
GPUs
CUDA

Memory affects the execution of threads

Thread blocks are scheduled by the hardware on
multiprocessors and more than one block can be
simultaneously scheduled on a multiprocessor, thus sharing its
resources, particularly shared memory and registers

So the pattern of use of shared memory can put a limit on the
number of blocks in the grid, thus a limit on the rate of execution

Similarly, there is a limit on the number of threads per block: up
to 65536 in one of the above GPUs



GPUs
CUDA

Memory affects the execution of threads

Thread blocks are scheduled by the hardware on
multiprocessors and more than one block can be
simultaneously scheduled on a multiprocessor, thus sharing its
resources, particularly shared memory and registers

So the pattern of use of shared memory can put a limit on the
number of blocks in the grid, thus a limit on the rate of execution

Similarly, there is a limit on the number of threads per block: up
to 65536 in one of the above GPUs



GPUs
CUDA

Memory affects the execution of threads

Thread blocks are scheduled by the hardware on
multiprocessors and more than one block can be
simultaneously scheduled on a multiprocessor, thus sharing its
resources, particularly shared memory and registers

So the pattern of use of shared memory can put a limit on the
number of blocks in the grid, thus a limit on the rate of execution

Similarly, there is a limit on the number of threads per block: up
to 65536 in one of the above GPUs



GPUs
CUDA

Memory affects the execution of threads

Thread blocks are scheduled by the hardware on
multiprocessors and more than one block can be
simultaneously scheduled on a multiprocessor, thus sharing its
resources, particularly shared memory and registers

So the pattern of use of shared memory can put a limit on the
number of blocks in the grid, thus a limit on the rate of execution

Similarly, there is a limit on the number of threads per block: up
to 65536 in one of the above GPUs



GPUs
CUDA

GPUs offers a huge amount of processing power at low cost,
but in a way that is extremely sensitive to memory access

It is easy to get started with CUDA as it is basically C, but you
do have to be very aware of the properties of memory



GPUs
CUDA

GPUs offers a huge amount of processing power at low cost,
but in a way that is extremely sensitive to memory access

It is easy to get started with CUDA as it is basically C, but you
do have to be very aware of the properties of memory



GPUs
CUDA

Modern GPUs support unified memory spaces

This allows you to use a single virtual address space for both
host and device memory and not worry which is which (a bit like
VSM)

A hidden mechanism copies data between CPU and GPU as
necessary

Exercise Is this a good idea?

(Shortly we will see some systems that have physically shared
memory)



GPUs
CUDA

Modern GPUs support unified memory spaces

This allows you to use a single virtual address space for both
host and device memory and not worry which is which (a bit like
VSM)

A hidden mechanism copies data between CPU and GPU as
necessary

Exercise Is this a good idea?

(Shortly we will see some systems that have physically shared
memory)



GPUs
CUDA

Modern GPUs support unified memory spaces

This allows you to use a single virtual address space for both
host and device memory and not worry which is which (a bit like
VSM)

A hidden mechanism copies data between CPU and GPU as
necessary

Exercise Is this a good idea?

(Shortly we will see some systems that have physically shared
memory)



GPUs
CUDA

Modern GPUs support unified memory spaces

This allows you to use a single virtual address space for both
host and device memory and not worry which is which (a bit like
VSM)

A hidden mechanism copies data between CPU and GPU as
necessary

Exercise Is this a good idea?

(Shortly we will see some systems that have physically shared
memory)



GPUs
CUDA

Modern GPUs support unified memory spaces

This allows you to use a single virtual address space for both
host and device memory and not worry which is which (a bit like
VSM)

A hidden mechanism copies data between CPU and GPU as
necessary

Exercise Is this a good idea?

(Shortly we will see some systems that have physically shared
memory)



GPUs
Memory

Next, there is the extra problem shared by all coprocessors:
memory bandwidth between the main CPU and the
coprocessor

Copying data in and out of the GPU is significantly time
consuming

So we need to worry about data movement between the GPU
and the main CPU

And, if possible, overlap data transfers with GPU and CPU
computation

And overlap CPU and GPU computations



GPUs
Memory

Next, there is the extra problem shared by all coprocessors:
memory bandwidth between the main CPU and the
coprocessor

Copying data in and out of the GPU is significantly time
consuming

So we need to worry about data movement between the GPU
and the main CPU

And, if possible, overlap data transfers with GPU and CPU
computation

And overlap CPU and GPU computations



GPUs
Memory

Next, there is the extra problem shared by all coprocessors:
memory bandwidth between the main CPU and the
coprocessor

