
Types
Arrays

Given a type in C, we can have arrays of things of that type

int a[5];

double b[1024];

The elements are referenced as you might expect
int i;

for (i = 0; i < 1024; i++) {

b[i] += 1.0;

}

Indexed from 0 to length − 1

1 / 102

Types
Arrays

Given a type in C, we can have arrays of things of that type

int a[5];

double b[1024];

The elements are referenced as you might expect
int i;

for (i = 0; i < 1024; i++) {

b[i] += 1.0;

}

Indexed from 0 to length − 1

2 / 102

Types
Arrays

Given a type in C, we can have arrays of things of that type

int a[5];

double b[1024];

The elements are referenced as you might expect
int i;

for (i = 0; i < 1024; i++) {

b[i] += 1.0;

}

Indexed from 0 to length − 1

3 / 102

Types
Arrays

Arrays of things are a type, so we can have arrays of them

So char d[6][7]; is an array of 6 items; each item is an array
of 7 chars

This is how C provides two (and higher) dimensional arrays: as
arrays of arrays

But, also, d[3] is a valid thing to write: it refers to the 4th array
of characters

So d[3][0], d[3][1], . . . , d[3][6], are the 7 characters in that
array

Maybe writing (d[3])[0] is clearer?

4 / 102

Types
Arrays

Arrays of things are a type, so we can have arrays of them

So char d[6][7]; is an array of 6 items; each item is an array
of 7 chars

This is how C provides two (and higher) dimensional arrays: as
arrays of arrays

But, also, d[3] is a valid thing to write: it refers to the 4th array
of characters

So d[3][0], d[3][1], . . . , d[3][6], are the 7 characters in that
array

Maybe writing (d[3])[0] is clearer?

5 / 102

Types
Arrays

Arrays of things are a type, so we can have arrays of them

So char d[6][7]; is an array of 6 items; each item is an array
of 7 chars

This is how C provides two (and higher) dimensional arrays: as
arrays of arrays

But, also, d[3] is a valid thing to write: it refers to the 4th array
of characters

So d[3][0], d[3][1], . . . , d[3][6], are the 7 characters in that
array

Maybe writing (d[3])[0] is clearer?

6 / 102

Types
Arrays

Arrays of things are a type, so we can have arrays of them

So char d[6][7]; is an array of 6 items; each item is an array
of 7 chars

This is how C provides two (and higher) dimensional arrays: as
arrays of arrays

But, also, d[3] is a valid thing to write: it refers to the 4th array
of characters

So d[3][0], d[3][1], . . . , d[3][6], are the 7 characters in that
array

Maybe writing (d[3])[0] is clearer?

7 / 102

Types
Arrays

Arrays of things are a type, so we can have arrays of them

So char d[6][7]; is an array of 6 items; each item is an array
of 7 chars

This is how C provides two (and higher) dimensional arrays: as
arrays of arrays

But, also, d[3] is a valid thing to write: it refers to the 4th array
of characters

So d[3][0], d[3][1], . . . , d[3][6], are the 7 characters in that
array

Maybe writing (d[3])[0] is clearer?

8 / 102

Types
Arrays

Arrays of things are a type, so we can have arrays of them

So char d[6][7]; is an array of 6 items; each item is an array
of 7 chars

This is how C provides two (and higher) dimensional arrays: as
arrays of arrays

But, also, d[3] is a valid thing to write: it refers to the 4th array
of characters

So d[3][0], d[3][1], . . . , d[3][6], are the 7 characters in that
array

Maybe writing (d[3])[0] is clearer?

