
Rust

Memory safety is a good thing in that you can’t accidentally use
a value that has been deallocated: but even better is that
ownership also helps with data races

A data race can happen when one memory location is
accessed by two threads, at least one doing a write

A read-only (const) value can be shared; a writable (mutable)
value shouldn’t be shared (c.f., RW locks)

The Rust compiler can use ownership to track a value and will
spot an attempt to modify a shared value and refuse to compile

Rust

Memory safety is a good thing in that you can’t accidentally use
a value that has been deallocated: but even better is that
ownership also helps with data races

A data race can happen when one memory location is
accessed by two threads, at least one doing a write

A read-only (const) value can be shared; a writable (mutable)
value shouldn’t be shared (c.f., RW locks)

The Rust compiler can use ownership to track a value and will
spot an attempt to modify a shared value and refuse to compile

Rust

Memory safety is a good thing in that you can’t accidentally use
a value that has been deallocated: but even better is that
ownership also helps with data races

A data race can happen when one memory location is
accessed by two threads, at least one doing a write

A read-only (const) value can be shared; a writable (mutable)
value shouldn’t be shared (c.f., RW locks)

The Rust compiler can use ownership to track a value and will
spot an attempt to modify a shared value and refuse to compile

Rust

Memory safety is a good thing in that you can’t accidentally use
a value that has been deallocated: but even better is that
ownership also helps with data races

A data race can happen when one memory location is
accessed by two threads, at least one doing a write

A read-only (const) value can be shared; a writable (mutable)
value shouldn’t be shared (c.f., RW locks)

The Rust compiler can use ownership to track a value and will
spot an attempt to modify a shared value and refuse to compile

Rust

Thus making the programmer face up to the problem and fix it
before the code will even compile

Rust developers call this “Fearless Concurrency” as the
language itself prevents these kinds of data-race

Rust provides both mechanism and analysis for concurrency

This fixes data races: unfortunately the Rust compiler is not
(yet?) able to spot non-data-race race conditions, like deadlock

Rust

Thus making the programmer face up to the problem and fix it
before the code will even compile

Rust developers call this “Fearless Concurrency” as the
language itself prevents these kinds of data-race

Rust provides both mechanism and analysis for concurrency

This fixes data races: unfortunately the Rust compiler is not
(yet?) able to spot non-data-race race conditions, like deadlock

Rust

Thus making the programmer face up to the problem and fix it
before the code will even compile

Rust developers call this “Fearless Concurrency” as the
language itself prevents these kinds of data-race

Rust provides both mechanism and analysis for concurrency

This fixes data races: unfortunately the Rust compiler is not
(yet?) able to spot non-data-race race conditions, like deadlock

Rust

Thus making the programmer face up to the problem and fix it
before the code will even compile

Rust developers call this “Fearless Concurrency” as the
language itself prevents these kinds of data-race

Rust provides both mechanism and analysis for concurrency

This fixes data races: unfortunately the Rust compiler is not
(yet?) able to spot non-data-race race conditions, like deadlock

Rust

Rust has a classical heavyweight thread approach, with a
thread module that contains functions like thread::spawn()

This takes a closure as argument as the thing to execute

let threadid = thread::spawn(|| foo(x+1,y-1));

...
let val = threadid.join().unwrap();

Rust

Rust has a classical heavyweight thread approach, with a
thread module that contains functions like thread::spawn()

This takes a closure as argument as the thing to execute

let threadid = thread::spawn(|| foo(x+1,y-1));

...
let val = threadid.join().unwrap();

Rust

Rust has a classical heavyweight thread approach, with a
thread module that contains functions like thread::spawn()

This takes a closure as argument as the thing to execute

let threadid = thread::spawn(|| foo(x+1,y-1));

...
let val = threadid.join().unwrap();

Rust

What do we do if we need to mutate a shared value in different
threads?

We can use a mutex to sequentialise the accesses

Mutexes can be shared across threads

Rust

What do we do if we need to mutate a shared value in different
threads?

