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ABSTRACT

Isotropic points are significant features of any complicated two-dimensional
field of stress and strain, for they are stable against perturbation. Around
them the trajectories of principal stress or strain have three patterns, rather
than the two usually recognized, the extra pattern being called monstar.
The example of three-point bending of a beam illustrates how isotropic
points can be born in pairs, one member of the pair necessarily having the
monstar pattern, and how a point can subsequently change from one pattern
to another. By making yet another distinction, one can divide isotropic points
into six categories, in general. In the special case of statical equilibrium
without body forces, the number of different categories for the isotropic
points in a stress distribution reduces to four and there is a close analogy
with the umbilic points of a surface, but for strain the number remains six.
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I. INTRODUCTION

In two-dimensional distributions of stress and strain there are, in general,
special points where the two principal stresses or strains are equal. These are
the isotropic points of photoelasticity, for which numerous examples are
readily visible in any irregularly shaped photoelastic specimen under load.
In fact, the complicated stress distribution that is produced in such a specimen
can usefully be thought of as being based on the positions and nature of these
points. This is because isotropic points have the important property of being
structurally stable; that is to say, a small change in the loading or in the
shape of the specimen does not destroy them, but merely moves them
slightly. Thus a complicated change in the pattern may be categorized, in one
way, by simply noting the movement of the isotropic points. They form a
kind of skeleton on which the rest of the stress field is built. It is therefore of
both practical and theoretical importance to understand their nature. The
purpose of this paper is to bring to the attention of engineers certain recent
theoretical results on this question.

Traditionally, isotropic points have been classified simply as positive or
negative, each kind having its characteristic pattern of stress trajectories.
We point out in Section II that this is an error, because there are actually
three characteristic patterns rather than two. In practice it is hard to see the
details near an isotropic point, because the principal stress difference is
small. This is why erroneous patterns are often drawn. To avoid mistakes
it is helpful to know, from theory, what to expect.

These preliminary remarks are intended to demonstrate the relevance to
engineering of the formal classification which follows. A further small
illustration of the practical significance of isotropic points is the following:
Suppose a plate is to be subjected to plane stress or plane strain and one
wishes to bore small bolt holes in it that will remain circular after deforma-
tion. A small circular hole made at a general point will become elliptical. To
solve the problem, one should place the holes at the isotropic points, for
they will then remain circular (if small enough) under the prescribed load,
even though they will be expanded or contracted.

After describing the classification of isotropic points in Section II, we
give in Section III a simple example, three-point bending, where they play a
prominent role. In particular, the example shows how isotropic points can be
born in pairs. Whenever this happens, the stress pattern around one member
of the pair has to be of the unfamiliar monstar variety.
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Il. CLASSIFICATION OF ISOTROPIC POINTS

The following classification scheme applies to the isotropic points in any
two-dimensional field of a symmetric tensor, but for definiteness we shall
first describe it for the stress tensor. It was introduced by Thorndike, Cooley,
and Nye [1] to describe the ‘“‘generalized umbilic points” that occur in a
general two-dimensional vector field, the analysis for this case being essen-
tially identical with that for a symmetric tensor. This work was itself based
on the related classification given by Berry and Hannay [2] for the umbilic
points of a general surface (points where the two principal curvatures are
equal). Further details of the scheme will be found in these two papers.

The classification may be explained by referring to Fig. 1, which shows
three possible patterns for the trajectories of principal stress around an
isotropic point. At each point of a pattern, the light solid line shows the
direction of the algebraically greater of the two principal stresses and the
orthogonal light dashed line shows the direction of the other principal stress.
In each pattern the principal stress directions become indeterminate at the
isotropic point itself. These three patterns are special because they are sym-
metrical. A general isotropic point will have a stress pattern that is topologi-
cally similar to one of these, but is distorted.

The classification of isotropic points in general depends on recognizing that
any given isotropic point possesses three distinct properties. The first property
is the disclination index, or simply the index. This results in the traditional
division into positive and negative isotropic points. To find the index, make
an imaginary clockwise circuit around the point and note the corresponding
rotation (clockwise positive) of the principal stress directions. If it is +7

(a) (b) (e)

Fig.1 The pattern or principal stress directions for (L) lemon, (S) star, and (M) monstar.
Note that in the monstar pattern all the lines from a whole sector pass through the
isotropic point, while in the lemon pattern only one line does so.
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the index is +1, if it is — & the index is —3. Thus, in Fig. 1b the index is
—1, while in Figs. la and lcitis +14.