9 / 102

Types
Arrays

void fill(int arr[], int n)

{

int i;

for (i = 0; i < n; i++) {

arr[i] = 99;

}

}

...

int a[5], d[6][7];

fill(a, 5);

fill(d[3], 7);

10 / 102

Types
Arrays

Exercise. What about

fill(d, 6);

11 / 102

Types
Arrays

So:

• Arrays can be passed as arguments to functions
• The size of the array need not be specified in the function

definition (for simple, 1D arrays)
• An array does not “know its own size”. That information

has to be given separately, if needed. This is a common
source of bugs

12 / 102

Types
Arrays

So:

• Arrays can be passed as arguments to functions

• The size of the array need not be specified in the function
definition (for simple, 1D arrays)

• An array does not “know its own size”. That information
has to be given separately, if needed. This is a common
source of bugs

13 / 102

Types
Arrays

So:

• Arrays can be passed as arguments to functions
• The size of the array need not be specified in the function

definition (for simple, 1D arrays)

• An array does not “know its own size”. That information
has to be given separately, if needed. This is a common
source of bugs

14 / 102

Types
Arrays

So:

• Arrays can be passed as arguments to functions
• The size of the array need not be specified in the function

definition (for simple, 1D arrays)
• An array does not “know its own size”. That information

has to be given separately, if needed. This is a common
source of bugs

15 / 102

Types
Arrays

Normally, C does not check for correct access to arrays

int a[5];

...

a[10] = 42;

may well compile without error, or even warning

The program might even run, not report an error and return the
correct answer

It might run, not report an error and return the wrong answer

It might run and crash

16 / 102

Types
Arrays

Normally, C does not check for correct access to arrays

int a[5];

...

a[10] = 42;

may well compile without error, or even warning

The program might even run, not report an error and return the
correct answer

It might run, not report an error and return the wrong answer

It might run and crash

17 / 102

Types
Arrays

Normally, C does not check for correct access to arrays

int a[5];

...

a[10] = 42;

may well compile without error, or even warning

The program might even run, not report an error and return the
correct answer

It might run, not report an error and return the wrong answer

It might run and crash

18 / 102

Types
Arrays

Normally, C does not check for correct access to arrays

int a[5];

...

a[10] = 42;

may well compile without error, or even warning

The program might even run, not report an error and return the
correct answer

It might run, not report an error and return the wrong answer

It might run and crash

19 / 102

Types
Arrays

Normally, C does not check for correct access to arrays

int a[5];

...

a[10] = 42;

may well compile without error, or even warning

The program might even run, not report an error and return the
correct answer

It might run, not report an error and return the wrong answer

It might run and crash

20 / 102

Types
Arrays

This is one of C’s chosen trade-offs

More speed for less checking and safety

C allows the programmer to do all kinds of weird stuff, often
without warning

This is good for good programmers; bad for bad programmers

21 / 102

Types
Arrays

This is one of C’s chosen trade-offs

More speed for less checking and safety

C allows the programmer to do all kinds of weird stuff, often
without warning

This is good for good programmers; bad for bad programmers

22 / 102

Types
Arrays

This is one of C’s chosen trade-offs

More speed for less checking and safety

C allows the programmer to do all kinds of weird stuff, often
without warning

This is good for good programmers; bad for bad programmers

23 / 102

Types
Arrays

This is one of C’s chosen trade-offs

More speed for less checking and safety

C allows the programmer to do all kinds of weird stuff, often
without warning

This is good for good programmers; bad for bad programmers

24 / 102

Types
Arrays

Exercise. Implement a function which, given an array of
integers fills that array with the squares of 0, 1, 2, and so on

Exercise. Implement a function which, given an array of
integers, returns the sum of the values in the array

Exercise. Implement the Sieve of Eratosthenes to find primes

25 / 102

Types
Strings

There is no string type in C

There are arrays of char

char str[] = "hello world";

C is clever enough to work out the size of the array needed
here, to save you a bit of counting

Then str[4] is the character ’o’

26 / 102

Types
Strings

There is no string type in C

There are arrays of char

char str[] = "hello world";

C is clever enough to work out the size of the array needed
here, to save you a bit of counting

Then str[4] is the character ’o’

27 / 102

Types
Strings

There is no string type in C

There are arrays of char

char str[] = "hello world";