We can use a mutex to sequentialise the accesses

Mutexes can be shared across threads

Rust

What do we do if we need to mutate a shared value in different
threads?

We can use a mutex to sequentialise the accesses

Mutexes can be shared across threads

Rust

A Mutex can be used to wrap any data:
let mtx = Mutex::new(v);

And now the only way of accessing the data that used to be in
v is via the mutex: let mut data = mtx.lock().unwrap();

An important thing here is that the ownership of the value has
passed to within the mutex mtx, and so is no longer available
from the variable v

This prevents accidental direct access to the data, and this is
checked and enforced by the compiler: we can’t accidentally
use v

And we can get mutable access to the data only when locked

Rust

A Mutex can be used to wrap any data:
let mtx = Mutex::new(v);

And now the only way of accessing the data that used to be in
v is via the mutex: let mut data = mtx.lock().unwrap();

An important thing here is that the ownership of the value has
passed to within the mutex mtx, and so is no longer available
from the variable v

This prevents accidental direct access to the data, and this is
checked and enforced by the compiler: we can’t accidentally
use v

And we can get mutable access to the data only when locked

Rust

A Mutex can be used to wrap any data:
let mtx = Mutex::new(v);

And now the only way of accessing the data that used to be in
v is via the mutex: let mut data = mtx.lock().unwrap();

An important thing here is that the ownership of the value has
passed to within the mutex mtx, and so is no longer available
from the variable v

This prevents accidental direct access to the data, and this is
checked and enforced by the compiler: we can’t accidentally
use v

And we can get mutable access to the data only when locked

Rust

A Mutex can be used to wrap any data:
let mtx = Mutex::new(v);

And now the only way of accessing the data that used to be in
v is via the mutex: let mut data = mtx.lock().unwrap();

An important thing here is that the ownership of the value has
passed to within the mutex mtx, and so is no longer available
from the variable v

This prevents accidental direct access to the data, and this is
checked and enforced by the compiler: we can’t accidentally
use v

And we can get mutable access to the data only when locked

Rust

A Mutex can be used to wrap any data:
let mtx = Mutex::new(v);

And now the only way of accessing the data that used to be in
v is via the mutex: let mut data = mtx.lock().unwrap();

An important thing here is that the ownership of the value has
passed to within the mutex mtx, and so is no longer available
from the variable v

This prevents accidental direct access to the data, and this is
checked and enforced by the compiler: we can’t accidentally
use v

And we can get mutable access to the data only when locked

Rust

There is no unlock method: the mutex automatically unlocks
when the holder goes out of scope

Thus the programmer can’t forget to unlock a mutex, or access
the data without using the mutex

Rust

There is no unlock method: the mutex automatically unlocks
when the holder goes out of scope

Thus the programmer can’t forget to unlock a mutex, or access
the data without using the mutex

Rust

Rust also has barriers, condition variables, channels, etc.

As always, channels are still an excellent way for threads to
communicate, but Rust’s ownership model means sharing
variables is no longer dangerous: the compiler simply won’t let
you share things unsafely

Rust

Rust also has barriers, condition variables, channels, etc.

As always, channels are still an excellent way for threads to
communicate, but Rust’s ownership model means sharing
variables is no longer dangerous: the compiler simply won’t let
you share things unsafely

Rust

Rust is still being developed, but has already been taken up by
many big companies and projects (e.g., by Google for Android,
alongside Java and Kotlin; Microsoft are rewriting parts of
Windows in Rust)

The ownership mechanism is a stumbling block to many
programmers coming from other languages

Mostly those programmers who don’t like the compiler telling
them their code is broken: you need to get more things correct
before you can compile code

But the learning curve is worth it for the safety achieved

Rust

Rust is still being developed, but has already been taken up by
many big companies and projects (e.g., by Google for Android,
alongside Java and Kotlin; Microsoft are rewriting parts of
Windows in Rust)

