of operator collects (a reduce operation) them into an array
14. SISAL
Other reductions are possible
for i in 1, n
 sqs := vals[i]*vals[i]
returns array of sqs,
 value of sum sqs
end for
returns two things: the array as before, and the sum of the squares; sum is another reduction operation
15. SISAL
The point here is that each squaring is independent
SISAL makes us write the loop in such a way to make this simple and evident
So it may choose to run this in parallel: automatic parallelisation
16. SISAL
SISAL was briefly popular in the mid-1980s when people were looking for ways for extracting parallelism automatically
It is an example of a dataflow language
These work on the idea that it is the data that should direct the processing
A spreadsheet is a simple example of the dataflow concept: change the value in a cell and this triggers various (re)computations, possibly running in parallel
SISAL is of academic interest, but is not used widely
17. Strand
A single assignment language reminiscent of Prolog with dataflow (again, mid to late 1980s), declarative
There is a single, shared global namespace and threads communicate by writing and reading variables
If a thread tries to read a variable before it is set, that thread will block
Thus we get both message passing and synchronisation
And so variables are also a bit like single-use channels
18. Strand
Strand only supports parallel composition: i.e., you cannot write sequentially
The dataflow between the variables is all the sequencing we get
And, conversely, if one expression does not depend on another, that can be run in parallel
Again allowing automatic parallelism
19. Strand
Code is a list of rules rather like Prolog:
clause :- guard, guard, ... | body
A program consists of many rules
20. Strand
All rules are eligible for execution at all times as long as all their guard conditions are satisfied
Guards can be evaluated in parallel
If a rule is selected, then a new process evaluates the body
If no rules match, then it’s an error in your program
21. Strand
Rules:
consumer(X) :- X | eat(X).
producer(Y) :- Y := "food".
with program:
producer(Z), consumer(Z).
the variable Z acts as a shared “channel” between the producer and consumer
22. Strand
As always, there’s much more to Strand than this: streams, foreign language interface (to call C, etc.), garbage collection, and so on
And, just like Prolog, not widely used
It’s just not the way most programmers think!
23. Parallel Languages
Thus there are several ways a language design can avoid races:
· have no shared variables (e.g., Erlang)
· have no mutable shared variables (e.g., Rust)
· have no mutation (e.g., Haskell)
· have no parallelism! (e.g., JavaScript, Python)
Allowing unrestricted access to shared values (as we are used to in sequential programming) is a sure route to creating races
But having any the above restrictions in a language is guaranteed to irritate some programmers — they don’t like being forced to write correct programs!
24. Parallel Languages
And so on. See Wikipedia!
· C. Connection Machine, SIMD
· C. Cray, modified C, like data parallel Fortran
· Concurrent Euclid. Functional influenced descendant of Pascal
· Data Parallel Haskell.
· E. Secure distributed programming
· Ease. A CSP language
· Fortress. Secure Fortran, implicit parallelism
· Janus. “bag channels” pool-like communications
25. Parallel Languages
· Joule. Dataflow, like E
· Joyce. Pascal syntax, CSP
· Limbo. Channels
· Lucid. Dataflow
· MultiLisp. Scheme extension, arguments to function calls explicitly evaluated in parallel, lazy evaluation
· NESL. Precursor to Data Parallel Haskell
· Orc. Concurrent, non-deterministic
· Oz. Multiparadigm: dataflow and declarative
· Parlog. Parallel Prolog
26. Parallel Languages
· SALSA. Actor, runs on Java machine
· Sing#. Extension of C#. Message passing
· SPARK. Based on Ada
· SR. Message passing
· Lisp. Connection Machine
· Turing. Monitors
· XC. Explicit parallelism
· ZPL. Like C/C++, implicit parallelism.
27. Parallel Languages
Exercise Swift, Rust and Go are all “modern” languages, designed in the current era of parallel hardware. Compare their approaches to parallelism
Exercise Think about using all of OpenMP, MPI (and CUDA/OpenCl on GPUs) in a single program
Redo Assignment 1 using Swift, Rust, Go, CUDA, etc.