The second property is the /ine property. This is one or three, depending
on the number of straight stress trajectories passing through the point
(“straight” means that the curvature vanishes in the lowest approximation).
In Fig. 1 the straight trajectories are shown by thick solid and dashed lines.
Thus in Fig. 1a the line property is one, while in Figs. 1b and Ic it is three.
These examples show that classifying by the index property is different from
classifying by the line property. However, out of the four combinations
of these two properties, one is impossible: negative index and one line
cannot occur simultaneously. Figures la, 1b, and lc are in fact symmetrical
examples of the three remaining combinations. The pattern of Fig. la
(index +1%, 1 line) is called lemon (L), Fig. 1b (index —%, 3 lines) is called
star (S), and Fig. lc (index +3%, 3 lines) is called monstar (M) because it is
intermediate between lemon and star. The nomenclature used here is due to
Berry and Hannay [2].

The third property is different from the others, in that it does not involve
the stress trajectories. Instead, it depends on the shape of the contours of
constant principal stress ¢, and o,; i.e., on the shape of the curves o; =
constant, o, = constant near the isotropic point. The curves are either both
ellipses or both hyperbolas. The contour property is elliptic (E) if the contours
are ellipses and hyperbolic (H) if they are hyperbolas. Each of the line patterns
of Fig. 1 can be elliptic or hyperbolic, in this sense. There are thus six differ-
ent possibilities in all.

Isotropic points in stress distributions are generic, that is, they will occur
naturally without any special preparation (for example, a symmetrical shape
or loading) being necessary. In this paper, we are primarily concerned with
what happens in such “‘general” fields. In theory, one can construct degenerate
forms. An extreme example is the neutral line in the simple bending of a uni-
form bar, for here an isotropic point has degenerated into an isotropic line.
In carefully made experiments one can come very close to such degenerate
forms, but experimental imperfections and the presence of residual stresses
will always, strictly speaking, prevent them from being achieved exactly,
unless one has sufficient independently variable parameters at one’s disposal.
Of course, in practice the finite resolving power of the observing apparatus
may conceal the lack of perfection. Bearing this in mind we can assert that a
generic isotropic point is a stable feature, in the sense that a small perturba-
tion of the experimental conditions does not destroy it, but merely moves it
(this is ensured by the topological nature of the index property). Moreover,
its classification is a stable property; when slightly perturbed the point re-
tains both its identity and its classification. On the other hand, a large
perturbation may shift it from one category-to another.
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Certain degenerate special cases can be achieved in practice (as well as in
theory) as transitional forms that appear as a single parameter (for example,
the aspect ratio of a specimen) that is continuously changed. The borderline
forms between monstar and lemon and between elliptic and hyperbolic can
be made in this way, but they are nongeneric (they only occur for a special
value of the parameter) and unstable; a small perturbation will change them
into one of the stable categories. In the same way, the symmetry of the
patterns in Fig. 1 is nongeneric; typical isotropic points have unsymmetrical
trajectory patterns.

All three properties of an isotropic point (index, line, and contour) depend
on the linear terms in the expansion of the stress tensor about the isotropic
point, which may be written up to linear terms as

<ao +ax + by —dix—ay )

g =

—dix —ay oo+cx+dy

where x and y are Cartesian coordinates and oo, 4, a4, b, ¢, d, and d, are

constants. The sign of the index is the same as the sign of the discriminant
(Ref. 1, p. 1489)

D; = (c — a)a; + (b — d)d, 1)
The line property depends on the sign of the discriminant [1]

Dy =4{3a;(c —a— a)) —(®b—d- dl)z}{3d1(b —d=—d)—(c—a— ‘11)2}
—{( - d—d)(c — a— a)—da;}’ @

If D, > 0, there are three lines, and if D, < 0, there is one line. The contour
property depends on the sign of the discriminant [1]

D¢ = 4(ca — d})(db — a?) — (cb + da — 2d;a,)? €))

The point is elliptic if D¢ > 0 and hyperbolic if D¢ < 0.