Copying data in and out of the GPU is significantly time
consuming

So we need to worry about data movement between the GPU
and the main CPU

And, if possible, overlap data transfers with GPU and CPU
computation

And overlap CPU and GPU computations



GPUs
Memory

Next, there is the extra problem shared by all coprocessors:
memory bandwidth between the main CPU and the
coprocessor

Copying data in and out of the GPU is significantly time
consuming

So we need to worry about data movement between the GPU
and the main CPU

And, if possible, overlap data transfers with GPU and CPU
computation

And overlap CPU and GPU computations



GPUs
Memory

Next, there is the extra problem shared by all coprocessors:
memory bandwidth between the main CPU and the
coprocessor

Copying data in and out of the GPU is significantly time
consuming

So we need to worry about data movement between the GPU
and the main CPU

And, if possible, overlap data transfers with GPU and CPU
computation

And overlap CPU and GPU computations



GPUs
Memory

We often forget that the system also has to copy the code, ie.,
the kernels, to the GPU memory, too

The cost of this is usually small relative to the cost of copying
data, but it’s another reminder that the GPU’s memory is
separate from the CPU’s

But a recent trend is to integrate the GPU onto the same
package as the CPU (or vice-versa!)

Using lots of transistors!



GPUs
Memory

We often forget that the system also has to copy the code, ie.,
the kernels, to the GPU memory, too

The cost of this is usually small relative to the cost of copying
data, but it’s another reminder that the GPU’s memory is
separate from the CPU’s

But a recent trend is to integrate the GPU onto the same
package as the CPU (or vice-versa!)

Using lots of transistors!



GPUs
Memory

We often forget that the system also has to copy the code, ie.,
the kernels, to the GPU memory, too

The cost of this is usually small relative to the cost of copying
data, but it’s another reminder that the GPU’s memory is
separate from the CPU’s

But a recent trend is to integrate the GPU onto the same
package as the CPU (or vice-versa!)

Using lots of transistors!



GPUs
Memory

We often forget that the system also has to copy the code, ie.,
the kernels, to the GPU memory, too

The cost of this is usually small relative to the cost of copying
data, but it’s another reminder that the GPU’s memory is
separate from the CPU’s

But a recent trend is to integrate the GPU onto the same
package as the CPU (or vice-versa!)

Using lots of transistors!



GPUs
Memory

For example, AMD’s Kaveri is a CPU+GPU on the one chip

4 CPU cores and 512 GPU cores that share cache and main
memory

Of course, this changes all the memory access vs. compute
balances, so needing you to revise your code

This is an example of a Heterogeneous System Architecture
(HSA)



GPUs
Memory

For example, AMD’s Kaveri is a CPU+GPU on the one chip

4 CPU cores and 512 GPU cores that share cache and main
memory

Of course, this changes all the memory access vs. compute
balances, so needing you to revise your code

This is an example of a Heterogeneous System Architecture
(HSA)



GPUs
Memory

For example, AMD’s Kaveri is a CPU+GPU on the one chip

4 CPU cores and 512 GPU cores that share cache and main
memory

Of course, this changes all the memory access vs. compute
balances, so needing you to revise your code

This is an example of a Heterogeneous System Architecture
(HSA)



GPUs
Memory

For example, AMD’s Kaveri is a CPU+GPU on the one chip

4 CPU cores and 512 GPU cores that share cache and main
memory

Of course, this changes all the memory access vs. compute
balances, so needing you to revise your code

This is an example of a Heterogeneous System Architecture
(HSA)



GPUs
Memory

The idea is more of a symmetry between the CPU and GPU:
the GPU is not just a coprocessor

The GPU can now pass tasks back to the CPU to do

Accompanying this is a new low-level virtual architecture HSA
Intermediate Layer (HSAIL) that will be used to implement
higher-level abstractions like OpenCL

In a similar way, Apple’s M1 architecture has CPU and GPU
and memory on the same chip, further confusing the memory
vs. compute costs question



GPUs
Memory

The idea is more of a symmetry between the CPU and GPU:
the GPU is not just a coprocessor

The GPU can now pass tasks back to the CPU to do

Accompanying this is a new low-level virtual architecture HSA
Intermediate Layer (HSAIL) that will be used to implement
higher-level abstractions like OpenCL

