
Topics: GPUs

Graphics co-processors have grown immensely in power in the
last few years

Originally intended to offload graphical work from the main
CPU they have become recognised as powerful processors in
their own right and people have tried to tap into their potential

General-Purpose computing on Graphics Processing Units
(GPGPU) has emerged as an important example of parallel
processing

So hardware, originally intended to support gamers, is now
being used in general purpose computations

GPU-based computing appears strongly in the Top 500 largest
computers in the world
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GPUs

GPUs naturally do certain things very well: in particular
data-parallel pixel rendering (colouring, shading and so on)

The computations you typically do on pixels can be quite
intensive, but are fairly restricted in nature

And the data-parallel nature of the computations on the millions
of pixels on your screen is very relevant

Over time GPUs became more and more programmable as
they needed to do more and more complex manipulations

Graphics libraries (like OpenGL and DirectX) that were
originally developed to draw pictures eventually supported
programmable sequences of operations via shader languages
such as GLSL and HLSL (aka Cg)
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So people soon realised that GPUs are powerful multicore
SIMD processors, but just tuned for certain intensive
data-parallel computations

GPU companies like NVIDIA and AMD/ATI have seen the
possibilities of using this power and now put hardware into their
GPUs specifically to help GPGPU computations

This means putting in hardware to support generic
computation, not just graphics oriented stuff
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And NVIDIA have also produced a language, Compute Unified
Device Architecture (CUDA), to aid in the general programming
of these devices

There is also an open standard, Open Computing Language
(OpenCL), that is not vendor based

CUDA is quite popular right now, but only runs on NVIDIA cards

OpenCL is strong, and is supported by NVIDIA, AMD, Intel and
ARM amongst others
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CUDA

CUDA looks a lot like C and C++

Dangerously close, as there are several important differences
between CUDA and these languages

CUDA is a modified C/C++ with a syntactic addition to notate
parallel execution and various semantic additions to support
parallelism

It requires a special compiler, provided by Nvidia

In contrast, OpenCL is a library that runs on plain C or C++
(and any other language that can call C functions)
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Architecture

The language reflects the hardware architecture

A GPU has several multiprocessors each containing a bunch of
SIMD cores: thus a GPU is a MIMD of SIMD

It works best when there are thousands of threads, even if there
are only hundreds of cores

This is to overlap communications with computation: a core that
would be waiting for some data can pick up another thread and
work on it instead on doing nothing

Memory access in GPUs is relatively very slow, so there would
be a lot of waiting otherwise
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Architecture

Threads in a GPU are hardware managed and extremely
lightweight, meaning they have tiny creation and scheduling
overhead

Thus there is no need to worry about making and destroying
large numbers of threads

Very different from normal CPU threads

Exercise Why don’t normal CPUs do the same: have hardware
support for threads?
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We shall describe them using CUDA terminology
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CUDA

There is a hierarchical management of the threads

• A kernel is some code running on the device (GPU)
• A grid is the collection of all threads in a kernel
• A grid contains one or more thread blocks
• A thread block contains a number of threads: all blocks in a

grid contain the same number of threads

All threads in a grid execute the same kernel

These are not all SIMD, but are arranged in bunches, called
warps, of SIMD threads within the blocks

NVIDIA calls this “Single Instruction Multiple Thread” (SIMT)
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For example, threads 0–31 are in one warp and 32–63 are in
another warp

Warps are the basic SIMD chunk

This means it is better to gather threads that take the same
branches of an if or loop as they will be processed together:

if (threadid < 32) {...} else {...}

is better than

if (threadid % 2 == 0) {...} else {...}
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A block (of multiple warps) is the basic chunk that gets
scheduled on a multiprocessor; the multiprocessor then
executes the warps, as many as it can at a time as the
hardware permits

While threads within a warp are SIMD, separate blocks of
threads might be executed at different times: a kind of SPMD of
SIMD, though the SPMD nature is generally not really usable

Warps within a block might be executed at the same time or at
different times depending on the number of cores per
multiprocessor and the number of schedulers per
multiprocessor
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Having many warps and many blocks means the system can
adapt at runtime to the number of multiprocessors available in
the hardware

Suppose we have 8 blocks in our grid
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2 multiprocessors

4 multiprocessors

Processing CUDA blocks

This naturally and automatically obtains more parallelism when
there are more multiprocessors. So it makes sense to have lots
more blocks than multiprocessors
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All the blocks in a given grid have the same number of threads

Blocks are indexed in the grid in one, two or three dimensions
(programmer’s choice)

blockIdx.x returns the block index for a 1D arrangement

blockIdx.x and blockIdx.y return the block indices for a 2D
arrangement

blockIdx.x, blockIdx.y and blockIdx.z return the block
indices for a 3D arrangement

You specify the size and number of dimensions when creating
the grid
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• threadIdx.x, threadIdx.y, threadIdx.z

You specify the size and number of dimensions of the blocks
when creating the grid
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Each thread has its own CPU-style state and registers used in
the normal way for function local variables and temporary
results; the hardware has a fixed number of registers (32768,
say) which are shared amongst the threads in a block