The ownership mechanism is a stumbling block to many
programmers coming from other languages

Mostly those programmers who don’t like the compiler telling
them their code is broken: you need to get more things correct
before you can compile code

But the learning curve is worth it for the safety achieved

Rust

Rust is still being developed, but has already been taken up by
many big companies and projects (e.g., by Google for Android,
alongside Java and Kotlin; Microsoft are rewriting parts of
Windows in Rust)

The ownership mechanism is a stumbling block to many
programmers coming from other languages

Mostly those programmers who don’t like the compiler telling
them their code is broken: you need to get more things correct
before you can compile code

But the learning curve is worth it for the safety achieved

Rust

Rust is still being developed, but has already been taken up by
many big companies and projects (e.g., by Google for Android,
alongside Java and Kotlin; Microsoft are rewriting parts of
Windows in Rust)

The ownership mechanism is a stumbling block to many
programmers coming from other languages

Mostly those programmers who don’t like the compiler telling
them their code is broken: you need to get more things correct
before you can compile code

But the learning curve is worth it for the safety achieved

Rust

Exercise For C++ geeks. The idea of tracking ownership
(“move semantics”) has recently been adopted by C++, though
its use is optional and not the default. Read about this

Exercise The Rust compiler guarantees that a mutable
(writable) memory location can never be accessed by more
than one thread at a time. How might the compiler use this
knowledge to optimise operations on that memory location?

Rust

Shared mutable state is the root of all evil. Most lan-
guages attempt to deal with this problem through the
’mutable’ part, but Rust deals with it by solving the
’shared’ part.
From the Rust website

It may be harder to write Rust code than Java code,
but it’s a lot harder to write incorrect Rust code than
incorrect Java code
“Llogiq on stuff” Feb 2016

SISAL

Another single assignment, functional language, this time with
implicit parallelism

Streams and Iteration in a Single Assignment Language, as its
name suggests has special regard for streams and iterations

It distinguishes carefully between loops where the
computations in the loop body are independent (thus
parallelisable, they call them for-loops) and those where they
are not independent (they call these iterations)

SISAL

Another single assignment, functional language, this time with
implicit parallelism

Streams and Iteration in a Single Assignment Language, as its
name suggests has special regard for streams and iterations

It distinguishes carefully between loops where the
computations in the loop body are independent (thus
parallelisable, they call them for-loops) and those where they
are not independent (they call these iterations)

SISAL

Another single assignment, functional language, this time with
implicit parallelism

Streams and Iteration in a Single Assignment Language, as its
name suggests has special regard for streams and iterations

It distinguishes carefully between loops where the
computations in the loop body are independent (thus
parallelisable, they call them for-loops) and those where they
are not independent (they call these iterations)

SISAL

The for-loop looks like

for <range>

<optional body>

returns <returns clause>

end for

All expressions in SISAL return one or more values

SISAL

An example:

for i in 1, n

sqs := vals[i]*vals[i]

returns array of sqs

end for

returns an array of the squares of the values

The effect is like a new instance of sqs is made for each value
of i, then the array of operator collects (a reduce operation)
them into an array

SISAL

An example:

for i in 1, n

sqs := vals[i]*vals[i]

returns array of sqs

end for

returns an array of the squares of the values

The effect is like a new instance of sqs is made for each value
of i, then the array of operator collects (a reduce operation)
them into an array

SISAL

Other reductions are possible

for i in 1, n

sqs := vals[i]*vals[i]

returns array of sqs,

value of sum sqs

end for

returns two things: the array as before, and the sum of the
squares; sum is another reduction operation

SISAL

The point here is that each squaring is independent

SISAL makes us write the loop in such a way to make this
simple and evident

So it may choose to run this in parallel: automatic parallelisation

SISAL

The point here is that each squaring is independent

SISAL makes us write the loop in such a way to make this
simple and evident

So it may choose to run this in parallel: automatic parallelisation

SISAL

The point here is that each squaring is independent

SISAL makes us write the loop in such a way to make this
simple and evident

So it may choose to run this in parallel: automatic parallelisation

SISAL

SISAL was briefly popular in the mid-1980s when people were
looking for ways for extracting parallelism automatically