In a similar way, Apple’s M1 architecture has CPU and GPU
and memory on the same chip, further confusing the memory
vs. compute costs question



GPUs
Memory

The idea is more of a symmetry between the CPU and GPU:
the GPU is not just a coprocessor

The GPU can now pass tasks back to the CPU to do

Accompanying this is a new low-level virtual architecture HSA
Intermediate Layer (HSAIL) that will be used to implement
higher-level abstractions like OpenCL

In a similar way, Apple’s M1 architecture has CPU and GPU
and memory on the same chip, further confusing the memory
vs. compute costs question



GPUs
Memory

The idea is more of a symmetry between the CPU and GPU:
the GPU is not just a coprocessor

The GPU can now pass tasks back to the CPU to do

Accompanying this is a new low-level virtual architecture HSA
Intermediate Layer (HSAIL) that will be used to implement
higher-level abstractions like OpenCL

In a similar way, Apple’s M1 architecture has CPU and GPU
and memory on the same chip, further confusing the memory
vs. compute costs question



GPUs
CUDA

Back to CUDA

Here is an example of trivial CUDA code, prog.cu

(Checking return values and tidying up omitted for brevity)



GPUs
CUDA

Back to CUDA

Here is an example of trivial CUDA code, prog.cu

(Checking return values and tidying up omitted for brevity)



GPUs
CUDA

Back to CUDA

Here is an example of trivial CUDA code, prog.cu

(Checking return values and tidying up omitted for brevity)



CUDA
#include <stdio.h>

__global__ void setarray(int p[])

{

int k = blockIdx.x * blockDim.x + threadIdx.x;

p[k] = k*k;

}

int main(void)

{

int i, *dm, m[1024];

cudaMalloc(&dm, 1024*sizeof(int));

setarray<<<16,64>>>(dm);

cudaMemcpy(m, dm, 1024*sizeof(int),

cudaMemcpyDeviceToHost);

for (i = 0; i < 1024; i++)

printf("m[%d] = %d\n", i, m[i]);

return 0;

}



GPUs
CUDA

This starts 16 blocks, each containing 64 threads, each thread
runs the kernel setarray

Each invocation of setarray gets the same pointer to some
global memory allocated on the GPU

Each computes a different value for the index k, and each sets
a different element of the array

This assignment is a memory bottleneck that will take a
relatively long time to complete



GPUs
CUDA

This starts 16 blocks, each containing 64 threads, each thread
runs the kernel setarray

Each invocation of setarray gets the same pointer to some
global memory allocated on the GPU

Each computes a different value for the index k, and each sets
a different element of the array

This assignment is a memory bottleneck that will take a
relatively long time to complete



GPUs
CUDA

This starts 16 blocks, each containing 64 threads, each thread
runs the kernel setarray

Each invocation of setarray gets the same pointer to some
global memory allocated on the GPU

Each computes a different value for the index k, and each sets
a different element of the array

This assignment is a memory bottleneck that will take a
relatively long time to complete



GPUs
CUDA

This starts 16 blocks, each containing 64 threads, each thread
runs the kernel setarray

Each invocation of setarray gets the same pointer to some
global memory allocated on the GPU

Each computes a different value for the index k, and each sets
a different element of the array

This assignment is a memory bottleneck that will take a
relatively long time to complete



GPUs
CUDA

CUDA programmers try to mitigate the memory bottleneck by
ensuring there are lots of threads

Within a block, a warp of 32 threads is scheduled to run

These run (in SIMD) until they would have to wait for a lengthy
memory access to complete: the assignment to p in the
example

Rather than simply waiting for the memory, this warp is put
aside while the memory access is still progressing and another
warp (from this block or another block on the same
multiprocessor) is scheduled to run instead



GPUs
CUDA

CUDA programmers try to mitigate the memory bottleneck by
ensuring there are lots of threads

Within a block, a warp of 32 threads is scheduled to run

These run (in SIMD) until they would have to wait for a lengthy
memory access to complete: the assignment to p in the
example

Rather than simply waiting for the memory, this warp is put
aside while the memory access is still progressing and another
warp (from this block or another block on the same
multiprocessor) is scheduled to run instead



GPUs
CUDA

CUDA programmers try to mitigate the memory bottleneck by
ensuring there are lots of threads

Within a block, a warp of 32 threads is scheduled to run

These run (in SIMD) until they would have to wait for a lengthy
memory access to complete: the assignment to p in the
example