C is clever enough to work out the size of the array needed
here, to save you a bit of counting

Then str[4] is the character ’o’

28 / 102

Types
Strings

There is no string type in C

There are arrays of char

char str[] = "hello world";

C is clever enough to work out the size of the array needed
here, to save you a bit of counting

Then str[4] is the character ’o’

29 / 102

Types
Strings

In printf use %s for strings

printf("str is ’%s’\n", str);

And %c for chars

printf("char is ’%c’\n", str[4]);

30 / 102

Types
Strings

There is nothing special about strings that distinguishes them
from other arrays, apart from having a special syntax using
quotes

char str[] = { ’h’, ’e’, ’l’, ’l’, ’o’, ’ ’, ’w’,

’o’, ’r’, ’l’, ’d’ };

There are two reasons why you wouldn’t normally write code
like this:

• it’s easier to use normal quoted string syntax
• this code is semantically incorrect

31 / 102

Types
Strings

There is nothing special about strings that distinguishes them
from other arrays, apart from having a special syntax using
quotes

char str[] = { ’h’, ’e’, ’l’, ’l’, ’o’, ’ ’, ’w’,

’o’, ’r’, ’l’, ’d’ };

There are two reasons why you wouldn’t normally write code
like this:

• it’s easier to use normal quoted string syntax
• this code is semantically incorrect

32 / 102

Types
Strings

There is nothing special about strings that distinguishes them
from other arrays, apart from having a special syntax using
quotes

char str[] = { ’h’, ’e’, ’l’, ’l’, ’o’, ’ ’, ’w’,

’o’, ’r’, ’l’, ’d’ };

There are two reasons why you wouldn’t normally write code
like this:

• it’s easier to use normal quoted string syntax
• this code is semantically incorrect

33 / 102

Types
Strings

Just like other arrays, C does not store the length of a string in
the string, only the characters

So how can it tell how long is the string in
printf("str is ’%s’\n", str);?

All it has is an array of characters of some undetermined size

Stored as a sequence of bytes in memory: we need some way
to mark the end of the string

Thus, in C, all strings are conventionally terminated by a
(character value/byte) 0

34 / 102

Types
Strings

Just like other arrays, C does not store the length of a string in
the string, only the characters

So how can it tell how long is the string in
printf("str is ’%s’\n", str);?

All it has is an array of characters of some undetermined size

Stored as a sequence of bytes in memory: we need some way
to mark the end of the string

Thus, in C, all strings are conventionally terminated by a
(character value/byte) 0

35 / 102

Types
Strings

Just like other arrays, C does not store the length of a string in
the string, only the characters

So how can it tell how long is the string in
printf("str is ’%s’\n", str);?

All it has is an array of characters of some undetermined size

Stored as a sequence of bytes in memory: we need some way
to mark the end of the string

Thus, in C, all strings are conventionally terminated by a
(character value/byte) 0

36 / 102

Types
Strings

Just like other arrays, C does not store the length of a string in
the string, only the characters

So how can it tell how long is the string in
printf("str is ’%s’\n", str);?

All it has is an array of characters of some undetermined size

Stored as a sequence of bytes in memory: we need some way
to mark the end of the string

Thus, in C, all strings are conventionally terminated by a
(character value/byte) 0

37 / 102

Types
Strings

Just like other arrays, C does not store the length of a string in
the string, only the characters

So how can it tell how long is the string in
printf("str is ’%s’\n", str);?

All it has is an array of characters of some undetermined size

Stored as a sequence of bytes in memory: we need some way
to mark the end of the string

Thus, in C, all strings are conventionally terminated by a
(character value/byte) 0

38 / 102

Types
Strings

char str[] = { ’h’, ’e’, ’l’, ’l’, ’o’, ’ ’, ’w’,

’o’, ’r’, ’l’, ’d’, 0 };

is the correct version of the simpler
char str[] = "hello world"

So sizeof("hello world") is 12 bytes, including the
terminating 0

This is another favourite source of bugs!