If the body is in statical equilibrium and there are no body forces, the
equilibrium equations for stress demand that a = a, and d = d;. In this
special case, the stress components are derivable from the Airy stress function
1(x, y) by the relations o, = 8%¢/0)?, 0, = 8%y/0x?, and o, = —d%y/0x0dy.
If x(x, y) is regarded as the height of a surface above the (x, y) plane (scaling
y so that the surface has only small slopes), the curvature tensor of the sur-
face has the form

<6zx/8x2 6zx/6x6y> <ao +cx +dy dx + ay >

0%y/oxdy 0%y/oy* dx + ay 6o + ax + by
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At (0, 0) the two principal curvatures are equal, namely o,, and the point is,
by definition, umbilic. Berry and Hannay [2] classify the umbilic points of a
general surface by index, line, and contour, just as we have done above for
isotropic points, the curvature tensor playing the part of the stress tensor.
It may be verified (using Ref. 2) that the discriminants are then precisely
given by Egs. 1, 2, and 3, but with @ = @, and d = d;. Thus, where the tensor
components are derivable from an underlying potential (here the Airy stress
function), the classification of a given isotropic point of the tensor field is
identical with the classification for the corresponding umbilic point of the
potential surface. Where there is no such potential, the more general classifica-
tion (with a # a, and d # d,) relevant to “‘generalized umbilic points” is
needed.

When a potential exists, two of the six classes of isotropic point are for-
bidden, namely elliptic lemon and elliptic monstar, and the four remaining
classes may be displayed on the one-dimensional Venn diagram in Fig. 2.
Thus, for example, all elliptic patterns have negative index and three lines,
while all one-line patterns are hyperbolic and have positive index.

To distinguish experimentally (say, by photoelasticity) between positive
and negative isotropic points, i.e., to determine the index property, is com-
paratively simple. It can be much harder to distinguish between lemon and
monstar and this is doubtless the reason why monstar patterns are so rarely
reported (an example occurs in Fig. 7 of Ref. 3). We suspect that many pat-
terns drawn as lemons are in fact monstars. However, it is worth remarking
that on an isotropic Gaussian random surface monstar umbilic points are
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Fig. 2 Classification for the isotropic points of a stress distribution when the stresses are
in equilibrium. The diagrams show how the various classes overlap. ES = elliptic
star, HS = hyperbolic star, M = monstar, L = lemon.
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comparatively rare. Berry and Hannay [2] calculate the proportions as 26.8 %,
elliptic star, 23.2% hyperbolic star, 44.77; lemon, and 5.3% monstar. It
follows that, if such a random surface is taken to represent an Airy stress
function, the resulting stress distribution will contain isotropic points in these
same proportions.

The first mention of the monstar pattern seems to be by Darboux [4],
who noted it as a possible configuration of the lines of principal curvature
of a surface. Filon [5] rediscovered it in photoelasticity, but nevertheless
textbooks of photoelasticity still usually illustrate only the star and the
lemon.

The index property of an isotropic point means that it is topologically
impossible for a single isotropic point to be created in the interior of a
stress field where none existed before. As an external parameter is changed,
the points are born in pairs (one positive and the other negative), unless
they come in from boundaries. If there is an underlying potential (equilib-
rium), as Fig. 2 indicates, one member of the pair will be hyperbolic star,
while the other will be monstar. Similarly, the points can mutually annihilate
one another in pairs. Figure 3 shows the corresponding patterns of principal
stress directions (these were originally calculated [6] as patterns of lines of
principal curvature for the mutual annihilation of two hyperbolic umbilic
points on a surface). Reading Fig. 3 from right to left, in the first pattern there
is no isotropic point. In the second pattern two isotropic points coincide,
the index is zero and the pattern is degenerate. In the third pattern the two
isotropic points have separated, the upper one being clearly a star while the
lower is a monstar. As the parameter continues to change, the monstar can
transform into a lemon. In fact this is the only way of creating a lemon,
unless it moves in from a boundary. In theory, of course, one could create
a lemon from nothing by gradually switching on a suitable stress field that
was initially everywhere zero. But a zero stress field is nongeneric; in practice
there will always be a field of residual stresses, however small.

Fig.3 Sketch of patterns of principal stress directions for successive stages in the mutual
annihilation or birth of a pair of isotropic points (symmetrical case).
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iil. AN ILLUSTRATIVE STRESS FIELD

Exactly the behavior just described occurs in the three-point bending
experiment of Fig. 4(a) as the ratio of the length to the depth of the beam
is changed. A good approximation to the stresses is given by the Wilson-
Stokes theory [7], which predicts that as //h, where 2/ is the span and 24 is
the depth, increases through the value 4.24, two isotropic points are born on
the central vertical axis at x = %A, which then separate in the vertical direc-
tion (Figs. 4c, 4d, and 4e). By using the discriminants of Egs. 1, 2, and 3,
with the expressions for the stress components given by Frocht [7], it may be
shown that the upper of the two isotropic points is a hyperbolic star, while
the lower is a monstar. At [/ = 4.74 and x = 0.68h, the monstar transforms
into a lemon (Fig. 4e).