Rather than simply waiting for the memory, this warp is put
aside while the memory access is still progressing and another
warp (from this block or another block on the same
multiprocessor) is scheduled to run instead



GPUs
CUDA

CUDA programmers try to mitigate the memory bottleneck by
ensuring there are lots of threads

Within a block, a warp of 32 threads is scheduled to run

These run (in SIMD) until they would have to wait for a lengthy
memory access to complete: the assignment to p in the
example

Rather than simply waiting for the memory, this warp is put
aside while the memory access is still progressing and another
warp (from this block or another block on the same
multiprocessor) is scheduled to run instead



GPUs
CUDA

Thus keeping the multiprocessor busy computing

When the memory access has completed, the original warp
can be run again

All these scheduling decisions and actions are done by the
hardware!

Exercise Compare with hyperthreading as a way of keeping
CPUs busy



GPUs
CUDA

Thus keeping the multiprocessor busy computing

When the memory access has completed, the original warp
can be run again

All these scheduling decisions and actions are done by the
hardware!

Exercise Compare with hyperthreading as a way of keeping
CPUs busy



GPUs
CUDA

Thus keeping the multiprocessor busy computing

When the memory access has completed, the original warp
can be run again

All these scheduling decisions and actions are done by the
hardware!

Exercise Compare with hyperthreading as a way of keeping
CPUs busy



GPUs
CUDA

Thus keeping the multiprocessor busy computing

When the memory access has completed, the original warp
can be run again

All these scheduling decisions and actions are done by the
hardware!

Exercise Compare with hyperthreading as a way of keeping
CPUs busy



GPUs
CUDA

Thus we want a lot of threads to schedule between as they run
then wait for memory

If we don’t have enough threads the cores will be idle during
their wait for memory

Ideally each block should have a multiple of 32 threads,
whenever possible, to get the most from the multiprocessor

For example, running just 16 threads means half of the warp is
lying idle



GPUs
CUDA

Thus we want a lot of threads to schedule between as they run
then wait for memory

If we don’t have enough threads the cores will be idle during
their wait for memory

Ideally each block should have a multiple of 32 threads,
whenever possible, to get the most from the multiprocessor

For example, running just 16 threads means half of the warp is
lying idle



GPUs
CUDA

Thus we want a lot of threads to schedule between as they run
then wait for memory

If we don’t have enough threads the cores will be idle during
their wait for memory

Ideally each block should have a multiple of 32 threads,
whenever possible, to get the most from the multiprocessor

For example, running just 16 threads means half of the warp is
lying idle



GPUs
CUDA

Thus we want a lot of threads to schedule between as they run
then wait for memory

If we don’t have enough threads the cores will be idle during
their wait for memory

Ideally each block should have a multiple of 32 threads,
whenever possible, to get the most from the multiprocessor

For example, running just 16 threads means half of the warp is
lying idle



GPUs
CUDA

Additionally, multiprocessors are given whole blocks to execute

So we want at least as many blocks as multiprocessors, to keep
all the hardware busy

Thus it’s good to have lots of threads per block and lots of
blocks per multiprocessor to provide lots of choice of warps to
schedule



GPUs
CUDA

Additionally, multiprocessors are given whole blocks to execute

So we want at least as many blocks as multiprocessors, to keep
all the hardware busy

Thus it’s good to have lots of threads per block and lots of
blocks per multiprocessor to provide lots of choice of warps to
schedule



GPUs
CUDA

Additionally, multiprocessors are given whole blocks to execute

So we want at least as many blocks as multiprocessors, to keep
all the hardware busy

Thus it’s good to have lots of threads per block and lots of
blocks per multiprocessor to provide lots of choice of warps to
schedule



GPUs
CUDA

How many blocks and how many threads per block?

It depends on how the program accesses memory: e.g., the use
of shared resources like block shared memory might be a factor



GPUs
CUDA

How many blocks and how many threads per block?