If you stick to simple uses of strings, this all just works without
you having to think

39 / 102

Types
Strings

char str[] = { ’h’, ’e’, ’l’, ’l’, ’o’, ’ ’, ’w’,

’o’, ’r’, ’l’, ’d’, 0 };

is the correct version of the simpler
char str[] = "hello world"

So sizeof("hello world") is 12 bytes, including the
terminating 0

This is another favourite source of bugs!

If you stick to simple uses of strings, this all just works without
you having to think

40 / 102

Types
Strings

char str[] = { ’h’, ’e’, ’l’, ’l’, ’o’, ’ ’, ’w’,

’o’, ’r’, ’l’, ’d’, 0 };

is the correct version of the simpler
char str[] = "hello world"

So sizeof("hello world") is 12 bytes, including the
terminating 0

This is another favourite source of bugs!

If you stick to simple uses of strings, this all just works without
you having to think

41 / 102

Types
Strings

char str[] = { ’h’, ’e’, ’l’, ’l’, ’o’, ’ ’, ’w’,

’o’, ’r’, ’l’, ’d’, 0 };

is the correct version of the simpler
char str[] = "hello world"

So sizeof("hello world") is 12 bytes, including the
terminating 0

This is another favourite source of bugs!

If you stick to simple uses of strings, this all just works without
you having to think

42 / 102

Types
Strings

Exercise. Look up the ASCII encoding for characters

Exercise. Characters really are integers. What about the
following?

char message[] = { 104, 101, 108, 108, 111, 32, 119,

111, 114, 108, 100, 0 };

Exercise. And what about

printf("A has value %d\n", ’A’);

printf("A has value %c\n", ’A’);

43 / 102

Types
Strings

Since strings are not a proper type in C it does not have built-in
operations on strings, e.g., concatenate

This is provided by library functions, if you need them. They all
assume strings are zero-terminated

Exercise. Look up the various functions that operate on strings,
e.g., strlen, strcpy, strcat, strcmp and lots more

44 / 102

Types
Strings

Since strings are not a proper type in C it does not have built-in
operations on strings, e.g., concatenate

This is provided by library functions, if you need them. They all
assume strings are zero-terminated

Exercise. Look up the various functions that operate on strings,
e.g., strlen, strcpy, strcat, strcmp and lots more

45 / 102

Types
Strings

Since strings are not a proper type in C it does not have built-in
operations on strings, e.g., concatenate

This is provided by library functions, if you need them. They all
assume strings are zero-terminated

Exercise. Look up the various functions that operate on strings,
e.g., strlen, strcpy, strcat, strcmp and lots more

46 / 102

Types
Structures

C has a simple structure type constructor, used when we need
to manage more complicated combinations of values

struct rational {

int num, den;

};

...

struct rational r;

r.num = 1;

r.den = 2;

47 / 102

Types
Structures

C has a simple structure type constructor, used when we need
to manage more complicated combinations of values

struct rational {

int num, den;

};

...

struct rational r;

r.num = 1;

r.den = 2;

48 / 102

Types
Structures

• Don’t forget the ; at the end of the declaration

• They may look like Java classes, but they are not
• The type name is “struct rational”, always including the

word “struct”
• The elements of the struct are accessed using the dot

notation
• r is not an object in the OO sense
• There are no classes, no objects, no methods
• The declaration can only contain names of values, as

there are no methods in C

49 / 102

Types
Structures

• Don’t forget the ; at the end of the declaration
• They may look like Java classes, but they are not

• The type name is “struct rational”, always including the
word “struct”

• The elements of the struct are accessed using the dot
notation

• r is not an object in the OO sense
• There are no classes, no objects, no methods
• The declaration can only contain names of values, as

there are no methods in C

50 / 102

Types
Structures

• Don’t forget the ; at the end of the declaration
• They may look like Java classes, but they are not
• The type name is “struct rational”, always including the

word “struct”