It is an example of a dataflow language

These work on the idea that it is the data that should direct the
processing

A spreadsheet is a simple example of the dataflow concept:
change the value in a cell and this triggers various
(re)computations, possibly running in parallel

SISAL is of academic interest, but is not used widely

SISAL

SISAL was briefly popular in the mid-1980s when people were
looking for ways for extracting parallelism automatically

It is an example of a dataflow language

These work on the idea that it is the data that should direct the
processing

A spreadsheet is a simple example of the dataflow concept:
change the value in a cell and this triggers various
(re)computations, possibly running in parallel

SISAL is of academic interest, but is not used widely

SISAL

SISAL was briefly popular in the mid-1980s when people were
looking for ways for extracting parallelism automatically

It is an example of a dataflow language

These work on the idea that it is the data that should direct the
processing

A spreadsheet is a simple example of the dataflow concept:
change the value in a cell and this triggers various
(re)computations, possibly running in parallel

SISAL is of academic interest, but is not used widely

SISAL

SISAL was briefly popular in the mid-1980s when people were
looking for ways for extracting parallelism automatically

It is an example of a dataflow language

These work on the idea that it is the data that should direct the
processing

A spreadsheet is a simple example of the dataflow concept:
change the value in a cell and this triggers various
(re)computations, possibly running in parallel

SISAL is of academic interest, but is not used widely

SISAL

SISAL was briefly popular in the mid-1980s when people were
looking for ways for extracting parallelism automatically

It is an example of a dataflow language

These work on the idea that it is the data that should direct the
processing

A spreadsheet is a simple example of the dataflow concept:
change the value in a cell and this triggers various
(re)computations, possibly running in parallel

SISAL is of academic interest, but is not used widely

Strand

A single assignment language reminiscent of Prolog with
dataflow (again, mid to late 1980s), declarative

There is a single, shared global namespace and threads
communicate by writing and reading variables

If a thread tries to read a variable before it is set, that thread will
block

Thus we get both message passing and synchronisation

And so variables are also a bit like single-use channels

Strand

A single assignment language reminiscent of Prolog with
dataflow (again, mid to late 1980s), declarative

There is a single, shared global namespace and threads
communicate by writing and reading variables

If a thread tries to read a variable before it is set, that thread will
block

Thus we get both message passing and synchronisation

And so variables are also a bit like single-use channels

Strand

A single assignment language reminiscent of Prolog with
dataflow (again, mid to late 1980s), declarative

There is a single, shared global namespace and threads
communicate by writing and reading variables

If a thread tries to read a variable before it is set, that thread will
block

Thus we get both message passing and synchronisation

And so variables are also a bit like single-use channels

Strand

A single assignment language reminiscent of Prolog with
dataflow (again, mid to late 1980s), declarative

There is a single, shared global namespace and threads
communicate by writing and reading variables

If a thread tries to read a variable before it is set, that thread will
block

Thus we get both message passing and synchronisation

And so variables are also a bit like single-use channels

Strand

A single assignment language reminiscent of Prolog with
dataflow (again, mid to late 1980s), declarative

There is a single, shared global namespace and threads
communicate by writing and reading variables

If a thread tries to read a variable before it is set, that thread will
block

Thus we get both message passing and synchronisation

And so variables are also a bit like single-use channels

Strand

Strand only supports parallel composition: i.e., you cannot write
sequentially

The dataflow between the variables is all the sequencing we get

And, conversely, if one expression does not depend on another,
that can be run in parallel

Again allowing automatic parallelism

Strand

Strand only supports parallel composition: i.e., you cannot write
sequentially

The dataflow between the variables is all the sequencing we get

And, conversely, if one expression does not depend on another,
that can be run in parallel