It depends on how the program accesses memory: e.g., the use
of shared resources like block shared memory might be a factor



GPUs
CUDA

From the NVIDIA documentation:

• How many blocks?
• At least one block per SM to keep every SM occupied
• At least two blocks per SM so something can run if block is

waiting for a synchronization to complete
• Many blocks for scalability to larger and future GPUs

• How many threads?
• At least 192 threads per SM to hide read after write latency

of 11 cycles (not necessarily in same block)
• Use many threads to hide global memory latency
• Too many threads exhausts registers and shared memory
• Thread count a multiple of warp size
• Typically, between 64 and 256 threads per block



GPUs
CUDA

The programmer might want to experiment to find the best
combination of numbers of blocks and threads per block for the
particular GPU they are running on

There are profiling tools and spreadsheets available to help you
make this decision

And to add to the complexity: later versions of CUDA allow
multiple different kernels to run concurrently (i.e., it schedules
between kernels), so supplying more blocks and more threads
to keep the hardware busy

CUDA kernels run asynchronously from the CPU



GPUs
CUDA

The programmer might want to experiment to find the best
combination of numbers of blocks and threads per block for the
particular GPU they are running on

There are profiling tools and spreadsheets available to help you
make this decision

And to add to the complexity: later versions of CUDA allow
multiple different kernels to run concurrently (i.e., it schedules
between kernels), so supplying more blocks and more threads
to keep the hardware busy

CUDA kernels run asynchronously from the CPU



GPUs
CUDA

The programmer might want to experiment to find the best
combination of numbers of blocks and threads per block for the
particular GPU they are running on

There are profiling tools and spreadsheets available to help you
make this decision

And to add to the complexity: later versions of CUDA allow
multiple different kernels to run concurrently (i.e., it schedules
between kernels), so supplying more blocks and more threads
to keep the hardware busy

CUDA kernels run asynchronously from the CPU



GPUs
CUDA

The programmer might want to experiment to find the best
combination of numbers of blocks and threads per block for the
particular GPU they are running on

There are profiling tools and spreadsheets available to help you
make this decision

And to add to the complexity: later versions of CUDA allow
multiple different kernels to run concurrently (i.e., it schedules
between kernels), so supplying more blocks and more threads
to keep the hardware busy

CUDA kernels run asynchronously from the CPU



GPUs
Memory Coalescence

And the pattern of global memory access is vital, too

The memory bus has a high latency, but a large bandwidth

We have to wait a long time for bytes to arrive; but then they
arrive in large chunks

Memory is set up to deliver, say, 64 bytes at a time (512 bit bus)

And programs often ask for large chunks of data in parallel,
e.g., working in parallel on an array

64 bytes is 16 (half-warp) four-byte integers or 16 single
precision floats

So a warp could be satisfied by just two reads



GPUs
Memory Coalescence

And the pattern of global memory access is vital, too

The memory bus has a high latency, but a large bandwidth

We have to wait a long time for bytes to arrive; but then they
arrive in large chunks

Memory is set up to deliver, say, 64 bytes at a time (512 bit bus)

And programs often ask for large chunks of data in parallel,
e.g., working in parallel on an array

64 bytes is 16 (half-warp) four-byte integers or 16 single
precision floats

So a warp could be satisfied by just two reads



GPUs
Memory Coalescence

And the pattern of global memory access is vital, too

The memory bus has a high latency, but a large bandwidth

We have to wait a long time for bytes to arrive; but then they
arrive in large chunks

Memory is set up to deliver, say, 64 bytes at a time (512 bit bus)

And programs often ask for large chunks of data in parallel,
e.g., working in parallel on an array

64 bytes is 16 (half-warp) four-byte integers or 16 single
precision floats

So a warp could be satisfied by just two reads



GPUs
Memory Coalescence

And the pattern of global memory access is vital, too

The memory bus has a high latency, but a large bandwidth

We have to wait a long time for bytes to arrive; but then they
arrive in large chunks

Memory is set up to deliver, say, 64 bytes at a time (512 bit bus)

And programs often ask for large chunks of data in parallel,
e.g., working in parallel on an array

64 bytes is 16 (half-warp) four-byte integers or 16 single
precision floats

So a warp could be satisfied by just two reads



GPUs
Memory Coalescence

And the pattern of global memory access is vital, too

The memory bus has a high latency, but a large bandwidth

We have to wait a long time for bytes to arrive; but then they
arrive in large chunks

Memory is set up to deliver, say, 64 bytes at a time (512 bit bus)

And programs often ask for large chunks of data in parallel,
e.g., working in parallel on an array

64 bytes is 16 (half-warp) four-byte integers or 16 single
precision floats

So a warp could be satisfied by just two reads



GPUs
Memory Coalescence

And the pattern of global memory access is vital, too

The memory bus has a high latency, but a large bandwidth

We have to wait a long time for bytes to arrive; but then they
arrive in large chunks

Memory is set up to deliver, say, 64 bytes at a time (512 bit bus)