• The elements of the struct are accessed using the dot
notation

• r is not an object in the OO sense
• There are no classes, no objects, no methods
• The declaration can only contain names of values, as

there are no methods in C

51 / 102

Types
Structures

• Don’t forget the ; at the end of the declaration
• They may look like Java classes, but they are not
• The type name is “struct rational”, always including the

word “struct”
• The elements of the struct are accessed using the dot

notation

• r is not an object in the OO sense
• There are no classes, no objects, no methods
• The declaration can only contain names of values, as

there are no methods in C

52 / 102

Types
Structures

• Don’t forget the ; at the end of the declaration
• They may look like Java classes, but they are not
• The type name is “struct rational”, always including the

word “struct”
• The elements of the struct are accessed using the dot

notation
• r is not an object in the OO sense

• There are no classes, no objects, no methods
• The declaration can only contain names of values, as

there are no methods in C

53 / 102

Types
Structures

• Don’t forget the ; at the end of the declaration
• They may look like Java classes, but they are not
• The type name is “struct rational”, always including the

word “struct”
• The elements of the struct are accessed using the dot

notation
• r is not an object in the OO sense
• There are no classes, no objects, no methods

• The declaration can only contain names of values, as
there are no methods in C

54 / 102

Types
Structures

• Don’t forget the ; at the end of the declaration
• They may look like Java classes, but they are not
• The type name is “struct rational”, always including the

word “struct”
• The elements of the struct are accessed using the dot

notation
• r is not an object in the OO sense
• There are no classes, no objects, no methods
• The declaration can only contain names of values, as

there are no methods in C

55 / 102

Types
Structures

Structure types are just like the in-built types

So we can have arrays of structs:
struct rational numbers[10];

So numbers[7].num

We can declare structs containing arrays
struct numb { int nums[10]; int dens[10]; }

Then
struct numb n;

n.nums[7] = 42;

56 / 102

Types
Structures

Structure types are just like the in-built types

So we can have arrays of structs:
struct rational numbers[10];

So numbers[7].num

We can declare structs containing arrays
struct numb { int nums[10]; int dens[10]; }

Then
struct numb n;

n.nums[7] = 42;

57 / 102

Types
Structures

Structure types are just like the in-built types

So we can have arrays of structs:
struct rational numbers[10];

So numbers[7].num

We can declare structs containing arrays
struct numb { int nums[10]; int dens[10]; }

Then
struct numb n;

n.nums[7] = 42;

58 / 102

Types
Structures

Structure types are just like the in-built types

So we can have arrays of structs:
struct rational numbers[10];

So numbers[7].num

We can declare structs containing arrays
struct numb { int nums[10]; int dens[10]; }

Then
struct numb n;

n.nums[7] = 42;

59 / 102

Types
Structures

Structure types are just like the in-built types

So we can have arrays of structs:
struct rational numbers[10];

So numbers[7].num

We can declare structs containing arrays
struct numb { int nums[10]; int dens[10]; }

Then
struct numb n;

n.nums[7] = 42;

60 / 102

Types
Structures

Structs of structs, and so on
struct inner {

double first[10];

char rest;

};

struct complicated {

int sign;

struct rational r;

struct inner blob;

};

...

struct complicated c;

c.sign = -1;

c.r.num = 5;

c.blob.first[3] = 7.0;

61 / 102

Types
Structures

We can also declare structs “on the fly” as we are using them

struct complicated {

int sign;

struct rational r;

struct inner {

double first[10];

char rest;

} blob;

};

...

struct complicated c;

c.sign = -1;

c.r.num = 5;

c.blob.first[3] = 7.0;

62 / 102

Types

Exercise. Read up on union types

Exercise. Read up on typedef, a convenient way of
abbreviating type names

63 / 102

Pointers

We now turn to one of the features of C that (a) some people
find difficult, and (b) makes C so useful: pointers

We start by reviewing the way memory is laid out in hardware

Recall that (thanks to the universal adoption of von Neumann’s
model) memory can be regarded as a big array of bytes;
conventionally numbered from 0 upwards

0 1 2 3 4 5 6 7 8 9 10

...