The essential reason for the appearance of two isotropic points is that,
in the top half of the specimen, there is a competition between the longitudinal
compression induced by bending and the longitudinal tension induced
immediately under the central indenter. The first varies linearly with x but
the second does not, thus giving the possibility of cancellation at two differ-
ent points.

We have made photoelastic observations of a closely related experimental
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Fig.4 (a) A theoretical three-point bending experiment. The critical region (boxed in
(a)) is shown in detail in (c), (d), and (¢), where the lines are the trajectories of the
greater of the two principal stresses. As the aspect ratio /A increases through 4.24,
two isotropic points are formed on y = 0 at x = }h. At I/h = 4.74, the lower one
transforms from monstar to lemon. (c) is for //h < 4.24, (d) is for 4.24 < I/h <
4.74, and (e) is for I/h > 4.74. The experimental arrangement, shown in (b), was
slightly different. It produced the same sequence of stress patterns, but by varying
the indenter load P rather than by changing the aspect ratio //A.




CLASSIFICATION OF ISOTROPIC POINTS 379

arrangement shown in Fig. 4(b). It is like Fig. 4(a) except that the ends of the
beam, made of urethane rubber, are cemented to metal bars that are free to
rotate about fixed pivots. Thus, applying load P with the metal bars held
fixed induces end couples (in contrast to what happens in Fig. 4a). Additional
equal and opposite end couples can then be applied by turning the metal
bars. In this way, both P and the end couples can be varied independently,
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Fig.5 Results from the experiment shown in Fig. 4(b). The azimuthal angle ¢ of the
direction of the greater principal stress is plotted against the polar angle 0 for
(a) a monstar pattern and (b) a lemon pattern, obtained by decreasing P through a
critical value, Pe. The points were obtained by using crossed polarizer and
analyzer and measuring the polar angle ¢ corresponding to the isoclinic labeled
#. Thus each measurement is plotted twice, once at § and once at 6 + = according
to the relation ¢(0 + n) = ¢(0) + 3n.
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but //h is fixed (& 1). The stress distribution in the center of the beam
produced by this arrangement is very similar to that of Fig. 4(a), for both
combine the effect of a uniform bending moment with that of an indenter.
With the end bars held fixed, decreasing P in Fig. 4(b) corresponds to
increasing //A in Fig. 4(a). This is in fact the experiment that we now report.
The end bars were fixed, to give simple bending with the top half of the
specimen in compression, and a high value of P was applied. There were no
isotropic points. As P was decreased, a pair of isotropic points was seen to
be born, star and monstar, as in Fig. 4(d). Then the monstar changed into a
lemon, as in Fig. 4(e). The evidence for the latter change is as follows: With
the origin at the lower isotropic point, let us denote by ¢(6) the azimuthal
angle of the direction of the greater principal stress at a nearby point whose
polar coordinates are (r, §). The condition that the stress trajectory should
be a radial straight line is then ¢(0) = 6. Figures 5(a) and 5(b) show that, for
P greater than the critical value, the graph of ¢(6) cuts the line ¢(0) = 6 in
three points in an interval of 27, so that the line number is three (monstar),
while for P less than the critical value there is only one intersection, showing
that the line number is one (lemon). Further details of the experiment are
reported in Refs. 8 and 9.

iV. ISOTROPIC POINTS FOR STRAIN

For an isotropic elastic material the directions of principal stress and
strain necessarily coincide. Therefore, the index and line classification of a
given isotropic point is the same for stress as it is for strain. However, there
is no reason why the contour classification should be the same, because it
will depend on two independent elastic constants. Furthermore, although the
stress components may be in equilibrium, and so be derivable from a poten-
tial, the same is not true of the strain components. Therefore we will always
need the wider classification, with six different classes for the isotropic points
of strain. A given isotropic point in a material could be hyperbolic for stress
but elliptic for strain, and vice versa. When a pair of isotropic points for
strain are created, they must have opposite index; one must be star and the
other monstar as in Fig. 3. Either both are elliptic or both are hyperbolic,
in contrast to the case for stress in equilibrium with no body forces, when

both points must be hyperbolic.
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