And programs often ask for large chunks of data in parallel,
e.g., working in parallel on an array

64 bytes is 16 (half-warp) four-byte integers or 16 single
precision floats

So a warp could be satisfied by just two reads



GPUs
Memory Coalescence

And the pattern of global memory access is vital, too

The memory bus has a high latency, but a large bandwidth

We have to wait a long time for bytes to arrive; but then they
arrive in large chunks

Memory is set up to deliver, say, 64 bytes at a time (512 bit bus)

And programs often ask for large chunks of data in parallel,
e.g., working in parallel on an array

64 bytes is 16 (half-warp) four-byte integers or 16 single
precision floats

So a warp could be satisfied by just two reads



GPUs
Memory Coalescence

core core core corecore

p

x=p[0] x=p[1] x=p[2] x=p[3] x=p[4]

x = p[me]

If the reads are nicely arranged, a single read supplies many
cores simultaneously: this is memory access coalescence (as
discussed earlier in vector architectures)



GPUs
Memory Coalescence

As long as your code can do this

There are many rules imposed by the hardware to make this
kind of memory access coalescence work

Such as alignments of areas of memory; the order in which
neighbouring cores access memory; and so on

If you get it right, reading 16 integers in parallel is as fast as
reading a single integer

If you get it wrong, it can be 16 times as slow



GPUs
Memory Coalescence

As long as your code can do this

There are many rules imposed by the hardware to make this
kind of memory access coalescence work

Such as alignments of areas of memory; the order in which
neighbouring cores access memory; and so on

If you get it right, reading 16 integers in parallel is as fast as
reading a single integer

If you get it wrong, it can be 16 times as slow



GPUs
Memory Coalescence

As long as your code can do this

There are many rules imposed by the hardware to make this
kind of memory access coalescence work

Such as alignments of areas of memory; the order in which
neighbouring cores access memory; and so on

If you get it right, reading 16 integers in parallel is as fast as
reading a single integer

If you get it wrong, it can be 16 times as slow



GPUs
Memory Coalescence

As long as your code can do this

There are many rules imposed by the hardware to make this
kind of memory access coalescence work

Such as alignments of areas of memory; the order in which
neighbouring cores access memory; and so on

If you get it right, reading 16 integers in parallel is as fast as
reading a single integer

If you get it wrong, it can be 16 times as slow



GPUs
Memory Coalescence

As long as your code can do this

There are many rules imposed by the hardware to make this
kind of memory access coalescence work

Such as alignments of areas of memory; the order in which
neighbouring cores access memory; and so on

If you get it right, reading 16 integers in parallel is as fast as
reading a single integer

If you get it wrong, it can be 16 times as slow



GPUs
Memory Coalescence

core core core corecore

x=p[0]

p

x = p[16*me]



GPUs
Memory Coalescence

core core core corecore

p

x=p[16]

x = p[16*me]



GPUs
Memory Coalescence

core core core corecore

p

x=p[32]

x = p[16*me]



GPUs
Memory Coalescence

In this case, it might be faster to read coalesced chunks of
memory into the block shared memory, and then have cores
read their values from there

Awkward coding, but this is how you can get good performance



GPUs
Memory Coalescence

In this case, it might be faster to read coalesced chunks of
memory into the block shared memory, and then have cores
read their values from there

Awkward coding, but this is how you can get good performance



CUDA
#include <stdio.h>

__global__ void setarray(int p[])

{

int k = blockIdx.x * blockDim.x + threadIdx.x;

p[k] = k*k;

}

int main(void)

{

int i, *dm, m[1024];

cudaMalloc(&dm, 1024*sizeof(int));

setarray<<<16,64>>>(dm);

cudaMemcpy(m, dm, 1024*sizeof(int),

cudaMemcpyDeviceToHost);

for (i = 0; i < 1024; i++)

printf("m[%d] = %d\n", i, m[i]);

return 0;

}



GPUs
CUDA

Back to the example: dm is the address of a chunk of memory
on the device

The device memory is separate from the CPU memory, so we
need special functions to allocate memory on the device

And we need explicit copies to get the data in and out of the
coprocessor



GPUs
CUDA

Back to the example: dm is the address of a chunk of memory
on the device

The device memory is separate from the CPU memory, so we
need special functions to allocate memory on the device

And we need explicit copies to get the data in and out of the
coprocessor



GPUs
CUDA

Back to the example: dm is the address of a chunk of memory
on the device

The device memory is separate from the CPU memory, so we
need special functions to allocate memory on the device