Again allowing automatic parallelism

Strand

Strand only supports parallel composition: i.e., you cannot write
sequentially

The dataflow between the variables is all the sequencing we get

And, conversely, if one expression does not depend on another,
that can be run in parallel

Again allowing automatic parallelism

Strand

Strand only supports parallel composition: i.e., you cannot write
sequentially

The dataflow between the variables is all the sequencing we get

And, conversely, if one expression does not depend on another,
that can be run in parallel

Again allowing automatic parallelism

Strand

Code is a list of rules rather like Prolog:

clause :- guard, guard, ... | body

A program consists of many rules

Strand

Code is a list of rules rather like Prolog:

clause :- guard, guard, ... | body

A program consists of many rules

Strand

All rules are eligible for execution at all times as long as all their
guard conditions are satisfied

Guards can be evaluated in parallel

If a rule is selected, then a new process evaluates the body

If no rules match, then it’s an error in your program

Strand

All rules are eligible for execution at all times as long as all their
guard conditions are satisfied

Guards can be evaluated in parallel

If a rule is selected, then a new process evaluates the body

If no rules match, then it’s an error in your program

Strand

All rules are eligible for execution at all times as long as all their
guard conditions are satisfied

Guards can be evaluated in parallel

If a rule is selected, then a new process evaluates the body

If no rules match, then it’s an error in your program

Strand

All rules are eligible for execution at all times as long as all their
guard conditions are satisfied

Guards can be evaluated in parallel

If a rule is selected, then a new process evaluates the body

If no rules match, then it’s an error in your program

Strand

Rules:

consumer(X) :- X | eat(X).

producer(Y) :- Y := "food".

with program:

producer(Z), consumer(Z).

the variable Z acts as a shared “channel” between the producer
and consumer

Strand

As always, there’s much more to Strand than this: streams,
foreign language interface (to call C, etc.), garbage collection,
and so on

And, just like Prolog, not widely used

It’s just not the way most programmers think!

Strand

As always, there’s much more to Strand than this: streams,
foreign language interface (to call C, etc.), garbage collection,
and so on

And, just like Prolog, not widely used

It’s just not the way most programmers think!

Strand

As always, there’s much more to Strand than this: streams,
foreign language interface (to call C, etc.), garbage collection,
and so on

And, just like Prolog, not widely used

It’s just not the way most programmers think!

Parallel Languages

Thus there are several ways a language design can avoid
races:

• have no shared variables (e.g., Erlang)
• have no mutable shared variables (e.g., Rust)
• have no mutation (e.g., Haskell)
• have no parallelism! (e.g., JavaScript, Python)

Allowing unrestricted access to shared values (as we are used
to in sequential programming) is a sure route to creating races

But having any the above restrictions in a language is
guaranteed to irritate some programmers — they don’t like
being forced to write correct programs!

Parallel Languages

Thus there are several ways a language design can avoid
races:

• have no shared variables (e.g., Erlang)

• have no mutable shared variables (e.g., Rust)
• have no mutation (e.g., Haskell)
• have no parallelism! (e.g., JavaScript, Python)

Allowing unrestricted access to shared values (as we are used
to in sequential programming) is a sure route to creating races

But having any the above restrictions in a language is
guaranteed to irritate some programmers — they don’t like
being forced to write correct programs!

Parallel Languages

Thus there are several ways a language design can avoid
races:

• have no shared variables (e.g., Erlang)
• have no mutable shared variables (e.g., Rust)

• have no mutation (e.g., Haskell)
• have no parallelism! (e.g., JavaScript, Python)

Allowing unrestricted access to shared values (as we are used
to in sequential programming) is a sure route to creating races

But having any the above restrictions in a language is
guaranteed to irritate some programmers — they don’t like
being forced to write correct programs!