64 / 102

Pointers

We now turn to one of the features of C that (a) some people
find difficult, and (b) makes C so useful: pointers

We start by reviewing the way memory is laid out in hardware

Recall that (thanks to the universal adoption of von Neumann’s
model) memory can be regarded as a big array of bytes;
conventionally numbered from 0 upwards

0 1 2 3 4 5 6 7 8 9 10

...

65 / 102

Pointers

We now turn to one of the features of C that (a) some people
find difficult, and (b) makes C so useful: pointers

We start by reviewing the way memory is laid out in hardware

Recall that (thanks to the universal adoption of von Neumann’s
model) memory can be regarded as a big array of bytes;
conventionally numbered from 0 upwards

0 1 2 3 4 5 6 7 8 9 10

...

66 / 102

Pointers

We now turn to one of the features of C that (a) some people
find difficult, and (b) makes C so useful: pointers

We start by reviewing the way memory is laid out in hardware

Recall that (thanks to the universal adoption of von Neumann’s
model) memory can be regarded as a big array of bytes;
conventionally numbered from 0 upwards

0 1 2 3 4 5 6 7 8 9 10

...

67 / 102

Pointers

When a program is compiled, variables are mapped in some
useful way to memory location by the compiler

So if we have a (4 byte) integer n in our code, the compiler
might choose to place it at memory address 4 (a very unlikely
place in real systems)

0 1 2 3 4 5 6 7 8 9 10

...

n

68 / 102

Pointers

When a program is compiled, variables are mapped in some
useful way to memory location by the compiler

So if we have a (4 byte) integer n in our code, the compiler
might choose to place it at memory address 4 (a very unlikely
place in real systems)

0 1 2 3 4 5 6 7 8 9 10

...

n

69 / 102

Pointers

Then every access of n in our code becomes a read or write of
bytes 4–7 of memory

We say byte 4 is the address of the variable n

It’s where the variable lives in memory

70 / 102

Pointers

Then every access of n in our code becomes a read or write of
bytes 4–7 of memory

We say byte 4 is the address of the variable n

It’s where the variable lives in memory

71 / 102

Pointers

Then every access of n in our code becomes a read or write of
bytes 4–7 of memory

We say byte 4 is the address of the variable n

It’s where the variable lives in memory

72 / 102

Pointers

C gives us access to these addresses in our program

Other languages might not do this, preferring to hide these
details from the programmer

But for low-level programs that manipulate bits and bytes of
memory this is just what they need

To get the address of a variable use the & operator

73 / 102

Pointers

C gives us access to these addresses in our program

Other languages might not do this, preferring to hide these
details from the programmer

But for low-level programs that manipulate bits and bytes of
memory this is just what they need

To get the address of a variable use the & operator

74 / 102

Pointers

C gives us access to these addresses in our program

Other languages might not do this, preferring to hide these
details from the programmer

But for low-level programs that manipulate bits and bytes of
memory this is just what they need

To get the address of a variable use the & operator

75 / 102

Pointers

C gives us access to these addresses in our program

Other languages might not do this, preferring to hide these
details from the programmer

But for low-level programs that manipulate bits and bytes of
memory this is just what they need

To get the address of a variable use the & operator

76 / 102

Pointers

#include <stdio.h>

int main(void)

{

int n = 1234;

printf("n has value %d and address %p\n", n, &n);

return 0;

}

Produces
n has value 1234 and address 0x7fff251f6d5c

77 / 102

Pointers

#include <stdio.h>

int main(void)

{

int n = 1234;

printf("n has value %d and address %p\n", n, &n);

return 0;