And we need explicit copies to get the data in and out of the
coprocessor



GPUs
Memory

As always, data copies are time consuming, so we want to
minimise them relative to computation time

We are used to the idea that the overhead can be so large that
it is faster to do a computation sequentially on the CPU rather
than send it to the GPU

The reverse is also true: if the data are on the GPU, it can be
faster overall to use one of the wimpy GPU cores for a
computation rather than copy back and forth to the CPU

This kind of computation vs. data movement judgement
happens a lot when programming GPUs



GPUs
Memory

As always, data copies are time consuming, so we want to
minimise them relative to computation time

We are used to the idea that the overhead can be so large that
it is faster to do a computation sequentially on the CPU rather
than send it to the GPU

The reverse is also true: if the data are on the GPU, it can be
faster overall to use one of the wimpy GPU cores for a
computation rather than copy back and forth to the CPU

This kind of computation vs. data movement judgement
happens a lot when programming GPUs



GPUs
Memory

As always, data copies are time consuming, so we want to
minimise them relative to computation time

We are used to the idea that the overhead can be so large that
it is faster to do a computation sequentially on the CPU rather
than send it to the GPU

The reverse is also true: if the data are on the GPU, it can be
faster overall to use one of the wimpy GPU cores for a
computation rather than copy back and forth to the CPU

This kind of computation vs. data movement judgement
happens a lot when programming GPUs



GPUs
Memory

As always, data copies are time consuming, so we want to
minimise them relative to computation time

We are used to the idea that the overhead can be so large that
it is faster to do a computation sequentially on the CPU rather
than send it to the GPU

The reverse is also true: if the data are on the GPU, it can be
faster overall to use one of the wimpy GPU cores for a
computation rather than copy back and forth to the CPU

This kind of computation vs. data movement judgement
happens a lot when programming GPUs



GPUs
CUDA

In this example, we have only 16 blocks, so this would not be so
good for a coprocessor with, say, 20 streaming multiprocessors

Real code would either simply have more blocks, or would
interrogate the device to see how many multiprocessors it has
and adjust accordingly

Exercise but you wouldn’t want more than 32 blocks in our
small example. Why?



GPUs
CUDA

In this example, we have only 16 blocks, so this would not be so
good for a coprocessor with, say, 20 streaming multiprocessors

Real code would either simply have more blocks, or would
interrogate the device to see how many multiprocessors it has
and adjust accordingly

Exercise but you wouldn’t want more than 32 blocks in our
small example. Why?



GPUs
CUDA

In this example, we have only 16 blocks, so this would not be so
good for a coprocessor with, say, 20 streaming multiprocessors

Real code would either simply have more blocks, or would
interrogate the device to see how many multiprocessors it has
and adjust accordingly

Exercise but you wouldn’t want more than 32 blocks in our
small example. Why?



GPUs

GPUs are becoming an ever more important method of
computation

Even in phones: ARM’s Mali GPU now has OpenCL support

GPUs are good for phones as they give a good amount of
processing power for only a small amount of energy used



GPUs

GPUs are becoming an ever more important method of
computation

Even in phones: ARM’s Mali GPU now has OpenCL support

GPUs are good for phones as they give a good amount of
processing power for only a small amount of energy used



GPUs

GPUs are becoming an ever more important method of
computation

Even in phones: ARM’s Mali GPU now has OpenCL support

GPUs are good for phones as they give a good amount of
processing power for only a small amount of energy used



GPUs
OpenCL

OpenCL takes a wider view of computation than CUDA

While CUDA is explicitly about GPU computation, OpenCL tries
to abstract away from the hardware and provide the
programmer with a generic programming interface,
independent of the underlying hardware

It tries hard not to assume there is a GPU coprocessor
specifically, but just some “compute resource” coprocessor

OpenCL is provided as a library that is callable from standard C
(and other languages), thus not needing a special compiler



GPUs
OpenCL

OpenCL takes a wider view of computation than CUDA

While CUDA is explicitly about GPU computation, OpenCL tries
to abstract away from the hardware and provide the
programmer with a generic programming interface,
independent of the underlying hardware

It tries hard not to assume there is a GPU coprocessor
specifically, but just some “compute resource” coprocessor

OpenCL is provided as a library that is callable from standard C
(and other languages), thus not needing a special compiler