Parallel Languages

Thus there are several ways a language design can avoid
races:

• have no shared variables (e.g., Erlang)
• have no mutable shared variables (e.g., Rust)
• have no mutation (e.g., Haskell)

• have no parallelism! (e.g., JavaScript, Python)

Allowing unrestricted access to shared values (as we are used
to in sequential programming) is a sure route to creating races

But having any the above restrictions in a language is
guaranteed to irritate some programmers — they don’t like
being forced to write correct programs!

Parallel Languages

Thus there are several ways a language design can avoid
races:

• have no shared variables (e.g., Erlang)
• have no mutable shared variables (e.g., Rust)
• have no mutation (e.g., Haskell)
• have no parallelism! (e.g., JavaScript, Python)

Allowing unrestricted access to shared values (as we are used
to in sequential programming) is a sure route to creating races

But having any the above restrictions in a language is
guaranteed to irritate some programmers — they don’t like
being forced to write correct programs!

Parallel Languages

Thus there are several ways a language design can avoid
races:

• have no shared variables (e.g., Erlang)
• have no mutable shared variables (e.g., Rust)
• have no mutation (e.g., Haskell)
• have no parallelism! (e.g., JavaScript, Python)

Allowing unrestricted access to shared values (as we are used
to in sequential programming) is a sure route to creating races

But having any the above restrictions in a language is
guaranteed to irritate some programmers — they don’t like
being forced to write correct programs!

Parallel Languages

Thus there are several ways a language design can avoid
races:

• have no shared variables (e.g., Erlang)
• have no mutable shared variables (e.g., Rust)
• have no mutation (e.g., Haskell)
• have no parallelism! (e.g., JavaScript, Python)

Allowing unrestricted access to shared values (as we are used
to in sequential programming) is a sure route to creating races

But having any the above restrictions in a language is
guaranteed to irritate some programmers — they don’t like
being forced to write correct programs!

Parallel Languages

And so on. See Wikipedia!

• C∗. Connection Machine, SIMD
• Cω. Cray, modified C, like data parallel Fortran
• Concurrent Euclid. Functional influenced descendant of

Pascal
• Data Parallel Haskell.
• E. Secure distributed programming
• Ease. A CSP language
• Fortress. Secure Fortran, implicit parallelism
• Janus. “bag channels” pool-like communications

Parallel Languages

• Joule. Dataflow, like E
• Joyce. Pascal syntax, CSP
• Limbo. Channels
• Lucid. Dataflow
• MultiLisp. Scheme extension, arguments to function calls

explicitly evaluated in parallel, lazy evaluation
• NESL. Precursor to Data Parallel Haskell
• Orc. Concurrent, non-deterministic
• Oz. Multiparadigm: dataflow and declarative
• Parlog. Parallel Prolog

Parallel Languages

• SALSA. Actor, runs on Java machine
• Sing#. Extension of C#. Message passing
• SPARK. Based on Ada
• SR. Message passing
• ∗Lisp. Connection Machine
• Turing+. Monitors
• XC. Explicit parallelism
• ZPL. Like C/C++, implicit parallelism.

Parallel Languages

Exercise Swift, Rust and Go are all “modern” languages,
designed in the current era of parallel hardware. Compare their
approaches to parallelism

Exercise Think about using all of OpenMP, MPI (and
CUDA/OpenCl on GPUs) in a single program

Redo Assignment 1 using Swift, Rust, Go, CUDA, etc.

Parallel Languages

Exercise Swift, Rust and Go are all “modern” languages,
designed in the current era of parallel hardware. Compare their
approaches to parallelism

Exercise Think about using all of OpenMP, MPI (and
CUDA/OpenCl on GPUs) in a single program

Redo Assignment 1 using Swift, Rust, Go, CUDA, etc.

Parallel Languages

Exercise Swift, Rust and Go are all “modern” languages,
designed in the current era of parallel hardware. Compare their
approaches to parallelism

Exercise Think about using all of OpenMP, MPI (and
CUDA/OpenCl on GPUs) in a single program

Redo Assignment 1 using Swift, Rust, Go, CUDA, etc.