}

Produces
n has value 1234 and address 0x7fff251f6d5c

78 / 102

Pointers

Note the difference between the value of n and the address of n

The value of n will always be 1234; the address will be different
on different machines, different on different compilers, possibly
different on different runs on the same machine

It all depends on where in memory n happens to be placed

79 / 102

Pointers

Note the difference between the value of n and the address of n

The value of n will always be 1234; the address will be different
on different machines, different on different compilers, possibly
different on different runs on the same machine

It all depends on where in memory n happens to be placed

80 / 102

Pointers

Note the difference between the value of n and the address of n

The value of n will always be 1234; the address will be different
on different machines, different on different compilers, possibly
different on different runs on the same machine

It all depends on where in memory n happens to be placed

81 / 102

Pointers

So addresses are just integers; the %p in printf prints
addresses in hexadecimal, as that is often useful to the
programmer

Exercise. Compare %x with %p

Addresses are first-class values in C: this means you can use
and manipulate them just like any other values (like integers,
doubles, etc.)

They are just integers, after all

Variables that hold addresses are called pointer variables

82 / 102

Pointers

So addresses are just integers; the %p in printf prints
addresses in hexadecimal, as that is often useful to the
programmer

Exercise. Compare %x with %p

Addresses are first-class values in C: this means you can use
and manipulate them just like any other values (like integers,
doubles, etc.)

They are just integers, after all

Variables that hold addresses are called pointer variables

83 / 102

Pointers

So addresses are just integers; the %p in printf prints
addresses in hexadecimal, as that is often useful to the
programmer

Exercise. Compare %x with %p

Addresses are first-class values in C: this means you can use
and manipulate them just like any other values (like integers,
doubles, etc.)

They are just integers, after all

Variables that hold addresses are called pointer variables

84 / 102

Pointers

So addresses are just integers; the %p in printf prints
addresses in hexadecimal, as that is often useful to the
programmer

Exercise. Compare %x with %p

Addresses are first-class values in C: this means you can use
and manipulate them just like any other values (like integers,
doubles, etc.)

They are just integers, after all

Variables that hold addresses are called pointer variables

85 / 102

Pointers

So addresses are just integers; the %p in printf prints
addresses in hexadecimal, as that is often useful to the
programmer

Exercise. Compare %x with %p

Addresses are first-class values in C: this means you can use
and manipulate them just like any other values (like integers,
doubles, etc.)

They are just integers, after all

Variables that hold addresses are called pointer variables

86 / 102

Pointers

So a pointer variable contains a simple integer (the address),
but to make things work nicely, C distinguishes between
pointers and integers, and also between pointers to different
types

So a pointer to an integer is treated as different to a pointer to a
double

And both are different from a ordinary integer

This is a bit subtle: they are all simple integers underneath; it’s
just how the compiler manipulates those integers that will be
different for different types

87 / 102

Pointers

So a pointer variable contains a simple integer (the address),
but to make things work nicely, C distinguishes between
pointers and integers, and also between pointers to different
types

So a pointer to an integer is treated as different to a pointer to a
double

And both are different from a ordinary integer

This is a bit subtle: they are all simple integers underneath; it’s
just how the compiler manipulates those integers that will be
different for different types

88 / 102

Pointers

So a pointer variable contains a simple integer (the address),
but to make things work nicely, C distinguishes between
pointers and integers, and also between pointers to different
types

So a pointer to an integer is treated as different to a pointer to a
double

And both are different from a ordinary integer

This is a bit subtle: they are all simple integers underneath; it’s
just how the compiler manipulates those integers that will be
different for different types

89 / 102

Pointers

So a pointer variable contains a simple integer (the address),
but to make things work nicely, C distinguishes between
pointers and integers, and also between pointers to different
types

So a pointer to an integer is treated as different to a pointer to a
double

And both are different from a ordinary integer

This is a bit subtle: they are all simple integers underneath; it’s
just how the compiler manipulates those integers that will be
different for different types