GPUs
OpenCL

OpenCL takes a wider view of computation than CUDA

While CUDA is explicitly about GPU computation, OpenCL tries
to abstract away from the hardware and provide the
programmer with a generic programming interface,
independent of the underlying hardware

It tries hard not to assume there is a GPU coprocessor
specifically, but just some “compute resource” coprocessor

OpenCL is provided as a library that is callable from standard C
(and other languages), thus not needing a special compiler



GPUs
OpenCL

OpenCL takes a wider view of computation than CUDA

While CUDA is explicitly about GPU computation, OpenCL tries
to abstract away from the hardware and provide the
programmer with a generic programming interface,
independent of the underlying hardware

It tries hard not to assume there is a GPU coprocessor
specifically, but just some “compute resource” coprocessor

OpenCL is provided as a library that is callable from standard C
(and other languages), thus not needing a special compiler



GPUs
OpenCL

Things that CUDA has special syntax for (in particular kernel
setup and launch) are done via normal function calls in OpenCL

OpenCL kernel code is kept in separate files from the C/C++
CPU code

Kernel code is read, compiled and executed by calling functions
in the CPU code

Much like the shader code in OpenGL and the like



GPUs
OpenCL

Things that CUDA has special syntax for (in particular kernel
setup and launch) are done via normal function calls in OpenCL

OpenCL kernel code is kept in separate files from the C/C++
CPU code

Kernel code is read, compiled and executed by calling functions
in the CPU code

Much like the shader code in OpenGL and the like



GPUs
OpenCL

Things that CUDA has special syntax for (in particular kernel
setup and launch) are done via normal function calls in OpenCL

OpenCL kernel code is kept in separate files from the C/C++
CPU code

Kernel code is read, compiled and executed by calling functions
in the CPU code

Much like the shader code in OpenGL and the like



GPUs
OpenCL

Things that CUDA has special syntax for (in particular kernel
setup and launch) are done via normal function calls in OpenCL

OpenCL kernel code is kept in separate files from the C/C++
CPU code

Kernel code is read, compiled and executed by calling functions
in the CPU code

Much like the shader code in OpenGL and the like



GPUs
OpenCL

In being generic, it is harder to use than CUDA, which does one
thing well

CUDA can produce fast code, particularly if tuned to the
specific hardware

But the hardware must be an NVIDIA card

Current OpenCL compilers produce code that runs universally
but at sometimes uninspiring speeds (so code still needs the
machine-specific tuning that OpenCL was supposed to avoid)

And there are features in the OpenCL programming model that
reveal that the designers were still thinking of GPUs
underneath the supposed genericity



GPUs
OpenCL

In being generic, it is harder to use than CUDA, which does one
thing well

CUDA can produce fast code, particularly if tuned to the
specific hardware

But the hardware must be an NVIDIA card

Current OpenCL compilers produce code that runs universally
but at sometimes uninspiring speeds (so code still needs the
machine-specific tuning that OpenCL was supposed to avoid)

And there are features in the OpenCL programming model that
reveal that the designers were still thinking of GPUs
underneath the supposed genericity



GPUs
OpenCL

In being generic, it is harder to use than CUDA, which does one
thing well

CUDA can produce fast code, particularly if tuned to the
specific hardware

But the hardware must be an NVIDIA card

Current OpenCL compilers produce code that runs universally
but at sometimes uninspiring speeds (so code still needs the
machine-specific tuning that OpenCL was supposed to avoid)

And there are features in the OpenCL programming model that
reveal that the designers were still thinking of GPUs
underneath the supposed genericity



GPUs
OpenCL

In being generic, it is harder to use than CUDA, which does one
thing well

CUDA can produce fast code, particularly if tuned to the
specific hardware

But the hardware must be an NVIDIA card

Current OpenCL compilers produce code that runs universally
but at sometimes uninspiring speeds (so code still needs the
machine-specific tuning that OpenCL was supposed to avoid)

And there are features in the OpenCL programming model that
reveal that the designers were still thinking of GPUs
underneath the supposed genericity



GPUs
OpenCL

In being generic, it is harder to use than CUDA, which does one
thing well

CUDA can produce fast code, particularly if tuned to the
specific hardware

But the hardware must be an NVIDIA card

Current OpenCL compilers produce code that runs universally
but at sometimes uninspiring speeds (so code still needs the
machine-specific tuning that OpenCL was supposed to avoid)

And there are features in the OpenCL programming model that
reveal that the designers were still thinking of GPUs
underneath the supposed genericity