Each thread has a chunk of slow local memory ( local )

This is accessible only by the thread

Registers are what you need to use if you want fast access, but
registers are limited in number, and local memory might
be needed if the compiler can’t fit the data into registers
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A grid has a big chunk of slow global shared memory

This is accessible to all the threads in all the blocks and is the
way to communicate between threads in different blocks

Importantly, access to each of these areas of memory is at
radically different speeds

Access to registers is a bit faster than block shared memory (a
few cycles to access); both are much faster than global shared
and thread local memory (hundreds of cycles to access)

So you need to take care on where you place data
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A typical CUDA source program contains a mix of code to be
run on the CPU and code to be run on the GPU

This can be in the same source file: GPU kernels are marked
by global

The code is pretty much normal C/C++, but with some
restrictions

Note, when executing, code and data on the GPU are separate
from code and data on the CPU

Values are passed from CPU to GPU as arguments of CUDA
kernel calls; or as explicit cpu-memory-to-gpu-memory copies
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dim3 G(n, m) defines G to be a 2D n × m shape object
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If fun is a kernel (i.e., GPU function), we can call it from the
CPU code by

fun<<<G,B>>>(arg1, arg2, ...);

to run fun on a grid containing blocks arranged as G; the blocks
containing threads arranged as B

This creates n × m × w × h × d threads, each running fun

(And copies the code for the kernel to the GPU; copies the
argument values to the GPU; starts the GPU scheduler; and so
on)
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Each thread is uniquely indexed by threadIdx and blockIdx
and can use these values to decide what to do

You can choose dimensions and sizes of grids and blocks to
suit your problem: you should not be shy of 1000s of threads

In fact, one of the issues when writing a CUDA program is
figuring how to choose your blocks and distribute your data
amongst them

For example, the amount of shared memory per block is very
limited, so this may affect how you choose blocks
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Properties of a typical gamer’s card (2020):

name ’GeForce RTX 3080’
totalGlobalMem 10GB
maxThreadsPerBlock 1024
maxRegistersPerBlock 65536
clockRate 1.44 GHz
multiProcessorCount 68 processors
CoreCount 8704 (128 per multiprocessor)
warp size 32 threads
processing: 25 TFlop single

783 GFlop double (1/32)
power 320W
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Properties of a compute oriented GPU card (2015):

name ’GeForce GTX K20X’
totalGlobalMem 6039339008
sharedMemPerBlock 49152
maxThreadsPerBlock 1024
maxRegistersPerBlock 65536
maxThreadsDim 1024 x 1024 x 64
maxGridSize 2147483647 x 65535 x 65535
clockRate 0.73 GHz
multiProcessorCount 14 processors
CoreCount 2688 (192 per multiprocessor)
warp size 32 threads
processing: 3935 GFlop single

1310 GFlop double (1/3)
power 235W
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December 2017: NVIDIA Titan V

CUDA Cores 5120
Tensor Cores 640
Transistors 21.1 billion
Power 250W
Single precision 12.4 TFLOPS
Double precision 6.1 TFLOPS
Half precision 24.6 TFLOPS

Half precision they call “deep learning FLOPS”

Tensor cores are specialised to 4 × 4 matrix half-precision
fused multiply add (AB + C) computations, also for AI



GPUs
CUDA

The main point of GPUs is they have a large number of cores:
the RTX 3080 above has 8704 cores in 68 multiprocessors
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There is a lot of global memory, but this is substantially slower
(100s of cycles to access) than the block shared memory
(maybe 2 cycles)

Though modern GPUs do cache global shared memory:
access time is a couple of cycles for a cache hit (though the
cache is of limited size, of course)

There is also a chunk of global constant memory
( constant ), which is read-only but faster to access than the
read-write global memory

And some read-only texture memory, whose development
arose from the needs of graphics
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Constant memory is actually a different way of accessing global
memory, but the mechanism (to make it fast access) limits the
amount of constant memory available, e.g., to 64K bytes

Similarly texture memory is global memory accessed in a
strange way, via a texture reference object

A texture reference can be associated with an area of global
memory and then that memory is read via the reference
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The weird stuff:

• the index into the texture memory is a floating point
number: the value at index 3.14142, say, is interpolated
appropriately by the hardware between the values for
indices 3 and 4

• the index can be normalised to the interval 0.0 to 1.0.
Then the index 0.5 corresponds to the index half-way along
the array

• this can be done for 1, 2 or 3 dimensional arrays

It is possible to ignore the clever stuff and just use textures as a
fast(er) way to read global memory
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Speed Access Scope Size Lifetime
register v fast r/w thread 10s thread
local slow r/w thread GBs thread
shared fast r/w block KBs block
global slow r/w grid GBs application
constant cached r grid KBs application
texture cached r grid KBs application

N.B. the thread, block and grid/kernel lifetimes are typically all
the same; a typical application will have many kernel calls