90 / 102

Pointers

So the interpretation of that pointer integer is what is important

This is to make later manipulations much more convenient

Of course, memory doesn’t “know” what kind of data is being
stored at a particular address; memory is just a bunch of bytes

At one point the program might store an integer at address 4;
later it might store a double there

It is up to the program to interpret the bits at a given address in
whatever way it wants

91 / 102

Pointers

So the interpretation of that pointer integer is what is important

This is to make later manipulations much more convenient

Of course, memory doesn’t “know” what kind of data is being
stored at a particular address; memory is just a bunch of bytes

At one point the program might store an integer at address 4;
later it might store a double there

It is up to the program to interpret the bits at a given address in
whatever way it wants

92 / 102

Pointers

So the interpretation of that pointer integer is what is important

This is to make later manipulations much more convenient

Of course, memory doesn’t “know” what kind of data is being
stored at a particular address; memory is just a bunch of bytes

At one point the program might store an integer at address 4;
later it might store a double there

It is up to the program to interpret the bits at a given address in
whatever way it wants

93 / 102

Pointers

So the interpretation of that pointer integer is what is important

This is to make later manipulations much more convenient

Of course, memory doesn’t “know” what kind of data is being
stored at a particular address; memory is just a bunch of bytes

At one point the program might store an integer at address 4;
later it might store a double there

It is up to the program to interpret the bits at a given address in
whatever way it wants

94 / 102

Pointers

So the interpretation of that pointer integer is what is important

This is to make later manipulations much more convenient

Of course, memory doesn’t “know” what kind of data is being
stored at a particular address; memory is just a bunch of bytes

At one point the program might store an integer at address 4;
later it might store a double there

It is up to the program to interpret the bits at a given address in
whatever way it wants

95 / 102

Pointers

We can declare pointer variables

int n;

int *pn;

pn = &n;

The * is read as “pointer to”; the variable pn has type “pointer to
int”

96 / 102

Pointers
Convention

Note: the convention is to write int *pn; rather than int* pn;

Both are treated as exactly the same by the compiler

The latter is read as “pn has type pointer to int” or “pn is an
int pointer”

The reason for this slightly awkward convention is that we can
declare
int n, *pn;

for an int n and a pointer to int pn

You can read the above as “n is an int and pn is an int pointer”

97 / 102

Pointers
Convention

Note: the convention is to write int *pn; rather than int* pn;

Both are treated as exactly the same by the compiler

The latter is read as “pn has type pointer to int” or “pn is an
int pointer”

The reason for this slightly awkward convention is that we can
declare
int n, *pn;

for an int n and a pointer to int pn

You can read the above as “n is an int and pn is an int pointer”

98 / 102

Pointers
Convention

Note: the convention is to write int *pn; rather than int* pn;

Both are treated as exactly the same by the compiler

The latter is read as “pn has type pointer to int” or “pn is an
int pointer”

The reason for this slightly awkward convention is that we can
declare
int n, *pn;

for an int n and a pointer to int pn

You can read the above as “n is an int and pn is an int pointer”

99 / 102

Pointers
Convention

Note: the convention is to write int *pn; rather than int* pn;

Both are treated as exactly the same by the compiler

The latter is read as “pn has type pointer to int” or “pn is an
int pointer”

The reason for this slightly awkward convention is that we can
declare
int n, *pn;

for an int n and a pointer to int pn

You can read the above as “n is an int and pn is an int pointer”

100 / 102

Pointers
Convention

Note: the convention is to write int *pn; rather than int* pn;

Both are treated as exactly the same by the compiler

The latter is read as “pn has type pointer to int” or “pn is an
int pointer”

The reason for this slightly awkward convention is that we can
declare
int n, *pn;

for an int n and a pointer to int pn

You can read the above as “n is an int and pn is an int pointer”

101 / 102

Pointers
Convention

Exercise. What are the types of the variables in the following?

int* a, b;

102 / 102

